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Abstract: In this paper, a smoothing algorithm for compensating inertial sensor saturation 

is proposed. The sensor saturation happens when a sensor measures a value that is larger 

than its dynamic range. This can lead to a considerable accumulated error. To compensate 

the lost information in saturated sensor data, we propose a smoothing algorithm in which 

the saturation compensation is formulated as an optimization problem. Based on a standard 

smoothing algorithm with zero velocity intervals, two saturation estimation methods were 

proposed. Simulation and experiments prove that the proposed methods are effective in 

compensating the sensor saturation. 
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1. Introduction 

In motion tracking, there are many ways to estimate the trajectory of a moving object. Moving 

objects can be tracked accurately by using visual devices such as camera systems [1,2]. In [1], with  

40 landmarks attached on the body, Hong et al. used the Eagle Digital motion capture system with 

seven cameras to analyze 14 angles and one ratio of gait features. In [2], Lee and Grimson investigated 

person identification and gender classification based on moments computed from the silhouette of 

walking people. However, these camera systems are limited in their setup ranges and sometimes have 

high implementation costs. Moreover, the angle views of the cameras are also limited and they are 
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easily affected by illumination. Due to these reasons, for long distance or outdoor measurements, 

motion tracking based on camera systems seems to be a difficult task.  

To avoid the mentioned disadvantages, inertial measurement units (IMU) can be used instead as 

wearable devices. IMUs are widely used due to their small size and low cost. With the development of 

the technology, IMUs are now becoming more accurate. In [3], Tadano et al. proposed a method using 

quaternion calculations from seven sensor units consisting of a tri-axial acceleration and gyro sensors. 

The quaternions, which are computed from the sensors attached on limbs and waist, are used in a gait 

wire frame model to generate the gait animation. To increase the accuracy, the IMUs are used with 

other aiding devices such as cameras in [4,5] or force sensors in [6]. 

However, IMUs still have their own limitations such as susceptibility to noise and limited dynamic 

range. The accuracy of inertial sensor-based estimation can be improved by using zero velocity 

updates as in [7], or taking advantage of the relative position and attitude of multiple sensors [8,9].  

In [7], a robot arm control with an automatic calibration function based on inertial sensors is proposed. 

The authors state that the drift of the sensors is clearly removed by applying zero velocity updates.  

In [8], Helten et al. introduce another way which takes into account the relative position and attitude of 

multiple sensors to improve the accuracy of human motion estimation. Using the same method,  

Tao et al. [9] estimate limb movement. They also use the limb biomechanical model characteristics to 

provide constraints for sensors’ relations. However, the other drawback of the inertial sensor, the 

saturation, has not been considered. Saturation is a state in which the signal that needs to be measured 

is larger than the dynamic range of the sensor. When that happens, the output of the sensor becomes 

the limiting value of the sensor range. This induces a considerable error between the true and estimated 

values during motion tracking. In this paper, we propose two methods for estimating the sensor 

saturation. Assuming that the motion is between not moving intervals (called zero velocity intervals), 

we formulate a saturation estimation problem as an optimization problem by modifying a smoother used 

in [10,11]. In the proposed methods, some state constraints mentioned in [12] could be added to 

increase the accuracy of the algorithm. 

The paper is organized in five main sections and a conclusion. Section 2 points out the problem 

formulation. In Section 3, a standard smoothing algorithm with zero velocity intervals is described in 

detail. Sections 4 and 5 propose some methods for sensor saturation estimation. Some experiments to 

verify the proposed methods are given in Section 6. The last section concludes the paper. 

2. Problem Formulation 

We consider a moving object case where an IMU is attached on the object. There are two 

coordinate systems in this paper: the navigation coordinate frame and the body coordinate frame. The 

z  axis of the navigation coordinate frame coincides with the local vertical. The choice of x  axis is 

arbitrary. The body coordinate frame is defined as a frame with three axes coinciding with the three 

axes of the inertial measurement unit. The subscripts b  (body) and n  (navigation) are used to 

emphasize that a vector or matrix belongs to the body or navigation coordinate frame, respectively. 

Our goal is to estimate attitude (expressed using the quaternion), position and velocity of the object 

from the sensor data. Let   4

0 1 2 3q q q q q R   be a quaternion representing the rotation 

relationship between the navigation coordinate frame and the body coordinate frame. Let   3 3C q R   
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be the rotation matrix corresponding to the quaternion q  [13], and 
3r R  and 3v R  be the position 

and velocity of the object, respectively. We have the following basic equations [14]: 

 

 

1

2
b

T

n n b

n n

q q

v a C q a

r v

 

 



 (1) 

where 
3

na R  and 
3

ba R  are the acceleration made by forces other than gravitational field in the 

navigation coordinate frame and body coordinate frame, respectively. The symbol   is defined by: 
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0

0
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where 
T

b x y z        is the body angular rate.  

The inertial measurement unit used in this paper consists of three axis gyroscopes and 

accelerometers. Let 
3

gy R  be the gyroscope output and 
3

ay R  be the accelerometer output. They 

satisfy the following relationship [15]: 

 

g b g

a b a

y n

y a C q g n

 

  
 (2) 

where gn  and 
an  are zero mean white Gaussian sensor noises with covariances  T

g g gR E n n  and 

 T

a a aR E n n , and  0 0
T

g g  The symbol g  denotes the gravitational acceleration. It is assumed 

the sensor bias is already compensated using the standard calibration algorithm [16]. 

In summary, our goal is to estimate the quaternion, velocity and position of a moving object using 

the accelerometer and gyroscope data where there could be sensor saturation. Since a smoother is used 

instead of a filter, we note that the proposed method is offline analysis of attitude and position. 

3. Standard Smoothing Algorithm with Zero Velocity Intervals 

In this section, a standard smoothing algorithm is formulated in the quadratic optimization problem. 

A general method of formulating the smoothing problem in the optimization problem is given in [10]. 

In this section, we apply the result in [10] to an attitude and position estimation problem, where there 

are zero velocity intervals. Sensor saturation compensation is not considered in this section and will be 

discussed in Section 4. 

We assume that the motion is a short movement consisting of a moving interval and two not 

moving intervals (see Figure 1). This type of movement can be found in walking [4,5], golf swing [17] 

and so on. The sensor data are sampled with the sampling period T . It is assumed that there are total 

N  sampling sensor data and the moving interval starts at 
1k T  and stop at 

2k T (
1 2k k N  ). The rest 
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are the zero velocity intervals. We use the subscript k  to describe a variable is expressed in the 

discrete time k . For example, a gyroscope output data at time k  is denoted by ,g ky . 

Figure 1. Standard inertial navigation algorithm with zero velocity correction. 

 

Using the gyroscope output gy in Equation (1), the q , v  and r  can be estimated by the following 

equation (“ ” denotes for estimation): 

 

 

1
ˆ ˆ

2

ˆ ˆ

ˆ ˆ

g

T

n n a

n n

q y q

v a C q y g

r v

 

  



 (3) 

The initial values of position 
0̂r  and velocity 

0v̂  are assumed to be zero due to the fact that the 

object is not moving at the not moving period and the origin of the navigation coordinate frame 

coincides with the starting point of the object. The initial quaternion 
0q̂  is obtained from the 

accelerometer data using the following (note that 0ba   during the zero velocity intervals): 

 0
ˆ

ay C q g  

The heading in 
0q̂  is not determined and can be chosen arbitrarily. Since the noise terms are 

included in 
gy  and ay  in Equation (3), q̂ , v̂  and r̂  are different from the true q , v  and r . The error in 

q̂ , v̂  and r̂  are estimated using a smoothing algorithm. Thus a smoothing algorithm is not used for 

directly estimating q , v  and r  but for estimating errors in q̂ , v̂  and r̂ . Once the errors are estimated, 

we can update q̂ , v̂  and r̂  to obtain more accurate estimates. A multiplicative error is used for the 

error in q̂  [18]. A small error in q̂  is denoted by eq . eq is assumed to satisfy the following: 

ˆ
eq q q 
 (4) 

or in matrix expression: 

     ˆeC q C q C q  (5) 

 

Not moving period Moving period Not moving period

1k T 2k T NT0

Define initial values Compute attitude 
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Correct estimated 

data using zero 
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0 0 0 0
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Since we assume eq  is small, it can be approximated by
3

1
,e

e

R
q

q R

   
    

    

and   is the quaternion 

multiplication. Therefore, the quaternion error in 4q R  is represented by 3

,1 ,2 ,3

T

e e e eq q q q R    . 

Assuming 
eq  is small,  eC q  can be approximated by the following [19]: 

   
,3 ,2

,3 ,1

,2 ,1

1 2 2
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2 2 1

e e
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e e
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 

     
    

(6) 

where  p  (   3

1 2 3

T
p p p p R  ) is defined by: 

 
3 2

3 1

2 1

0

0

0

p p

p p p

p p

 
 

 
 
  

  

For the error in v̂  and r̂ , an additive error model is used. We use symbols ev  and er  to denote the 

velocity error and position error, respectively: 

ˆ

ˆ

e n

e n

v v v

r r r




 (7) 

The estimation error in ˆ ˆ,q v  and r̂  can be expressed using the following state: 

  9

e

e

e

q

x t r R

v

 
 


 
  

  

This  x t  is estimated using a smoother. To do that, we derive a differential equation for  x t . 

From the assumption that 
eq  and gy   is small, we obtain the follow (see [19] for the derivation): 
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n
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 
 

 (8) 

where: 
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and: 
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Since the sensor sampling period is T, Equation (8) is discretized with the sampling period T [20]: 

1 ,k d k k kx A x w    (9) 

where   , expd kA A kT T  and ,

T

d k k kQ E w w    .  

Since no external sensors other than the inertial sensor are used, there is no physical measurement 

during the motion. However, the fact that the velocity is zero during the not moving period can be used 

as a virtual measurement. In motion analysis, it is assumed that the object is not moving when the 

gyroscope and the variation of the accelerometer are smaller than threshold values for some specified 

time. Thus there will be a chance that a moving interval is detected as a zero velocity interval. To 

reflect this fact, a small noise ,v kn  is added in the following equation: 

 3 3 3

ˆ0

       0 0

e v

v

v v n

I x n

  

 
 (10) 

The noise ,v kn  at time k  is modeled as a Gaussian white noise with the covariance 

 , , ,

T

v k v k v kR E n n . Equation 10 can be rewritten in form of following expression in discrete time at 

time k : 

,k k k v kz H x n   (11) 

where  ˆ0k kz v   and  3 3 30 0kH I . Equation (10) can be used during the not moving interval. 

We introduce a set 
mZ  which consist of the discrete time indices belonging to the zero velocity 

intervals. That is, if 
mk Z , then we can use the Equation (11). 

A smoother problem to estimate 
kx  can be formulated as the following optimization  

problem [10,11]: 

Find 
kx  and

kw  for 0 k N   that minimize: 

         
1

1 1 1

, 0 0 0 0 0

1

1 1 1
ˆ ˆ,

2 2 2
m

N
T TT

k k k d k k k k k k k k k

k k Z

J x w w Q w z H x R z H x x x P x x


  

 

         (12) 

subject to 1 ,k d k k kx A x w   . It is assumed that the initial value 
0x̂  and the initial covariance error 

0P  

are given. The method to choose these initial values will be discussed Section 5. The Equation (12) is 

posed in the maximum a posterior form. The joint a posterior probability density of 
0x  and 

0 1,..., kw w 
 

conditioned on 
0 1

ˆ , ,... kx y y  is proportional to  exp J , which implies that minimizing J  means 

maximizing this probability density.  

By inserting the constraint 1 ,k d k k kx A x w    into Equation (12), we can remove the variable 
kw  

from the optimization problem: 
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Let the optimization variable x  be defined by  9 1 1

0 1

T NT T T

Nx x x x R
 

    , then the matrix 

form of the optimization will be:  

  1 2 3

1

2

T TJ x x M x M x M    (14) 

where 
     9 1 9 1 1 9 1

1 2 3, ,
N N N

M R M R M R
    

    can be computed from Equation (13). Note that 

Equation (14) is a quadratic function of x , which can be computed efficiently using the quadratic 

optimization method [21]. Minimizing Equation (14) will provide a set of estimation error. From these 

values, ˆ ˆ,q v  and r̂  can be updated using Equations (4) and (7). 

Let the minimum solution to the problem. Equation (14) be defined by *J . Note that *J  depends on 

,g ky , ,a ky  0 k N  , 
0q̂ , 

0̂r , 
0v̂  and 

0P . For later use, we denote *J  by a function f  as follows: 

   *

, , 0 0 0 0
ˆ ˆ  ̂, , , , , ming k a k

x
J f y y q r v P J x   (15) 

In Equation (14), constraints can be easily added to improve the accuracy. For example, in gait 

analysis, while walking on a plane that assumed to be parallel with the xy  plane of the local 

navigation coordinate frame, we can make use of zero z  axis position as following: 

    ,
ˆ0 0 0 1 0 0 0 0 0 1 0 0 0k k r kr x n    

and the constraint of nonnegative z  axis position is given by: 

   ˆ0 0 1 0 0 0 0 0 1 0 0 0 0.k kr x  

4. Sensor Saturation Estimation 

The sensor saturation occurs when the measured values are over the sensors’ dynamic ranges 

(Figure 2). While it is difficult to know sensor noise values ( gn  and 
an  in Equation (7)), it is not 

difficult to know when the sensor saturation occurs.  

Each sensor has its own range of measurement. When the measured values are larger than the 

measurement limit, the saturation happens. Even if the saturation happens in a short time, it could lead 

to a large accumulated error since the lost information is in a large magnitude data area. The data loss 

due to the saturation has a considerable influence to the result, especially when the integration is used 

in data processing. 

The saturation can be avoided by using large dynamic range sensors. Usually, large measuring 

range (with the same sensor resolution) sensors tend to be expensive. Instead of using an expensive 

large range sensor, we can use a low cost one with smaller measuring limit along with applying a 

saturation compensation algorithm.  
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Figure 2. Sensor Saturation. 

 

The saturation can happen in gyroscopes and accelerometers in three axes. Symbols , ,g x ky , , ,g y ky , 

, ,g z ky  are used to denote three elements in 
3

,g ky R . Similarly, , ,a x ky , , ,a y ky  and , ,a z ky are used for 

3

,a ky R . We use the fact that the value of the sensor output is smaller than the saturation value 

outside the saturation interval. In the saturation interval, we assume that the sensor output is equal to 

the saturation value. Let ,g saty  be the saturation value of a gyroscope and ,g xS  be the set of gyroscope 

x  saturation inertial indexes: 

, , , , ,

, , , , ,

   if 
.

   if 

g x k g x sat g x

g x k g x sat g x

y y k S

y y k S

  


 

 (16) 

Similarly, we can define Sg,y, Sg,z, ya,sat (saturation value of an accelerometer), Sa,x, Sa,y and Sa,z. Denote 

δg,x,k, δg,y,k, δg,z,k, δa,x,k, δa,y,k, δa,z,k, the compensation values of gyroscopes and accelerations in , ,x y z  

axes at the time k , respectively. The compensated sensor value ( ,g ky  and ,a ky ) is the sum of sensor 

output value and compensation value. For example, the compensated x  axis gyroscope value is  

given by: 

, , , , ,

, ,

, , ,

   if 

               if 

g x k g x k g x

g x k

g x k g x

y k S
y

y k S

 
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
 (17) 

Let   be set of , ,g x k , , ,g y k , , ,g z k , , ,a x k , , ,a y k  and , ,a z k  variables. For example, if  , 5,6,7g xS  , 

 , 8,9,10a yS  , and , , , ,g y g z a x a zS S S S     then   is given by: 

6

, ,5 , ,6 , ,7 , ,8 , ,9 , ,10 .
T

g x g x g x a y a y a y R           

Now the standard smoother algorithm in Section 3 is modified using ,g ky  and ,a ky . The flowchart 

of the algorithm is given in Figure 3. The first step (step A in Figure 3) of the algorithm is the initial 

estimation of  , which is explained in Sections 4.1 and 4.2. Given   values, the standard smoother 

algorithm (steps B and C) is applied to compute the smoother. This standard algorithm (given in 

Section 3) can be formulated as the quadratic optimization algorithm. How good the computed 
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smoother is can be evaluated using the computed J value in Equation (15). This process (steps B and 

C) is repeated by changing  values. The algorithm finishes if the minimum value of J is found. We 

note that  optimization can be formulated as a constrained nonlinear optimization problem. Once the 

minimization process is done, we can compute the saturation compensated smoother values (step E). 

Figure 3. Proposed saturation compensated smoothing algorithm. 

 

Consider the following function (from Equation (15)): 

    , , 0 0 0 0
ˆ ˆ ˆ, , , , ,g k a kf y y q r v P   (18) 

Assuming 0 0 0 0 ,
ˆ ˆ ˆ, , , , g kq r v P y  and ,a ky  are constant, the function f  in Equation (18) depends on  . 

In this section, f  is minimized with respect to .  Two different methods are proposed. The first 

method directly minimize   with respect to all possible combination of .  The second method uses 

the geometric structure of the sensor saturation. 

4.1. Method 1: Direct Estimation of   

In the first method, the following optimization problem is solved: 

      , , 0 0 0 0
ˆ ˆ ˆmin , , , , , min ming k a k

x
f y y q r v P J x

 
    (19) 

subject to: 

      if 0

   if 0

b

b

  

  

 


  
 (20) 

In Equation (20), “  ” and “  ” represent element-wise inequalities and 
b  is a set of bounding 

positive values of elements in  . Choice of 
b  depends on applications. For example, in knee 

 

minimize J in (15)
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constrained nonlinear optimization

A

B

C

D

E
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gyroscope data, the maximum angular velocity of a human knee varies from 213 to 1,087 s  [22]; in 

gait acceleration, the maximum foot acceleration is around 11.82
2m s  for walking case [23]. 

Therefore, the gyroscope data upper bound can be chosen as δb = [1,087 ‒ yg,sat 11.82 ‒ ya,sat]
T
. From 

Equations (16) and (17), it is easily to be seen that when , 0g ay y  , we have 0   because gyroscope 

compensated values ( ,g ay y ) are larger than saturation value ( , ,,g sat a saty y ). The initial value of   can 

be chosen as a set of 0 and varies in a range which satisfies the condition in Equation (20). With each 

set of  , one value of x  is obtained. The minimum value of  which makes x  minimizes the quadratic 

problem (14) is chosen. 

4.2. Method 2: Estimation of   Using Geometric Form 

In this method, the saturated sensor data region is approximated by a triangle (see Figure 4a) and 

quadratic function (see Figure 4b). Using three data before the saturation interval (
2kx 
,

1kx 
,

kx in 

Figure 4a), we can obtain a quadratic function. In the next step, a line 
1l  starting from 

kx with the slope

 ' k  is generated. With the same procedure (quadratic function  g t  for 
hx ,

1hx 
,

2hx 
), we generate 

a line 
2l . 

1l  and 
2l  are the reconstruction part of sensor saturation. The intersection point of 

1l  and 
2l  (at 

the time 
mt ) is the maximum value (

mx ) for compensation. Now consider 
1l  is created based on  ,kx k  

and  ,m mx t  points, 
2l  is created based on  ,hx h  and  ,m mx t  points. Changing the height of the 

intersection from saturation value to maximum compensation value 
mx  we can generate several sets of 

basic lines 
1 2,l l  which contain compensation values. The intersection point is defined as following: 

       

   

   

m

m m m

g h k h k g h
t

k g h

x k t t





 

  


 

 

 (21) 

The other compensation value is defined by: 

 
 

 

 
 

 

   if 

   if 

m

t m

m

m

t m

m

x k
x k t k k t t

t k

g h x
x g h t h t t h

h t





    




    



 (22) 

Using this method, sets of sensor’s compensation values   can be generated by changing the 

intersection point’s value from saturation value to maximum compensation value. In this case,   only 

depends on intersection point. Denote  ,I II x t  the intersection point. Once I  is created, the rest 

compensation data will be obtained based on 
1l  and 

2l  lines using Equation (22). The optimization 

problem (19) will subject to   value which relates to the intersection point. 

With the same idea, a quadratic approximation can be used to generate the lost information (see 

Figure 3b. Firstly the maximum compensation value can be generated using the same procedure in 

triangle approximation process. After this step, a quadratic function ( )t  is formed up based on 

 ,k kx t ,  ,h hx t  and  ,m mx t  points. In saturation parts, the compensation value at time kt  is ( )kt . 
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Figure 4. Estimation of   using geometric form. (a) Triangle approximation;  

(b) Quadratic approximation. 

 

(a) 

 

(b) 

5. Sensor Saturation Compensation Algorithm with Multiple Zero Velocity Intervals 

Section 4 introduced two methods to compensate sensor saturation in a standard movement 

situation which contains two zero velocity intervals at the beginning and ending of a moving interval. 

In this section, we apply the Section 4 methods to multiple zero velocity interval movements.  

A movement with multiple zero velocity intervals is displayed in Figure 5. In this movement, moving 

intervals are interposed by zero velocity intervals. An example of this movement can be found in gait 

analysis in [4,5]. In the characteristic human gait, one foot is assumed to be not moving when the the 

center of mass is put on the corresponding leg to move the other. Therefore, during the walking 

process, there are zero velocity intervals separated by moving intervals for each foot.  

  

 

  2

1 1 1t a t b t c      2

2 2 2g t a t b t c  

1l 2l

x

t

Saturation 

value

Maximum 

compensation  

value

mt

mx

T

2k 1k k h 1h  2h 

I

 

  2

1 1 1t a t b t c      2

2 2 2g t a t b t c  

1l 2l

x

t

Saturation 
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mx

T

2k 1k k h 1h  2h 

I

  2

I I It a t b t c   
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We divide the movement into segments based on zero velocity intervals so that between two zero 

velocity intervals there is data from one moving period (see Figure 5). If there are saturations in the 

movement, we can apply the compensation methods in Section 4 to each segment. The information of 

the last sampling in the prior segment will be used as the initial value for the following one. The initial 

error covariance for each segment can be estimated using a Kalman filter with a zero velocity 

measurement update for previous segment. Note that for the first segment the position and velocity 

errors are assumed to be zero due to the fact that the initial body coordinate frame coincides with the 

navigation coordinate frame. The initial covariance of the first segment is also assumed to be small. 

Repeating the smoothening processes until the last segment, the whole smoothed data is obtained. 

Figure 5. A movement with multiple zero velocity intervals. 

Zero-

velocity 

interval

Moving interval

Zero-

velocity 

interval

Moving interval

Zero-

velocity 

interval

Zero-

velocity 

interval

Moving interval

Zero-

velocity 

interval

Segment 1 Segment 2 Segment N

 

6. Simulation and Experiments 

In this section, one simulation result and two experimental results are given to verify the  

proposed algorithm. First, a simulation is done to verify the proposed method. The sensor is assumed 

to be located at the end of a bar, which is rotated along the body y  axis. There is a sensor’s saturation 

in the gyroscope y  axis data as in Figure 6. The saturated data (green “—” line) is obtained with 

, , 7.5g y saty  . This saturated data is used as an input data for the compensation algorithms in Section 4. 

Figure 6. Simulation gyroscope ,g yy  data with and without saturation ( , , 7.5g y saty  ). 
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Figure 7. True and estimated trajectories. (a) method 1 result: 3D trajectory and Euclidean 

distance over time; (b) method 2 (triangle approximation): 3D trajectory and Euclidean 

distance over time; (c) method 2 (quadratic approximation): 3D trajectory and Euclidean 

distance over time. 

 

(a) 

 

(b) 

 

(c) 

In this simulation,   only contains y  axis compensation (δg,y,k). The smoothing results  

(forward-backward smoother [20] and the proposed methods) are given in Figure 7 and Table 1. In 

case of method 1,  δb is chosen as 5, so that the performance index J is minimized subject to 0 5  . 

Similarly, method 2 (both triangle and quadratic approximation) is applied. In Table 1, we can see  
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that both method 1 and 2 produce significant improvements over the conventional smoothing 

(forward-backward smoother) result. Among the proposed methods, method 1 gives the best result and 

the second best is method 2 (quadratic approximation). We note that the method 1 requires more 

computation than method 2 since it needs more optimization variables. As for method 2, it is not 

conclusive whether quadratic approximation is better than triangle approximation since triangle 

approximation sometimes gives better results as seen in our later experiment (see Table 2). 

Table 1. Last position accuracy of different smoothers. 

Estimation Method Last Position Error Position Error Norm 

Forward-backward smoother 0.0458 0.1544 

Proposed smoother (method 1) 0.0032 0.0009 

Proposed smoother (method 2: triangle approximation) 0.0045 0.0019 

Proposed smoother (method 2: quadratic approximation) 0.0036 0.0014 

In Figure 8, the gyroscope sensor saturation compensation results by the proposed methods are 

given. In all three cases, it can be seen that the sensor saturation is well estimated. 

Figure 8. ,g yy  data compensation result by the proposed methods. (a) sensor compensation 

result by method 1; (b) sensor compensation result by method 2 (triangle and quadratic 

approximation). 

 

(a) 

 

(b) 
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In Figure 7, the gyroscope sensor saturation compensation results by the proposed methods are 

given. In all three cases, it can be seen that the sensor saturation is well estimated. 

In order to verify the robustness of the proposed algorithms to the saturation, a simulation is done 

by checking the position norm errors while , ,g y saty  value is changed. For example, if we set yg,y,sat=12 

in Figure 6, there is no saturation in the sensor. On other hand, if we decrease yg,y,sat value, the sensor 

saturation increases. With the method 1, when the 
b  is fixed and the saturation value is changed, the 

accuracy of the proposed smoother may be affected (if the 
b  is chosen not large enough). As can be 

seen from Figure 9 where the 
b  is chosen as 2.5, the accuracy will decrease when the compensation 

value that is used to compensate the saturated data is larger than 
b . However, this effect can be 

avoided since the saturation value is known for each sensor. Therefore, we can choose 
b  as a large 

number compared with the sensor’s saturation value.  

Figure 9. The effect of saturation value (in gyroscope data) on the method 1 smoother accuracy. 

 

Sections 4.1 and 4.2 showed that the accuracy of the method 2 only depends on the saturation value 

while the accuracy of the method 1 is affected by the saturation value and the 
b . Figure 10 illustrates 

that the saturation is well compensated by method 2, even when the saturation value is changing. In 

general, compared with a forward-backward smoother, our proposed compensation smoother has 

better performance. 

As mentioned above, how to choose 
b  may affect the accuracy. In some applications, the 

b  is 

known from doing statistical experiments. In the case where 
b  is unknown, we can choose an 

arbitrarily large value. This does not affect the result as shown in Figure 11. In Figure 11, when 
b  is 

chosen smaller than the compensation value that is used to compensate the saturated data, the error 

could be large. If we increase 
b , the error decreases since a larger saturation can be compensated. 

However, it could lead to more computations for solving the optimization Equation (19). 
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Figure 10. The effect of saturation value (in gyroscope data) on the method 2 smoother accuracy. 

 

Figure 11. The effect of 
b  on the method 1 smoother accuracy. 

 

In the first experiment, an object, which is attached with an IMU on the top, moved in a straight line  

of 0.95 m so that the x  axis of the IMU coincides with direction of movement. In this case, there exists 

saturation in the sensor’s accelerometer in the x axis ( ,a xy ). The trajectory of the object is estimated by 

the forward-backward smoother and our proposed compensation smoother using two methods. Figure 12 

shows that the saturated , ,a x ky  data was compensated using the proposed compensation smoothers.  

The estimated position errors are given in Figure 13 (method 1 only, since the results of method 2 

are similar) and Table 2. As can be seen from Figure 13, the proposed compensation smoother using 

method 1 gives a closer result to the true position (0.9121 m, equivalent to 4% error) than the forward-

backward smoother (0.8404 m, equivalent to 11.54% error). The proposed compensation smoother 

using method 2 also gives a good result of 0.9084 m (4.39% error) and 0.8976 m (5.52% error) for 

triangle and quadratic approximations, respectively. 
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Table 2. The error of 0.95 m straight movement experiment. 

Estimation Method Last Position Error 

Forward-backward smoother 0.1096 

Proposed smoother (method 1) 0.0379 

Proposed smoother (method 2: triangle approximation) 0.0416 

Proposed smoother (method 2: quadratic approximation) 0.0524 

Figure 12. , ,a x ky  sensor’s output and compensated data of 0.95 m straight movement 

experiment; (a) method 1 result; (b) method 2 results (triangle and quadratic approximation). 

 

(a) 

 

(b) 
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Figure 13. Trajectories of 0.95 m straight movement experiment (method 1 result). 

 

Another experiment has been done to verify the compensation feasibility of the proposed algorithm. 

In this experiment, an IMU is attached at the tip of a digitizer (see Figure 14). The tip was moved in a 

curved line. The position data of the tip was recorded by the digitizer while the trajectory of the IMU is 

estimated by the proposed compensation and the forward-backward smoothers, respectively. The 

movement was made so that there is saturation in the , ,g z ky  data. The estimated trajectories are 

compared with the true trajectory of the digitizer in Figure 15 (in millimeters). The distance between 

the start and stop point is used as an evaluation criterion. Based on this criterion, a table of distance 

errors of the estimated positions and the digitizer’s data is formed, as shown in Table 3. Table 3 shows 

that method 1 gives a best accuracy (7.9 mm error) compared with other estimations. The  

forward-backward smoother has a worst estimation with a 50.4 mm error result. Moreover, the two 

approximation methods in method 2 provide similar results (11.8 and 10.3 mm errors).  

Figure 14. Curve movement experiment setup. 

 
  

 
Xsens IMU MicroScribe G digitizer 
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Figure 15. Trajectories of a curve movement experiment (method 1). 

 

Table 3. The start-stop point distance error of curve movement experiment (in mm). 

Estimation Method Distance Error 

Forward-backward smoother 50.4 

Proposed smoother (method 1) 7.9 

Proposed smoother (method 2: triangle approximation) 11.8 

Proposed smoother (method 2: quadratic approximation) 10.3 

In the last experiment, we verify the compensation smoother application in multiple zero velocity 

intervals movement (in Section 5). In this experiment, an IMU is attached on a human foot. The 

volunteer was asked to walk along a straight corridor. A pen is also attached on the volunteer’s shoe to 

mark the steps’ positions on the floor. The obtained data from IMU is used to estimate the trajectory of 

the foot. A comparison of proposed and forward-backward smoothers trajectories is given in Figure 16. 

The result shows that the last position error of proposed smoother trajectory is 0.9042 m, while it  

is 2.3128 m for the forward-backward smoother trajectory. 

Figure 16. True and estimated trajectories of a walking person. 
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7. Conclusions 

This paper has proposed some approaches to compensate for sensor saturation. Saturation is a 

common problem with IMU sensors in tracking a moving object. The lost data in the saturated parts 

could be important due to the accumulated errors. In the paper, the authors used a standard smoothing 

algorithm with zero velocity intervals to compensate sensor saturation. The considered motion 

includes a moving interval between two zero velocity intervals. Two methods were proposed. The first 

method directly estimates the saturation compensation while the second one uses a geometric form to 

estimate the saturation. The proposed smoothing algorithm can be applied in some motions which 

contain many moving intervals separated by zero velocity intervals. In this case, the motion is divided 

into segments based on zero-velocity intervals so that between two zero velocity intervals there is one 

moving interval. The saturation estimation algorithm is applied in each segment from the first to the 

last one. To verify the feasibility of the two methods, some experiments have been done. The 

experiments showed that the proposed smoothing algorithm can compensate the sensor saturation and 

provides a smaller error than a conventional smoother (forward-backward filter). In practical 

applications, the sensor saturation compensation methods proposed in this paper can be used to 

improve the accuracy of small dynamic range sensors instead of using a large dynamic range one 

which usually tends to be more expensive. 
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