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Abstract: This paper investigates one eigenvalue decomposition-based source number 

estimation method, and three information-based source number estimation methods, 

namely the Akaike Information Criterion (AIC), Minimum Description Length (MDL) and 

Bayesian Information Criterion (BIC), and improves BIC as Improved BIC (IBIC) to make 

it more efficient and easier for calculation. The performances of the abovementioned 

source number estimation methods are studied comparatively with numerical case studies, 

which contain a linear superposition case and a both linear superposition and nonlinear 

modulation mixing case. A test bed with three sound sources is constructed to test the 

performances of these methods on mechanical systems, and source separation is carried out 

to validate the effectiveness of the experimental studies. This work can benefit model order 

selection, complexity analysis of a system, and applications of source separation to 

mechanical systems for condition monitoring and fault diagnosis purposes. 

Keywords: source number estimation; Akaike information criterion; minimum description 

length; improved Bayesian information criterion; eigenvalue decomposition 
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1. Introduction 

In many physical systems, the measured signals can be modeled as a superposition of a finite 

number of the sources with additive environmental noises, and many signal processing methods such 

as principal component analysis (PCA) [1], blind source separation (BSS) [2,3] and independent 

component analysis (ICA) [4–6] have benefited from this model and achieved wide use in engineering 

applications. A key and primary issue of these subjects is the estimation of the number of unknown 

sources from the mixed signals before an effective source separation. Furthermore, it is still 

challenging to estimate the source number for mechanical systems due to the complicated mixing of 

the sources and the transmission effects of the mechanical structures. 

In the past decades, many researchers have focused their interests on source number estimation 

methods and their engineering applications, and proposed many approaches to solve this problem. 

Ye et al. [7] studied the general BSS problem satisfying m greater than or equal to n and gave the 

validations by computer simulations on artificially synthesized data. Fishler et al. [8] studied a MDL-type 

estimator that was robust against deviation from the assumption of equal noise level across the array. 

Bai et al. [9] proposed an information-based method to estimate the number of independent dipole 

sources from electroencephalograms (EEGs). Jiang et al. [10] proposed a new source number 

estimation method called beam eigenvalue method (BEM). Huang et al. [11,12] proposed to utilize the 

minimum mean square error (MMSE) of the multistage Wiener filter to calculate the required 

description length for encoding the observed data, instead of relying on the eigenvalues of the data 

covariance matrix. Hu et al. [13] proposed a sound source number and directions estimation method 

under a multisource reverberant environment and gave experimental validations. Ma et al. [14] 

proposed a source number estimation method based on modified K-means clustering. Cheng et al. [15] 

proposed an independent component analysis-based source number estimation methods and applied 

it to mechanical systems. Han et al. [16] proposed a source number estimation method based on 

uniform linear arrays (ULAs) and the newly proposed nested arrays. Dosso et al. [17] considered 

localizing an unknown number of ocean acoustic sources when the properties of the environment are 

poorly known. Sadhu et al. [18] proposed a decentralized model identification method utilizing the 

concepts of sparse blind source separation and parallel factor decomposition, which can solve 

underdetermined blind source separation problems. All the above studies have provided effective ways to 

estimate the number of sources from different types of the sources. However, the studies on the source 

number estimation for mechanical systems are very few, and there is still a lot of work to do before an 

effective application of source number estimation methods to mechanical systems can be put forth. 

Unlike the eigenvalue decomposition-based source number estimation method which requires  

a threshold, information criteria-based methods do not need any parameters for adaptively estimating 

the number of sources from the mixed signals, and the algorithms are also easier for calculation and 

perform efficiently in the applications. The key issue on the information-based methods is to find the 

extremum values of the constructed objective functions based on information criteria, such as  

Akaike Information Criterion (AIC) [19,20], Minimum Description Length (MDL) [21–23], and 

Bayesian Information Criterion (BIC) [24,25]. However, it has been shown that AIC suffers from the 

computational problem [26]. MDL also suffers from high computational load and performs well only 

in the presence of spatially and temporally white noise [27,28]. Furthermore, they have a shortcoming 
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in that the estimation performance is sensitive to the signal to noise ratio (SNR) and the sampling 

length, and thus the results may be unreliable. Studies on the source number estimation by BIC are 

rarely found, and the traditional BIC will overflow in the calculation if the sampling length is too large. 

Furthermore, all the three information-based methods are rarely applied to estimate the source number 

of mechanical systems whose sources are normally mixed according to linear superposition and 

nonlinear modulation. 

Therefore, this paper studies comparatively the performances of both eigenvalue decomposition-based 

and information-based source number estimation methods on mechanical sound signals, and improves 

BIC as IBIC to make it easier for calculation and efficient for the data with a large sampling length. Both 

linear superposition and nonlinear modulation are considered in the numerical case studies, and a test-bed 

with three sources is constructed to test the performances of the eigenvalue decomposition-based and 

information-based methods on source number estimation for mechanical systems. This study can benefit 

for the model order selection, complexity analysis of a system, and applications of source separation to 

mechanical systems for condition monitoring and fault diagnosis purposes. 

The remainder of this paper is organized as follows: in Section 2, we introduce the theoretical 

background and investigate the mathematical mechanisms of the eigenvalue decomposition-based 

source number estimation method, and information-based source number estimation methods entitled 

as AIC, MDL, and IBIC. In Section 3, we test the performances of these methods on typical 

mechanical signals with both a linear superposition and a nonlinear modulation. In Section 4, a test bed 

with three sound sources is constructed to further test the performances of these methods on real 

mechanical systems, and the effectiveness of the experimental studies is validated by source separation 

and spectral analysis. Finally, Section 5 summarizes the conclusions. 

2. Source Number Estimation Methods 

Consider m observed mixed signals                         measured in different locations and 

composed by n source signals                       
 . Assume that the observed signals can be 

described by the following model with white noises of                            and mixing 

matrix of           : 

1

( ) ( ) ( )  1, , , 1, ,

( ) ( ) ( )         (in a matrix form)

n

i ij j i

j

t a t t i m j n

t t t



   

 

x s n

X AS N

 (1) 

As the source signals and mixing mode are normally unknown for many physical systems, a crucial 

problem associated with this model is to estimate the number n of source signals from an N finite set of 

observations                 before an effective source separation. 

Constitute                     from an N finite set of observations. Then the covariance matrix of 

     is given by          (     is the expected function). Denoting the eigenvalues of R by 

           ,      which is a log-likelihood function used to estimate the maximum likelihood of 

source number n is defined as follows: 
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(1) Source number estimation based on eigenvalue decomposition: 

 * argmax , 1, 2, ,n
n

n n m     (3) 

Where γ is a threshold. 

The benefit of eigenvalue decomposition is that the source number can be estimated just based on 

the distributions of eigenvalues, and the crucial step is just a reasonable threshold γ. However, 

different types of mixed signals have different distributions of eigenvalues, which makes it impossible 

for a threshold γ for all the applications. 

Now we comparatively introduce and investigate another three information-based source number 

estimation methods which can determine the source number adaptively. 

(2) Akaike Information Criterion (AIC) 

The information theoretic criterion for the model order selection or source number estimation, 

introduced by Akaike [19] is used to determine the number of signals which gives the minimum AIC, 

defined by: 

   arg min ( ) arg min 2 ( ) lg L( ) 2 (2 )
n n

n n N m n n n m n      AIC  (4) 

The first term, −2N(m−n)lgL(n), is the well-known log-likelihood of the maximum likelihood 

estimator of the parameters of the model. The second term, 2n(2m−n), is the bias correction term 

inserted so as to make AIC an unbiased estimator. 

(3) Minimum Description Length (MDL) [19] 

Inspired by Akaike’s work, Rissanen [21] proposed a different approach to select the model or 

estimate the source number based on the concept of the shortest code length for the data. It can be 

achieved by the following criterion: 

 
1

arg min ( ) arg min ( ) lg L( ) (2 ) lg
2n n

n n N m n n n m n N  
      

 
MDL  (5) 

Note that apart from a factor of 2, the first term is identical to the corresponding one in AIC, while 

the second term has an extra factor of ½ lgN. 

(4) Bayesian information criterion (BIC) [29] 

Minka [24] proposed another criterion for estimation of the dimensionality of the data (source 

number) on basis of Bayesian model selection. It is referred to as the Minka Bayesian model selection 

(MIBS) which is given by (assume that    is the positive scale parameter, λ is the eigenvalue of the 

covariance matrix of mixed signals X, m is the number of mixed signals X, n is the number of sources 

S, and N is the data length): 
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and   
  is identical with    except for     where   

     . In order to estimate the latent 

dimensionality of the data (source number), we choose the value n that maximizes Equation (5). The 

simplification of MIBS is the BIC approximation, which drops all terms that do not grow with N: 
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BIC  (8) 

In practice, it causes overflow in calculating Equation (7) when the value of N is large (Normally N 

is a big number). Therefore, we take the logarithm to overcome the overflow problem and entitle it as 

the improved BIC (IBIC), which significantly decreases the calculating time without a loss of the 

accuracy. The objective function of the IBIC is as follow equation: 
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3. Numerical Case Study 

In this section, we numerically generate typical signals of mechanical systems to comparatively 

study the effectiveness of the different source number estimation methods. These generated source 

signals consider the modulation effects of mechanical systems, and the mixed signals are composed of 

the sources through a linear superposition and a weak nonlinear mixing. The generating functions of 

the source signals are listed below: 

1
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In the numerical case study,       is a sinusoidal signal that simulates the simple harmonic 

vibration of mechanical systems;       is a frequency modulation signal that simulates the frequency 
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modulation effects of mechanical systems;       is an amplitude modulation signal that simulates the 

amplitude modulation effects of mechanical systems;       is a white noise signal that simulates the 

noises produced by the structural transmission and environment. The waveforms of the source signals 

are shown in Figure 1. 

Figure 1. The waveforms of the source signals. 

 

3.1. Source Number Estimation for Linearly Mixed Signals 

Since the number of the mixed signals should be no less than the number of the source signals for 

an accurate source separation or system identification, and the source number estimation methods 

based on the information criteria also require more mixed signals, in the numerical case study we 

provide six mixed signals composed by the given source signals with a linear superposition matrix 

A given by: 

0.58 0.36 0.29 0.89

0.33 0.65 0.49 0.93
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0.18 0.51 0.83 0.79

0.25 0.42 0.65 0.59

0.43 0.27 0.14 0.32

 
 

 
 
  

  
 
  
 

  

A  

Figure 2 displays the waveforms and spectra of the mixed signals, which indicates that it is a difficult 

task to directly estimate the source number for complex waveforms and complex Fourier spectra with 

many major components. Therefore, source number estimation methods are required to reveal the 

complexity of the mixed signals. 
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Figure 2. The waveforms and spectra of the mixed signals. 

 

Table 1 lists the eigenvalues’ distribution of the covariance matrix for the mixed signals. Obviously 

eigenvalues decrease significantly from    to   , even        , which means that there are 4 

principal components contained in the mixed signals (from the definition of principal component 
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analysis [1]). Therefore, the threshold γ can be determined as            and thus there has     . 

The result also shows that the threshold γ can be easily determined and the source number estimation 

based on eigenvalue decomposition is effective for the given linear superposition case. 

Table 1. The eigenvalues of the covariance matrix for the mixed signals. 

Eigenvalues 1  2  3  4  5  6  

Values 281.31 31.21 10.43 4.42 0.00 0.00 

Figure 3 shows the source number estimation by the information-based source number estimation 

methods: as the source number n increases, the normalized objective functions of AIC and MDL 

decrease fast from n = 1 to n = 4, and obtain the minimum values −0.0809 and −0.0772 as n = 4, while 

the normalized objective function of IBIC changes greatly from n = 3 to n = 5, and obtains the 

maximum value 1.0000 as n = 4. From the definitions of the information-based methods, all these 

methods accurately evaluate the source number n* = 4 for the given numerical case with the linear 

superposition. It should be noted that AIC and MDL obtain very similar results from n = 1 to n = 5, 

and the normalized values for n = 4 are very close to that for n = 5, while the normalized values of 

IBIC for n = 4 is obviously far from n = 3 and n = 5, which means that the IBIC is more robust and 

reliable than AIC and MDL for the given case. 

Figure 3. Source number estimation by information-based methods. 

 

Therefore, it can be concluded that all the four source number estimation methods are effective for 

the given numerical case study, and the eigenvalue decomposition-based method and IBIC are more 

robust and reliable than AIC and MDL as they have very wide boundaries to accurately determine the 

source number. However, the eigenvalue decomposition-based method requires a reasonable threshold 
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γ normally determined by prior knowledge of the system or experiences, while the other three methods 

can adaptively estimate the source number. 

3.2. Source Number Estimation for Weakly Nonlinearly Mixed Signals 

In this section, a nonlinearity mixing factor σ on the modulation sources is considered in the mixing 

process, and thus the performances on the nonlinearly mixed signals of all the source number 

estimation methods are comparatively studied. The mixed signals are composed by the sources in 

Figure 1 with both a linear superposition and a nonlinear modulation mixing, and their generating 

functions are shown in Equation (11): 

2 2 3 4 1 2

1 2 3 4 1 3

1 2 3 4 2 3

1 2 3 4 3 2

1 2 3 4 2 1

1 2 3 4 1 3

0 58 +0.36 0.29 +0.89 +

0 33 0 65 0.49 0.93 +

0.77 +0.83 0.72 0 85 +
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0.18 +0 51 0 83 +0.79 +

0 25 0 42 0.65 0.59 +
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 (11) 

The nonlinearity mixing factor σ reveals the modulation effects of the mechanical systems with 

many sources, and the nonlinear mixing mode is always considered as a technical bottleneck for source 

separation or source number estimation. Therefore, the factor σ is considered as a parameter to test the 

performances of source number estimation algorithms. It should be noted that the nonlinearity mixing 

factor σ is given an initial value 0.0001 to satisfy the logarithm function in Equations (4), (5) and (9), 

and the information-based methods are comparatively studied as the nonlinearity mixing factor  

σ increases. 

The accuracy rates of the given three information-based source number estimation methods are 

displayed in Figure 4, which shows that AIC, MDL and IBIC fail to correctly estimate the source 

number when the factor σ is up to 0.0013, 0.0015, and 0.0974, respectively. The comparative study 

results indicate that AIC and MDL give similar performances and they are all sensitive to the 

nonlinearity mixing factor σ (        ), and MDL performs a little better than AIC toward the 

nonlinearity mixing factor σ but not significantly, while IBIC performs more robustly toward the 

nonlinearity mixing factor σ (        ). Therefore, IBIC performances more robustly and reliably 

toward the nonlinear mixing effects of mechanical systems, and this property guarantees more wide 

engineering applications of IBIC as most physical systems have nonlinear mixing effects. The 

waveforms of the mixed signals for          are shown in Figure 5, which also shows that it cannot 

directly estimate the source number just from the complicated waveforms. 
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Figure 4. Accuracy rates of information-based source number estimation methods. 

 

Figure 5. The waveforms of the mixed signals for 0.0974  . 
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Figure 6 displays the performances of AIC as the nonlinearity mixing factor σ equals to 0.0013, 

0.0015, and 0.0974: AIC decreases significantly from n = 1 to n = 5 and obtains the minimum 

value ‒0.2014 as n = 5 for the          case. Furthermore, AIC has similar values for the  

         and          cases, and obtains minimum values of ‒0.0742 and ‒0.0749 as n = 5. 

However, for the          case, AIC obtains a minimum value ‒0.0756 as n = 4, while AIC = 0.7322 

as n = 3 and AIC = ‒0.0739 as n = 5. Therefore, AIC fails to correctly estimate the source number as 

the nonlinearity mixing factor σ increases to 0.0013, and the objective function decreases fast for the 

         case, which means that the nonlinear modulation effects influence the accuracy rates of 

AIC greatly. 

Figure 6. Source number estimation by AIC. 

 

Figure 7 displays the performances of MDL as the nonlinearity mixing factor σ equals 0.0013, 

0.0015, and 0.0974: MDL decreases significantly from n = 1 to n = 5 and obtains the minimum 
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Figure 7. Source number estimation by MDL. 

 

Figure 8 displays the performances of IBIC as the nonlinearity mixing factor σ equals to 0.0013, 

0.0015, and 0.0974: IBIC obtains the maximum values −0.1490 and −0.1106 as n = 4 for          
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Figure 8. Source number estimation by IBIC. 
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IBIC values close to each other for          case, which means that the maximum values of IBIC 

are difficult to be determined and IBIC becomes less robustly and reliably. 

Table 2 displays the eigenvalues of covariance matrix with different factors σ: the related 

eigenvalues are very close to each other for σ = 0.000, 0.0013, and 0.0015 cases, while    is up to 

0.9791 for the          case. From the definition of eigenvalue decomposition-based source 

number estimation method,           causes AIC failure for the          case, and  

         causes MDL failure for the          case. However, IBIC begins to fail for the 

         case, which also indicates that IBIC is much more robust to the modulation effects than 

AIC and MDL. Furthermore, the distributions of all the eigenvalues show that it is not difficult to set  

a threshold                 for the eigenvalue decomposition-based source number estimation 

method. However, normally it is very difficult to set a reasonable γ without any prior knowledge of the 

sources and their distributions. 

Table 2. Eigenvalues of covariance matrix with different factor  . 

Eigenvalues 1  2  3  4  5  6  

0.0000   281.31 31.21 10.43 4.42 0.0000 0.0000 

0.0013   289.56 31.25 10.48 4.37 0.0002 0.0000 

0.0015   271.56 31.27 10.41 4.37 0.0003 0.0001 

0.0974   280.06 31.63 12.66 5.26 0.9791 0.0206 

Therefore, it can be concluded that the eigenvalue decomposition-based source number estimation 

method is difficult to carry out without any prior knowledge of the sources, while the information-based 

methods can adaptively and accurately estimate the source number for the linear superposition cases. 

However, for the cases with nonlinear modulation effects, IBIC performs more robustly and reliably 

than AIC and MDL, which reveals more wide engineering applications of IBIC. 

4. Experimental Study 

In general, it is difficult to directly measure the source signals in most mechanical systems due to 

the limited accessibility, and thus signal processing is often required to separate and recover the source 

information from the mixed signals normally measured by remote sensors. Then, these separated 

source signals can be used for further purposes such as a condition monitoring and a fault diagnosis of 

mechanical systems. However, a source number estimation from the measured and mixed signals 

should be carried out for a prior knowledge to source separation or complexity analysis of the systems. 

In this section, we apply the source number estimation methods mentioned above to a mechanical 

system shown in Figure 9 to demonstrate and benchmark their performance on mechanical systems. 
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Figure 9. The structure (I) and photo (II) of the test-bed: (a) End cover. (b) Loudspeaker I. 

(c) Left clapboard. (d) Loudspeaker II. (e) Shell. (f) Motor. (g) Right clapboard. (h) Rubber 

springs. (i) Supports. 

 

4.1. Introduction of the Test Bed 

Aiming at vibration and noise source number estimation for mechanical systems, this study designs 

a test bed based on a shell structure, which is composed by an end cover, a shell, clapboards, and 

supports. The whole test bed is supported by four rubber air springs, which can reduce the influences 

of environmental noises. There are three sound sources: two of them are loudspeakers controlled by 

the signal generators, and the other one is a motor controlled by the frequency converter. The structure 

and photo of the test bed are shown in Figure 9. Since vibration and noises of thin shell structures can 

approximately be governed by linear differential equations [30], we consider the test bed with linear 

but weakly nonlinear features. 

Six sound pressure sensors are used to measure the sound information, and they are installed in 

different directions of the test bed with a distance of 0.5 m. A HBM Gen2i data acquisition system is 

applied to collect the sound data from these six sensors. The framework of the measuring system is 

shown in Figure 10, and the testing parameters are listed in Table 3. 

Figure 10. The measuring system of the test bed. 
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Table 3. The testing parameters of the measuring system. 

Parameters Values and Units 

Sound pressure sensors 6 

HBM Gen2i Data acquisition system 1 

Sampling frequency 10,240 Hz 

Sampling length 10 s 

Frequency of Loudspeaker I with sine wave f1 = 1,600 Hz 

Frequency of Loudspeaker II with triangle wave f2 = 3,000 Hz 

Rotational speed of motor 900 r/min (f3 = 15Hz) 

4.2. Source Number Estimation 

The sound source signals are measured with just one source working at the parameters given in 

Table 4, and thus three sound sources can be measured as the references to test the source number 

estimation methods. The waveforms of the source signals are shown in Figure 11, which clearly 

displays the periodic features of the source signals. As all the three sources are working together, the 

signals from all the sound pressure sensors around are the mixed signals, and their waveforms are 

shown in Figure 12. Obviously it is very difficult to correctly estimate the source information from the 

mixed signals due to complicated waveforms. 

Figure 11. Waveforms of the source signals. 
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Figure 12. Waveforms of the mixed signals. 
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Table 4. The eigenvalues of the covariance matrix for the mixed signals. 
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1 2 33000 1600 25f f f    0.0450 0.0121 0.0116 0.0082 0.0061 0.0045 
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we can provide more convincing evidences based on a source separation by independent component 

analysis (known as ICA). 

Figure 13. Source number estimation by information-based methods. 
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Figure 14. The waveforms of the separated components by fast ICA algorithm. 
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Figure 15. The spectra of the source signals. 
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Figure 16. The spectra of the separated components. 
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a considerable energy with the given three sources is considered as an environmental noise. Therefore, 

all the information-based methods are effectively to sound source number estimation for the given test bed. 

Generally, IBIC performs more robustly and reliably toward the nonlinear modulation effects than 

AIC and MDL, while eigenvalue decomposition-based methods normally require prior information 

about the sources, and becomes confused when the eigenvalues are very close to each other. 

Furthermore, the results of information-based methods for the test bed also indicate that the mixing 

mode of the sound sources tends to be a linear superposition. This study can benefit for model order 

selection, complexity analysis of a system, and applications of source separation to mechanical 

systems for condition monitoring and fault diagnosis purposes. 
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