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Abstract: In recent years nuclear magnetic resonance (NMR) sensors have been 

increasingly applied to investigate, characterize and monitor objects of cultural heritage 

interest. NMR is not confined to a few specific applications, but rather its use can be 

successfully extended to a wide number of different cultural heritage issues. A 

breakthrough has surely been the recent development of portable NMR sensors which can 

be applied in situ for non-destructive and non-invasive investigations. In this paper three 

studies illustrating the potential of NMR sensors in this field of research are reported. 

Keywords: unilateral NMR; 
13

C-CPMAS; paintings; porous stones; moisture detection; 

non-invasive analysis; non-destructive analysis; cultural heritage 

 

1. Basic of NMR Sensors 

Nuclear magnetic resonance (NMR) is a powerful tool in many fields and a diversity of NMR 

measurements and methodologies have been and are currently being exploited. High resolution NMR 

spectroscopy in solution provides a method for determining the structure of molecules and 

macromolecules [1,2], whereas solid state NMR spectroscopy [3] is used for characterizing organic [4], 

inorganic [5], and hybrid materials [6]. Although magnetic resonance imaging (MRI) is a non-destructive 

diagnosis tool traditionally applied in clinical medicine, the application to materials [7] and food  

science [8] is now well established. High resolution magic angle spinning (HRMAS) NMR allows the 
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investigation of “soft matter” [9]. Molecular motions can be studied by measuring relaxation times, 

and pulsed-gradients of magnetic field (PFG-NMR) are applied to investigate molecular translational 

diffusion [10]. 

Almost any element of the periodic table may be analyzed in the liquid, soft or solid state, the only 

limitation being natural isotopic abundance and sensitivity to the NMR experiment. To overcome the 

problem of sensitivity many NMR methodologies and sensors have been developed. For example, the 

reverse detection technique [11] increases the sensitivity in the detection of low abundant heteronuclei 

by an indirect way and makes possible the study of samples in low concentrations. Cryoprobes and 

microprobes [12,13] offer the chance to minimize the amount of material needed to perform the NMR 

analysis of soluble samples down to the microgram scale. High power decoupling, magic angle 

spinning and cross-polarization to enhance the sensitivity of rare nuclei have made it possible to 

investigate samples in the solid state [14]. The amount of material needed for solid state analysis has 

progressively decreased from 400–500 mg to a few mg. Promising NMR sensors and techniques in 

terms of their increased intrinsic sensitivity are under development such as micro-coils for MAS NMR 

applications [15], planar microslot waveguide NMR probes [16], para-hydrogen induced polarization 

(PHIP) [17], and dynamic nuclear polarization (DNP) [18]. 

The simplest NMR experiment consists of applying a radio-frequency (rf) pulse with a duration of a 

few microseconds to the sample. As the rf pulse is switched off, nuclei return back to equilibrium 

generating an interferogram known as free induction decay (FID). Provided that the magnetic field is 

homogenous and a Fourier transformation is applied to the FID a spectrum is obtained with peaks of 

appropriate width and frequency (chemical shift). In the frame of pulsed low resolution NMR, FID 

obtained after applying two or more pulses is used in the determination of relaxation times [19]. After 

perturbing a spin system with a proper rf pulse sequence, the system will return back to equilibrium 

through a process called “relaxation” characterized by a decay time constant known as relaxation time. 

The longitudinal relaxation time T1 is the decay time constant for the recovery of the z component Mz 

of the nuclear spin magnetization towards its thermal equilibrium value. Longitudinal relaxation is due 

to energy exchange between nuclear spins and the surrounding lattice re-establishing thermal 

equilibrium. The transverse relaxation time T2 is the decay time constant for the component Mxy of the 

nuclear spin magnetization in the xy plane. As spins move together, their magnetic fields interact 

slightly modifying their precession rate causing a cumulative loss in phase which results in transverse 

magnetization decay. Note that relaxation times depend on the physico-chemical properties  

of materials.  

There is growing understanding that monitoring and diagnosis of artifacts are mandatory to prevent 

or at least delay their degradation. Because the amount of samples obtained from precious artifacts to 

be analyzed must be reduced to a minimum, multi-analytical approaches are advisable where  

micro-destructive, non-destructive, and possibly non-invasive techniques are combined. A 

breakthrough for application of NMR to cultural heritage has been the development of unilateral NMR 

sensors [20–23] which allow one to study arbitrarily sized objects non-invasively, combining open 

magnets and surface rf coils to generate a magnetic field external to the sensor and inside the object 

under investigation. Although the magnetic field of these sensors is inhomogeneous, it is possible to 

measure NMR parameters such as proton density, relaxation times, self-diffusion coefficient, and even 

to collect correlation maps [24] of unmovable and precious artifacts and monuments belonging to the 
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cultural heritage. Because of the inhomogeneous field [25], the signal (FID) decays very quickly and 

cannot be directly detected. Therefore the signal must be recovered as an echo. Moreover, the 

inhomogeneous field is a further source of relaxation which makes the transverse relaxation time 

shorter than that measured in a homogeneous field. 

Figure 1a shows a palm size NMR sensor. It consists of a U-shaped magnet obtained using two 

anti-parallel permanent magnets mounted on an iron yoke with the rf coil positioned in the gap of the 

magnet. The magnetic field is external to the device, enabling large objects to be studied without any 

sampling. Different probe heads, each tuned to the proper frequency are used to obtain different depths 

of measurement. A further development of unilateral NMR devices are sensors that can scan depths up 

to 2.5 cm, producing depth profiles with micrometric spatial resolution [26]. These devices generate an 

inhomogeneous magnetic field with a uniform gradient to resolve the near surface structure of 

arbitrarily large samples. To improve gradient uniformity, the device works at a fixed depth from the 

sensor, where high depth resolution can be achieved. The position of the excited slice inside the 

sample can be varied by displacing the sensor using a high-precision lift that repositions the magnet 

with respect to the sample. Figure 1b shows a device consisting of a permanent magnet mounted on a 

precision lift. Application of these devices has opened a number of new possibilities also in the field of 

cultural heritage [27–34].  

Figure 1. (a) Unilateral NMR sensor by Bruker Biospin; (b) NMR sensor with a uniform 

gradient to resolve the near surface structure of arbitrarily large samples, the sensor is 

placed on a lift that allows one to move the magnetic field inside the object to be analyzed 

with micrometric steps, sensor by RWTH Aachen University, Aachen, Germany [26]. 

 

In the following we report three cases illustrating the potential of NMR sensors in cultural heritage. 

2. Quantitative Moisture Distribution Mapping in an Ancient Wall Painting 

Water is a major cause of decay to building masonry in cultural heritage sites [35]. Determining the 

course and distribution of water through the wall is a fundamental step in conservation work and is 

particularly true for wall paintings. In fact wall paintings are constituted of materials having an open 

porosity resulting in an easy accessibility of liquids and gases such as salt solutions, atmospheric 

pollutants, dampness, and solutions of material used for conservation treatments. Wall paintings are 

part of an essentially open physical system due to contact with contiguous structures (walls, ground, 

roofs) that are dynamically involved in a series of physical and chemical events. A number of factors 
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must be taken into account, such as the vulnerability of thin painted surfaces forming the interface 

between the plaster and the environment, the proximity of places crowded with people to the wall 

painting, the difficulty of controlling potential deteriogens, such as moisture, biological colonization, 

and pollution. Additionally, in many cases the surrounding microclimate cannot be controlled. The 

knowledge of water path and distribution through the wall is mandatory for determining the 

mechanism by which water triggers and accelerates damage, and for developing and planning 

interventions for conservation. Nevertheless, the amount and the distribution of moisture within a wall 

painting is difficult to determine. The methods currently used for this determination are IR 

thermography (IRT), electrical conductivity, and gravimetric tests. However IRT does not allow a 

quantitative evaluation of the moisture content, electrical conductivity may be affected by the presence 

of salts and gravimetric tests require the drilling of solid cores, which is strictly forbidden in the case 

of precious artworks such as wall paintings. 

The availability of unilateral NMR sensors has allowed non-destructive and non-invasive mapping 

of moisture distribution in ancient wall paintings [36–39]. Figure 2 shows a portable NMR instrument 

measuring moisture content in the wall painting Saint Clement at Mass and the Legend of Sisinnius 

located in St. Clement’s Basilica, Rome. 

Figure 2. Portable unilateral NMR instrument measuring the moisture content in the wall 

painting Saint Clement at Mass and the Legend of Sisinnius in St. Clement’s Basilica, Rome. 

 

The wall painting, which dates back to 1080, is located on the second hypogeous level of the 

Basilica at a depth of about 6 m below the road level. The presence of a watercourse flowing under the 

foundation of the Basilica is one of the causes of the rising damp through the walls of the archeological 

site. Furthermore, microclimate conditions in the hypogeum are critical, with a very high relative 

humidity and low temperature during the whole year. The masonry and wall painting showed the 

characteristic degradation processes induced by a high level of humidity such as efflorescences, 

encrustations, and biological colonization. The damage due to action of water in the wall was so severe 

that reduction of dampness and stabilization of moisture content were mandatory before planning any 

restoration of the painted surface. To reduce rising damp in the masonry, a horizontal cut was carried 

out through the bricks of the wall just above floor level, and a hydrophobic mixture of polyester resin 

and marble powder was injected into the wall. The amount, distribution, and evolution of moisture in 

the wall painting were monitored by unilateral NMR before and after the intervention. 



Sensors 2014, 14 6981 

Measurements were carried out choosing a matrix of points on the painted surface. The same matrix 

of points was investigated before (February 2008) and after (February 2010) the intervention [36]. 

NMR measurements were carried out both on the superficial layers at a depth of 0.1 cm of the wall 

painting and at a depth of 0.5 cm in the plaster. Collected data were processed to obtain contour plots 

which are 2D representations of 3D surfaces. In these contour plots x and y are the coordinates of the 

measured region of the painted wall and z is the integral of the NMR signal, which is proportional to 

water content. 

Figure 3 shows moisture distribution maps obtained before (a,b) and after (c,d) the intervention to 

reduce the capillary rise of water. Maps collected at a depth of 0.5 cm are reported on the left whereas 

maps collected on the superficial layer of the wall panting are reported on the right. In these maps, the 

difference in the moisture level is encoded by a gradient of color, dark red indicates regions with the 

lowest moisture content, whereas dark blue indicates regions with the highest moisture content. 

Although the maps differentiated wall painting regions as a function of moisture content, a further step 

was necessary to calibrate the NMR signal and to assess the precise amount of moisture in each region. 

Briefly, the NMR signal was calibrated using four specimens prepared by restorers according to the 

ancient original recipe to reproduce the mortar used in the wall painting. This procedure allowed to 

scale the amount of moisture in each measured region. Furthermore, to validate the calibration 

procedure, NMR measurements and gravimetric tests were carried out on an unpainted area very close 

to the wall painting. Results obtained with these two techniques were found to be in very good 

agreement [36]. 

Figure 3. Moisture distribution maps obtained by unilateral NMR before (a,b) and after 

(c,d) intervention to reduce capillary rise of water through the wall. Left, maps collected at 

a depth of 0.5 cm, right, maps collected on superficial layer (0.1 cm) of the wall painting. 

Data adapted from [36]. 

 

 

Maps obtained at a depth of 0.5 cm gave a clear image of the path of rising damp. The maximum 

water content measured in February 2010 (Figure 3c) seven months after intervention, was about 3% 
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lower than that measured in February 2008 (Figure 3a) before intervention. Additionally, maps 

obtained after intervention clearly showed a lower rise of moisture and a net reduction in wet regions. 

Maps obtained at a depth of 0.1 cm showed that maximum water content was 12%–13% in 

February 2008 (Figure 3b) and 11%–12% in February 2010 (Figure 3d). It is worth noting that these 

maps did not give information about the path of rising damp. In fact measurements at a depth of  

0.1 cm regarded a slice very close to the painting-environment interface, which was mostly affected by 

the microclimate of the underground environment. The influence of microclimate on the quantitative 

moisture distribution in superficial layer of the wall painting was evident in the map collected 

November 2009 (data not reported), when the presence of a scaffolding caused a net lowering of 

relative humidity in proximity of the wall painting. In fact, monitoring of thermohygrometric 

parameters conducted simultaneously with NMR measurements showed that outside the scaffolding, 

mean relative humidity was about 98%, whereas inside it was about 88%, and the temperature inside 

the scaffolding was, on average, one degree higher than outside. In fact maps collected at a depth of 

0.1 cm before (Figure 3b) and after intervention (Figure 3d) were found to be very similar to each 

other and little affected by the intervention. To summarize, the moisture content in the superficial layer 

of the wall painting was found to be largely affected by the microclimate of the hypogeous 

environment, whereas the moisture content at a depth of 0.5 cm was largely affected by the rising 

dampness through the wall.  

Experimental Details 

Measurements were performed in situ with an unilateral NMR instrument from Bruker Biospin, 

which is a variant of NMR-MOUSE, see Figure 1a. NMR signal is the integral of the signal obtained 

applying a Hahn echo pulse sequence. Measurements were carried out at a depth of 0.1 cm from the 

surface of the wall painting and at a depth of 0.5 cm. In the former case, a probe head operating at  

18 MHz with a π/2 pulse of 3 μs was used, whereas in the latter case a probe head operating at  

16 MHz with a π/2 pulse of 10.4 μs, was used. In both cases the dead time was 15 μs. Measurements 

were carried on a matrix of 50 points, each point covering an area of 2 × 5 cm
2
. Collected data were 

processed to obtain a contour plot where x and y were the coordinates of the measured area of the wall 

painting, and z was the integral of the NMR signal. The detailed procedure for calibrating moisture 

distribution maps has been reported elsewhere [38,39]. 

3. NMR Stratigraphy of a Painting on Wooden Panel 

Paintings consist of many layers such as pigments, binders, primer, varnishes, and so on. 

Knowledge of layers’ structure or stratigraphy of the artwork provides information about the materials 

used, and the working practices of the artist. Because organic and inorganic components of the paint 

layer undergo degradation, the knowledge of composition is mandatory to assess suitable conservation 

and display conditions, to prevent or slow the decay process, and to plan restoration.  

The common practice of obtaining information about stratigraphy is to cut cross-sections from the 

painting and analyze them by optical microscopy (OM) and scanning electron microscopy coupled 

with energy dispersive X-ray spectroscopy (SEM-EDS). Analytical techniques capable of  

identifying materials in paintings cross-sections such as chemiluminescent immunochemical imaging [40],  
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surface-enhanced Raman spectroscopy [41], FTIR mapping [42], and secondary-ion mass  

spectrometry [43], have been developed. 

NMR stratigraphy is an analytical technique which may be applied in situ to reveal different layers 

of a painting in a fully non-invasive manner. The first stratigraphy was published by  

Presciutti et al. [27]. With this technique, layers of different materials can be detected and their 

thickness can be measured. Because NMR stratigraphy does not require any sampling, many regions of 

the painting may be analyzed and monitored over time.  

The stratigraphy encodes the amplitude of the 
1
H-NMR signal as a function of the depth scanned. 

The intensity of the signal indicating hydrogen content enables one layer to be differentiated from 

another. The sensor is placed on a lift that allows one to move the magnetic field inside the painting 

with micrometric steps.  

To illustrate the performance of the NMR sensor, the stratigraphy obtained on a purposely prepared 

tempera specimen and the corresponding optical image are reported in Figure 4. Based on variation in 

signal intensity, the stratigraphy indicates four well-defined layers: the first (0.4 mm thick) is the 

pictorial layer, the second (1.2 mm thick) is the primer, the third is the incamottatura  

(canvas + glue, 0.8 mm thick), and the fourth one is the wood of the panel. The number of layers and 

their thickness match those observed by OM.  

Figure 4. (a) Image across the painting layers obtained with an optical microscope on a 

cross section removed from the specimen; (b) NMR stratigraphy of a purposely prepared 

tempera specimen, the resolution of the stratigraphy is 50 µm.  

 

 

Based on relaxation times measured on the distinct layers detected by the stratigraphy, in principle 

it may be possible to qualitatively differentiate layers consisting of different types of organic material.  

In the following we report a case study regarding an ancient icon that is thought to be a copy of the 

Madonna Hodigitria from Constantinople. It would have been transported from Troy to Rome in 1100 by 
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Angelo Frangipane coming back from the Holy Land. As early as the 9th century it had probably been 

preserved in Santa Maria Nova church (nowadays Santa Francesca Romana church, Rome, Italy). The old 

painting was rediscovered in 1950 during a restoration work. Under a more recent painting dating from the 

19th century, restorers discovered another painting dating back to the 13th century. Under this painting, 

two faces painted in encaustic on linen canvas were found, possibly dating back to the 5th century. Figure 5 

shows the icon along with some regions scanned by portable NMR.  

Figure 5. Icon and a few selected regions among those measured by unilateral NMR. 

 

Stratigraphies measured in these regions are reported in Figure 6. In Figure 6a a stratigraphy 

collected on the Virgin’s face (region P1), is shown. The stratigraphy indicated the presence of three 

well defined layers, the first (0.5 mm thick) one was the pictorial layer, the second one (0.3 mm thick) 

was due to the presence of incamottatura (canvas + glue), and the third one was the wood of the panel. 

CPMG decays measured on Virgin’s face were able to differentiate the three layers detected by 

stratigraphy. In fact two T2 values of 0.10 and 0.24 ms in a relative amount of 75% and 25% were 

found on the pictorial layer, whereas values of 0.15 and 0.40 ms in a relative amount of 84% and 16% 

were measured on the incamottatura. Eventually, two T2 values of 0.16 and 0.90 ms in a relative 

amount of 67% and 33% were measured on the wooden panel. These results indicated that layers 

detected by stratigraphy were made of different types of organic material. 

In Figure 6b stratigraphies measured in regions P1 and P2 on Virgin’s face are compared. The 

comparison clearly showed that in P2 the pictorial layer was reduced to about one half than that 

measured in P1. In fact region P1 was well preserved, whereas in P2 a lacuna was observed. 

Figure 6c shows the stratigraphy measured on Virgin’s mantle (region P3). Three layers were 

observed, the first one (0.4 mm thick) was the pictorial layer, the second one (0.5 mm thick) was the 

primer, and the third one was the wood of the panel. Note that the pictorial layer was found to be 

thicker (0.8 mm) on Child’s mantle (P4) than on Virgin’s mantle (P3), see also Figure 6d. 
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Figure 6. (a–e) NMR stratigraphies measured in different regions of the icon;  

(f) Comparison between CPMG decays measured on region P6 at a depth of 1 mm, and on 

the same region at a depth of 2.5 mm on wood. 

 

The stratigraphy obtained on region P5 on the Child’s mantle showed a lacuna, clearly evidencing the 

absence of the pictorial layer, see Figure 6d. The stratigraphy obtained on the Virgin’s hand (P6) was found 

to be completely different from those collected on other regions of the painting, see Figure 6e. In fact the 

stratigraphy did not show the presence of any distinct layers. It is worth to note that the CPMG decay 

measured in region P6 on the Virgin’s hand at a depth of 1 mm was different from that measured on the 

wood in the same region at a depth of 2.5 mm, see Figure 6f. Specifically, two T2 values were obtained in 

both cases, however T2 values of wood were found to be 0.16 and 0.90 ms in a relative amount of 67 and 

33% respectively, whereas at a depth of 1 mm values of 0.12 and 0.47 ms in a relative amount of 60 and 

40% were found. Actually the longest T2 component differentiated between wood and the more 

superficial layer indicating the presence of two distinct materials. 

Few fragments of the wooden panel were investigated by 
13

C-CPMAS NMR spectroscopy. This 

technique permits to obtain spectra of solid samples, and require sampling of about 8–10 mg of solid 

material provided that a sample holder with an internal volume reduced to 12 µL is used. 
13

C-CPMAS 

NMR spectroscopy is a very powerful and unique tool to investigate structural changes occurring in 
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ancient wood. Wood is a complex natural composite material made of cellulose, hemicellulose, lignin 

and water. In hardwood lignin is mostly made of G (guaiacyl) units (aromatic units with one methoxyl 

group) and S (syringyl) units (aromatic units with two methoxyl groups), whereas in softwood lignin is 

mostly made of G units. S units are further labelled as S(ne) in non-etherified arylglycerol β-aryl 

ethers, and S(e) in etherified arylglycerol β-aryl ethers. 

Figure 7. 
13

C-CPMAS NMR spectra of a modern seasoned hardwood (a), and a fragment 

of wood sampled from the icon (b).  

 

The integral and the frequency of each carbon resonance give information about the type of wood 

(hardwood or softwood), as well as indicating the state of degradation of the wood. In Figure 7  
13

C- CPMAS NMR spectra of a modern seasoned hardwood (a), and a wood fragment obtained from 

the ancient icon (b) are compared. According to the literature [44], the weak signal at 21 ppm (1) is 

assigned to CH3 carbon of the acetyl group in hemicelluloses. The peak at 32 ppm is tentatively 

assigned to polymethylene chains, e.g., cutin or waxes associated with the cuticle [45,46]. The peak at 

55.6 ppm (2) is assigned to methoxyl groups of aromatic units of lignin. The region between 60 and 

105 ppm is dominated by the intense peaks mostly assigned to cellulose (3−9). The region between 

105 and 160 ppm is specific to the aromatic carbons of lignin (10–15). The signal at 172 ppm is 

assigned to acid groups possibly present in wood and to carbonyls of acetoxy groups of 

hemicelluloses. The resonance at 152.6 ppm (15) is assigned to carbon atoms C3 and C5 of S(e) units, 

namely S3(e) and S5(e), and resonance at 147 ppm (14) is assigned to carbon atoms C1 and C4 of G 

units, namely G1 and G4, and to carbon atoms C3 and C5 of S(ne) units, namely S3(ne) and S5(ne). In 

degraded wood, the ratio of the integral of resonances 15 and 14 allows one to estimate the depletion 

of β-O-4 linkages in lignin. The integral of each resonance was obtained by applying a deconvolution 

procedure to spectra.  

In our case the ratio I(15)/I(14) was found to be similar in seasoned wood and in the fragment of the 

icon, being 1.4 and 1.5 respectively. The relative amount of carbohydrates and lignin can be evaluated 

taking the integral of resonance 9 at 104.8 ppm I(9) (anomeric carbon of cellulose) as reference and the 

integral of resonance 2 at 55.6 ppm, I(2) (methoxyl groups of lignin). In seasoned hardwood the 

average value of the ratio between I(9) and I(2) was found to be about 2, whereas in the wood of the 
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icon this ratio increased to 2.95 indicating a loss of lignin component with respect to cellulose, 

possibly due to the action of microrganism preferentially acting on lignin. Finally, in sample obtained 

from the icon peaks of lignin resonating between 120 and 180 ppm were found to be broadened 

possibly indicating the occurrence of chemical rearrangements inside the biopolymers network. 

To summarize, this study illustrated how NMR stratigraphy is a powerful tool to analyze paintings 

characterized by the presence of regions transformed using different techniques in different periods. 

The comparison among the collected stratigraphies allowed the detection of three painting techniques, 

the first concerning the oldest period dating back to 5th century (Virgin and Child’s faces), the second 

corresponding to the 13th
 
century and the third one probably related to a restoration carried out to fill 

in missing regions. Stratigraphies collected at deeper depths on Virgin and Child’s mantles painted in 

the 13th century did not reveal the presence of any previous painting allowing one to confirm the 

absence of over-painted regions. The absence of over-painted regions and the presence of different 

artistic techniques confirmed that in the past only the Virgin and Child faces painted in encaustic on 

linen canvas were cut from the original painting, saved and glued on a new wooden support. Values of 

transverse relaxation times obtained on different layers detected by the stratigraphy allowed us to 

qualitatively differentiate the organic materials that had been used in various periods. Information 

obtained by this analysis may also assist art historians in interpreting the artwork and more  

specific dating. 

Results obtained by 
13

C-CPMAS NMR spectroscopy allowed the identification of the wood of the 

icon as a hardwood, indicated a loss of lignin component in the investigated region, and the occurrence 

of chemical rearrangements in lignin structure caused by degradation. 

Experimental Details 

NMR stratigraphy and relaxation times were collected at 13.62 MHz with a portable NMR 

instrument from Bruker Biospin interfaced with an unilateral sensor by RWTH Aachen University, 

Aachen, Germany, see Figure 1b [26]. Experiments were carried out by repositioning the sensor in 

steps of 50 μm to cover the desired spatial range, from the outermost surface of the painting to a depth 

of 0.25 cm with a resolution of 92 μm or to a depth of 0.45 cm with a resolution of 57 μm. In the 

former case, the π/2 pulse was 6.8 μs and 512 scans were collected. In the latter case the π/2 pulse was 

11 μs and 1,024 scans were collected. To obtain stratigraphy exclusively dependent on the proton spin 

density the intensity of each experimental point was obtained as the average of the intensity of the first 

four echoes acquired with a CPMG sequence. Transverse relaxation times were measured at selected 

depths with the CPMG sequence, 128 echoes were recorded with an echo spacing of 47 μs. The 

shortening of transverse relaxation time caused by the inhomogeneous field was minimized by using 

an echo spacing as short as possible [25]. Data obtained were normalized and then fit to the following 

equation:  

  2iT

t
n

1i

ieWtY





  (1) 

where n is the number of components of the decay of magnetization, Wi is the weight of the ith 

component (spin population),  and T2i is the relaxation time of the ith component. Note that the sum of 

spin populations was normalized to 100%. 
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Solid-state 
13

C-CPMAS NMR spectra were recorded with a Bruker Avance III spectrometer 

operating at the proton frequency of 100.63 MHz. The spin rate was 12 kHz. A Sample of the wooden 

panel (about 8 mg), and a sample of modern seasoned hardwood were cut into small pieces and packed 

in 4-mm zirconia rotors with the available volume reduced to 12 μL. The contact time for the  

cross-polarization was 1.5 ms, recycle delay 3 s, 
1
H π/2 pulse 3.5 μs, 12,000 scans were collected. 

High-power proton dipolar decoupling was carried out using the Spinal-64 scheme [47]. The 

decoupling field was 140 kHz. Spectra were acquired with a time domain of 1,024 data points were 

zero filled and Fourier transformed with 2048 data points applying exponential multiplication with 8-

Hz line broadening.  

4. NMR Investigation of a Consolidating Treatment on a Porous Stone 

Consolidation is carried out on stone materials affected by loss of cohesion with the aim of  

re-building them. This is normally achieved through the permeation of solubilized agents in stone 

material, close to the surface, as in most of cases, loss of cohesion is limited to regions located near the 

surface. Often consolidating treatments having also a hydrophobic action are chosen to prevent water 

penetration into the stone. The treatment should assure vapour leakage, avoid modifications in the 

optical properties of material, improve resistance, and delay future degradation processes. 

Furthermore, the compound used to consolidate the stone should not accumulate in specific regions of 

the stone to avoid the formation of inhomogeneous regions where impregnated layers and layers 

underneath might differently respond to changes in thermohygrometric condition or mechanical stress. 

The penetration depth of the treatment into the stone is also an important parameter for evaluating the 

treatment. Direct and indirect methods [48] may be used at this aim. Usually, direct methods measure 

the amount of applied product by instrumental chemical analysis, primarily with analytical techniques 

such as FTIR, SEM-EDS, and x-ray photoelectron spectroscopy (XPS), these methods are often 

destructive and cannot be applied directly in situ. Indirect methods involve measuring the physical 

properties modified by the treatment. In the case of water repellent product such modifications are 

connected to variation in hydrophobic action and physical properties related to interaction with water. 

These methods include measurement of contact angle, water drop absorption time, acid etching, 

capillary water absorption, and water absorption through a pipe. In the case of product with 

consolidating properties, indirect methods usually include measuring physical-mechanical parameters, 

i.e., bending strength, splitting tensile strength, modulus of elasticity, drilling resistance, and  

ultrasonic velocity.  

With unilateral NMR sensors information is obtained provided that the consolidating treatment has 

also an hydrophobic action or the treatment appreciably fills pores up. In this case water (or other 

liquids) is used as contrast agent to obtain information about the treatment. Specifically,  

water-saturated untreated and treated stone specimens may be investigated by NMR to evaluate the 

amount of water present into the porous structure, and the water mobility and distribution into the 

porous structure [49–51]. From this investigation information may be obtained about the penetration 

depth of the treatment, hydrophobic action, occurrence of inhomogeneities in the treated stone, and 

changes in pores size distribution caused by the treatment.  

In the case reported here an NMR sensor with a uniform gradient was used to obtain 
1
H depth 

profiles before and after a consolidating treatment with monomer 1,6-hexanediole diacrylate (HDDA) 
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polymerized in situ. 
1
H depth profile encodes the amplitude of the NMR signal as a function of the 

depth scanned. Figure 8 compares the depth profiles measured in untreated and treated Lecce stone 

obtained after making the specimens absorb water by total immersion.  

Figure 8. Depth profiles of untreated Lecce stone (UT), and Lecce stone treated with 

HDDA polymerized in situ (TR) obtained after making  specimens absorb water by total 

immersion. The solid line through experimental points was obtained fitting the profile to 

Equation (3). 

 

To understand the meaning of depth profiles it must be born in mind that the amplitude is directly 

proportional to the amount of absorbed water. As a consequence, high amplitude corresponds to a high 

amount of absorbed water, whereas low amplitude corresponds to a low amount of absorbed  

water [31]. Comparing the amplitude of depth profiles regarding untreated and treated specimens it is 

possible to obtain information about the amount of water absorbed by specimens and, consequently, to 

scale the hydrophobic action of treatments and/or the reduction of pores volume accessible to water. 

Compared to the amplitude of the profile of the untreated specimen, the amplitude of the profile of the 

treated specimen was very reduced in the first 3 mm, indicating that water absorption was strongly 

impaired due both to pores coating that reduced pores volume available to water and to the 

hydrophobic action caused by the change of surface capillary absorption properties of the stone. At 

deeper depths the amplitude started increasing. From 5 to 19 mm the amplitude was rather constant 

and always lower than that measured in the untreated specimen, indicating that the amount of adsorbed 

water was reduced. Parameters obtained by fitting the profile to Equation (3) are reported in Table 1 

along with the slope at the inflection point calculated from Equation (4).  

Table 1. Parameters obtained by fitting the profile of treated Lecce stone to  

Equations (3) and (4). 

Specimen b1 (mm
−1

) 
b2 

(mm
−1

) 
x1 (mm) Δ 1 (mm) 

w1 

(arb.u.) 
x2 (mm) Δ 2 (mm) 

w2 

(arb.u.) 
R

2 

Lecce stone 

treated with 

HDDA 

1.53 ± 

0.04 

1.54 ± 

0.03 

0.95 ± 

0.03 

0.15 ± 

0.07 

0.45 ± 

0.03 

3.96 ± 

0.03 

0.68 ± 

0.04 

2.09 ± 

0.03 

0.98

9 



Sensors 2014, 14 6990 

Note that the fast rising initial part of the profile is very close to water–air–specimen interface. As a 

consequence, because affected by surface effects, parameters x1, Δ1, and b1 which encoded this part of 

the profile were no further considered. The penetration depth of the treatment was found to be  

x2 = 3.96 mm.  

Slopes at inflection point bk are used to encode the fastness of the amplitude variation of the profile. 

In fact, the greater the bk value, the sharper the amplitude variation. Note that a very rapid amplitude 

variation indicates the occurrence of inhomogeneous regions due to the treatment. Therefore slopes at 

inflection points along with angle of inclination αk give important information regarding the dispersion 

of the treatment in the specimen. Furthermore these parameters may also be compared with those 

which would be obtained in the presence of very sharp inhomogeneities caused by the accumulation of 

the compound used to treat the stone. 

For the sake of clarity, an inhomogeneous region which may form in a consolidated stone is 

sketched in Figure 9, top. In region A the water absorption is impaired by the treatment, whereas in 

region B the treatment is no longer effective to impair water absorption. The interface between A and 

B is a region of sharp discontinuity where treated layers come in contact with fully untreated layers. 

The occurrence of an inhomogeneous region like that sketched in Figure 9 top, corresponds to the 
1
H 

NMR depth profile reported in Figure 9 bottom. The intensity of the depth profile is very low in region 

A where water absorption is impaired, at the interface the intensity abruptly increases to reach the high 

value detected in region B where water absorption is no longer impaired. Note that the value of the 

slope approaches infinity and the angle of inclination is 90°. 

Figure 9. Top, sketch of an inhomogeneous region in a treated stone. Bottom, 
1
H depth 

profile encoding the inhomogeneous region. 

 

The case sketched in Figure 9 is in principle one of the worst cases which may occur in a 

consolidated stone. Smoother transitions from treated to untreated layers indicating a better dispersion 

of the treatment in the porous matrix, are required, with slope bk far from infinity, and angle of 
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inclination αk << 90°. As a matter of fact bk and αk are parameters that may be used to compare 

treatments or for assessing that a treatment does or does not give rise to sharp inhomogeneities. 

In treated Lecce stone the slope b2 was found to be 1.54 mm
−1

, which corresponds to an angle of 

inclination α of 57°, indicating the presence of a region about 3 mm thick where the product used to 

treat the stone accumulated blocking up pores. This region was followed by another region where the 

amount of adsorbed product definitely decreased, making possible the absorption of a considerable 

amount of water. 

Changes in pores size distribution caused by the treatment were evaluated through transverse 

relaxation time distributions. Figure 10 shows the comparison between the distribution obtained at a 

depth of 2 mm in untreated and treated Lecce stone. 

Figure 10. Transverse relaxation time distributions measured at a depth of 2 mm in Lecce 

stone untreated (UT) and treated (TR) with HDDA polymerized in situ. 

 

The intensity of CPMG decay extrapolated at zero echo time was used to evaluate the amount of 

water adsorbed by the stone before and after the treatment: 

    
  

    
 

  
       (2) 

where   
  and   

  are intensities obtained for the untreated and treated stone respectively. 

    was found to be 66 % indicating that at a depth of 2 mm the treatment reduced the amount of 

absorbed water of about 66 %. 

In the untreated specimen a peak centered at about 125 ms indicated the presence of water in large 

pores [52] in an amount of 8%. Two peaks centered at about 29 (64%) and 8.2 ms (23%) were due to 

water confined in medium pores, and the peak at about 1.5 ms (5%) indicated the presence of water in 

small pores. The major amount of water, 87%, was found to be confined in medium pores. After the 

treatment only three peaks were observed centered at 25, 3.77, and 0.55 ms with relative spin 

populations of 44%, 17%, and 39% respectively, whereas the peak centered at the longest value was 

lacking. Furthermore all peaks showed a shift to shorter values, and the amount of water in small pores 

increased from 5% to 44%. 
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Experimental Details 

Lecce stone specimens with a size of 5 × 5 × 2 cm
3
 were used. Specimens were treated by polymerizing 

in situ the pure monomer 1,6-hexanedioldiacrylate (HDDA). In situ polymerization [53] was carried out in 

acetone solution (20% v/v). The polymerizing system was absorbed from the specimen by capillarity. 

The specimen was placed on a thick layer of cotton soaked in the reaction solution for 4 h at 4 °C, in 

the absence of light. Polymerization was carried out for 24 h at 50 °C. After the polymerization, traces 

of solvent and unreacted monomers were removed by air evaporation. 

Measurements were carried out at 13.62 MHz with an unilateral NMR instrument from Bruker 

Biospin interfaced with a single-sided sensor by RWTH Aachen University, Aachen, Germany [26]. 

Depth profiles of untreated and treated Lecce stone specimens were obtained with an echo spacing of 

80 μs, and a nominal resolution of 23 μm. Profiles were acquired by repositioning the single-sided 

sensor in steps of 80 μm to cover the desired spatial range, from the surface of the specimen to a depth 

of 20 mm. 

Transverse relaxation times T2 were measured using the CPMG pulse sequence, 4,096 echoes were 

recorded with an echo spacing of 43 µs. The error function was found to be suitable to fit the variation 

of water content in the porous matrix as a function of the depth scanned. This type of function has been 

successfully used to fit the intensity of 
1
H-NMR signal of a fluid confined into a porous structure vs 

temperature (IT-plot) [54–56] A similar equation has been previously used to fit the volume of 

intruded mercury V vs inverse pore dimension 1/R measured in cement paste by MIP [57]. 

Depth profiles obtained were fit to the following equation : 

      
  

 
     

    

    

 

 

   

    (3) 

where N is the number of transitions of the amplitude in the depth profile, xk and wk/2 are the abscissa 

and the ordinate of k component at the inflection point respectively, Δk is the half width of the 

transition of the amplitude from low to high value. The abscissa at the inflection point xk is the 

penetration depth of the treatment. The slope at inflection point bk that encodes the fastness of the 

variation of the amplitude of the profile, was calculated using parameters obtained from the best fit 

procedure  

   
  

   
 (4) 

The angle of inclination associated to bk is: αk = arctan     . A regularized inverse Laplace 

transformation [58,59] was applied to echo envelopes obtained from the CPMG pulse sequence. With 

this representation the maxima of the peaks correspond to the most probable T2 values, and the peak 

areas correspond to the population of each component. Peaks centered at different T2 values 

correspond to water confined in pores of a different size.  
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5. Conclusions 

In this paper the use of NMR sensors for characterizing and monitoring cultural heritage objects 

was illustrated. The three cases reported, though not exhaustive, demonstrate that NMR applications 

can be successfully extended to different issues regarding cultural heritage.  

Unilateral NMR was used to quantitatively and non-invasively map moisture distribution and its 

evolution in an ancient deteriorated wall painting before and after intervention to reduce the capillary 

rise of water through the wall.  

NMR stratigraphy enabled detection of different layers of an icon and measurement of the thickness 

of each layer, whereas transverse relaxation time measurements allowed one to reveal the presence of 

different types of organic material. This technique can be used to obtain information on the pictorial 

technique used by artist, state of conservation of the painting, and materials constituting the artifact. 
13

C-CPMAS NMR spectroscopy was used to investigate the state of conservation of the wooden 

panel of the ancient icon, revealing a loss of lignin and the occurrence of chemical rearrangement 

inside the lignin network. 

An NMR sensor was used to investigate a consolidating treatment on a porous stone. The study was 

aimed at answering general questions such as the penetration depth of treatment into the porous 

material, its capacity to prevent water absorption, how treatment may change porosity of the stone, and 

how treatment may affect diffusion of water inside a porous structure. Moreover, in the case reported 

here, 
1
H depth profile indicated the presence of an inhomogeneous region where the product used to 

treat the stone accumulated blocking up pores. All obtained parameters provided important 

information regarding treatment performance. 

Although NMR has not yet been widely applied in this field, it may also play a major role in the 

field of cultural heritage. The use of portable sensors for investigating large objects in situ without any 

sampling, combined with the use of laboratory sensors that require ever smaller amounts of sample 

foreshadow that NMR will probably become more and more competitive with other analytical 

techniques for the analysis of items belonging to cultural heritage. 
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