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Abstract: Surface electromyography (sEMG) is an important measurement technique used in 

biomechanical, rehabilitation and sport environments. In this article the design, 

development and testing of a low-cost wearable sEMG system are described. The hardware 

architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and 

band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real 

measured EMG signals are usually corrupted by various types of noises (motion artifacts, 

white noise and electromagnetic noise present at 50 Hz and higher harmonics), we have 

tested several denoising techniques, both on artificial and measured EMG signals. Results 

showed that a wavelet—based technique implementing Daubechies5 wavelet and soft 

sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the 

system performance, EMG activities of six dominant muscles of ten healthy subjects 

during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, 

tibialis anterior and medial gastrocnemius). The obtained EMG envelopes presented 

against the duration of gait cycle were compared favourably with the EMG data available 

in the literature, suggesting that the proposed system is suitable for a wide range of 

applications in biomechanics.  

Keywords: surface electromyography (sEMG) signals; biomedical sensors; bioamplifier; 

artificial EMG signal; noise removal; wavelets; EMG signal envelope; muscle activity 

during human gait 
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1. Introduction 

The precise measurement and analysis of human movements and muscle activity are an essential step in 

biomechanical research in medicine, rehabilitation, and sport. Measurement systems used for motion 

tracking include highly sophisticated 3D motion-capturing systems, as well as electromyography (EMG) 

systems which record muscle activity during motion. Nowadays many commercial systems are 

available for precise measurements of human motion and muscle activity represented by EMG signals. 

In the context of tracking the movements of a human body, optoelectronic devices are the number-one 

tool. Optoelectronic devices typically use small markers that are attached to a subject’s body  

surface, and a set of two or more cameras is used for capturing the markers’ motions [1–3]. Highly 

sophisticated commercial systems such as Vicon [4] (which uses reflective passive markers) or 

Optotrak [5] (which uses active markers) are often considered as a gold standard in human motion 

analysis. In the context of tracking muscle activity during movements, commercially available, highly 

precise, and high quality EMG systems are manufactured by Motion Lab Systems, Inc. [6], BTS 

Bioengineering [7], Delsys [8], etc. 

1.1. Related Work Dealing with Electromyography (EMG) Signal Processing 

Electromyography (EMG) refers to a collective electric signal from muscles, which is controlled by 

the nervous system and produced during muscle contraction [9]. The signal represents the anatomical 

and physiological properties of muscles; in fact, a surface EMG signal is the electrical activity of an 

underlying muscle [10]. EMG signals are becoming increasingly important in many applications, 

including biomechanical, clinical/biomedical, prosthesis or rehabilitation devices, human machine 

interactions, and more [9]. For example, EMG signals can be used to generate device control commands 

for rehabilitation equipment such as robotic prostheses, and have been deployed in many clinical and 

industrial applications [11]. 

The detection of electromyographic signals is a very complex process, which is affected not only by 

muscle anatomy and the physiological process responsible for signal generation but also by external 

factors and different types of noises, such as the inherent noise of the hardware employed in signal 

amplification and digitalisation [12]. Therefore, it is very difficult to remove the noises from recorded 

EMG signals efficiently. Most common noises in EMG signals are inherent in the electronic equipment 

and motion artifacts, and can be electromagnetic noise or cross-talk.  

Inherent noise or white noise is generated by electronic equipment employed for EMG signal 

recording and the frequency components of this noise range from direct current (DC) to several 

thousand Hz [9]. Motion artifacts are noises with a frequency range from 1 Hz to around 15 Hz, and 

have a voltage comparable to the amplitude of an EMG signal. These noises are introduced by the 

interface between the detection surface of the electrode and the skin, and the movement of the cable 

connecting the electrode to the amplifier.  

Electromagnetic noise, present at 50 (60) Hz frequency and higher harmonics, corrupts EMG 

signals since the human body behaves like an antenna: the surface of the body is continuously 

inundated with electric radiation [9]. Because the power line radiation (50 or 60 Hz) is a dominant 

source of electrical noise, it is tempting to design devices that have a notch-filter at this frequency. 
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Theoretically, this type of filter would only remove the unwanted power line frequency, however, 

practical implementations also remove portions of the adjacent frequency components. Therefore, 

according to De Luca [13], because the dominant energy of the EMG signal is located in the 20–400 Hz 

range, the use of notch filters is not advisable when there are alternative methods of dealing with the 

power line radiation such as digital signal processing and denoising techniques. 

Cross-talk represents an undesired EMG signal from a muscle group which surrounds the muscle of 

interest. Therefore, the electrical activity of surrounding muscles interferes with the activity of the 

recorded muscle. Since cross-talk is easily recorded from undesired muscles, it is actually very 

difficult to avoid this type of noise. 

Researchers have made strenuous efforts to solve the problem of EMG signal denoising [14–18]. 

Various digital signal processing techniques are employed, from classical digital filters to modern 

filtering techniques such as wavelets. Conforto and colleagues [19] tested several filtering procedures 

to reject the motion artifact from EMG signals. They tested the moving average filter, the moving 

median filter, eighth-order Chebyshev high pass filters with a cut-off frequency of 20 Hz, and the 

adaptive filter based on orthogonal Meyer wavelets. They found that wavelet-based filtering provides 

the best results. Also, many researchers have reported good results for EMG signal processing  

and analysis [9] by employing different advanced algorithms, such as Wigner-Ville distribution, 

independent component analysis, empirical mode decomposition [20], and the Hilbert spectrum [21]. 

1.2. Requirements for Electromyography (EMG) System Design 

An important issue regarding the design of an EMG system is determining an appropriate design for 

the bioamplifier. The first condition imposed is that the bioamplifiers should be small in size and 

weight, in order to be wearable on humans while performing the movements. Secondly, bioelectric 

amplifiers require a high gain level, a low density of equivalent input noise, a high common mode 

rejection ratio (CMRR) and a high impedance input [22,23]. Most of these features can be achieved by 

using a monolithic instrumentation amplifier (IA) as a front stage [22]. Since the required gain for 

EMG amplifiers is at least 1,000, this gain cannot be achieved in a single stage because of output 

saturation issues. Therefore, the gain of the front instrumentation amplifier should be around 100, and 

the additional gain should be accomplished by the second stage of amplification, usually by means of 

the operational amplifier. EMG bioamplifiers should also be designed as filters, to reject direct current 

offset and to serve as anti-aliasing filters. 

Modern commercial multi-channel EMG systems available on the market offer a wide variety of 

possibilities for high-quality recording of EMG signals. They offer highly accurate amplifiers with 

adjustable gains, high sampling frequencies, wireless data transmission, and active electrodes by 

means that the preamplifier is inserted into the same housing with recording surfaces. Home-made 

EMG systems could hardly compete with the available commercial versions. But, the main drawback 

of all commercial EMG systems is their very high cost, varying from several tens of thousands of 

euros, thus making these systems beyond the reach of many human-motion research laboratories. 

Therefore, one of the research focuses of our Laboratory of Biomechanics, Automatic and Control 

Systems at the University of Split is the design, development, and evaluation of low-cost human-motion 

measurement systems. We designed an optical motion-tracking system based on active white light 



Sensors 2014, 14 8238 

 

 

markers [24] and showed that it could be used as an efficient tool for measuring kinematic data  

on human motion. We also developed a structured light 3D scanner for estimation of human 

anthropometric parameters [25]. The next step in our research was the design, development and 

evaluation of a low-cost sEMG system, which is presented in this paper. We described in detail how to 

design a low-cost EMG system, applicable for various measurements of muscle activity during human 

motions. Special emphasis is placed on the design of a small-sized two-stage bioamplifier and on a 

signal-denoising technique based on wavelets. We tested our system by measuring muscle activity of 

six muscles during human gait, and the results showed that the proposed system can serve as an 

muscle-activity recording tool in various biomechanical applications. 

2. sEMG System Prototype Design Overview 

The flowchart of the prototype of eight channel sEMG system and EMG signal processing 

techniques is illustrated in Figure 1.  

Figure 1. Flowchart of the prototype of surface electromyography (sEMG) system and 

EMG signal processing techniques. 

 

The surface electrodes used for EMG recording were commercially available concentric Ag-AgCl 

electrodes, type Noraxon Dual Electrodes, and inter-electrode distance was 2 cm. Since the 

electromyograms are low amplitude signals (from several μV up to 4–5 mV), with 90%–95% of total 

EMG power present within frequency range from 20 Hz to 400 Hz, and very sensitive to noises, the 

focus should be on the design of a low-noise, accurate bioamplifier. We used a two-cascade circuit 

(preamplifier and the main amplifier). Physically, eight preamplifiers were placed into eight separated, 

plastic and shielded housings, and connected to the electrodes with short, shielded cable, 3.5 cm in 

length. Eight main amplifiers, together with two power supply batteries (±9 V), were integrated into 

the shared shielded housing placed on the subject’s belt (Figure 1). In order to determine the duration 
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of gait cycle while the subject was walking, we taped the switch to the subject’s bare foot (heel). 

Therefore, each heel-ground contact was recorded by the increasing slope of the rectangular  

impulse signal.  

The amplified EMG signals were passed to the 16-bit A/D converter and personal computer via  

a 10 m long shielded cable. The A/D sampling frequency of EMG signals was 1000 Hz.  

A Labview-based user interface was designed to collect the data and display raw sEMG signals on a 

monitor. Offline sEMG signal processing and analysis were performed with software written in Matlab 

(The MathWorks, Natick, MA, USA).  

2.1. Bioamplifier Design 

The electric scheme of the bioamplifier is presented in Figure 2. It was designed as a two-cascade 

circuit (preamplifier and main amplifier), with total amplification of G = 2,000, and a bandwidth  

of 3 Hz to 500 Hz.  

Figure 2. The electric scheme of the bioamplifier consisted of two stages: the preamplifier 

and the main amplifier. 

 

2.1.1. Preamplifier Design 

In order to obtain wearable preamplifier, which should be as small in size and as low in weight as 

possible, so it can be taped to the human skin by adhesive tape, we used only two electronic 

components for preamplifier design: instrumentation amplifier AD621 and capacitor, C1 = 100 μF, as 

depicted in Figure 2. Instrumentation amplifier AD621, manufactured by Analog Devices (Norwood, 

MA, USA) [26] was chosen because it is an easy-to-use, low-cost, low-power, highly accurate 

instrumentation amplifier ideally suited for precise measurement of low amplitude signals such as 

EMG, and for design of battery-powered and portable equipment such as proposed EMG system. 

AD621 has very high input impedance of 10 G  in parallel with 2 pF, as required for recording of 

EMG signals, and wide power supply range from ±2.3 V to ±18 V. When operating from high source 

impedances, as in EMG or electrocardiographic (ECG) recording, and blood pressure monitors, the 

AD621 features the good combination of low noise and low input bias currents. Voltage noise is 
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specified as 9 nV/√Hz at 1 kHz and 0.28 μV p-p from 0.1 Hz to 10 Hz. Input current noise is also 

extremely low at 0.1 pA/√Hz. The common mode rejection ratio (CMRR) of AD621 has a high value 

of 130 dB for frequency interval of 0.1 Hz to 10 Hz, then drops and reaches the value of 90 dB at 

1,000 Hz. The CMRR at frequency of 50 Hz has a value of app. 120 dB. The high values of CMRR 

ensure an optimal rejection of common mode input signals. The power supply rejection ratio (PSRR) of 

AD621 has a high value of 140 dB for frequency interval of 0.1 Hz to 10 Hz, then drops and reaches the 

value of 110 dB at 1,000 Hz. For more information about AD621 theory of operation and circuit topology 

we refer the interested reader to AD621 data sheet [26]. Capacitor used was aluminium solid electrolytic 

capacitor, manufactured by Jamicon, rated voltage of 25 V, and capacitance tolerance of ±20%. 

The AD621 amplifier gain, G, is given by Equation (1), available in the AD621 data sheet [26]: 

50 k
1

G

G
R


   (1)  

where RG is the parallel combination of resistors (see Figure 3): 

RG = 5555.5 || (555.5 + REXT) (Ω) (2)  

Therefore, amplifier gain can be programmed for any gain between 10 and 100 by connecting a 

single external resistor, REXT, between pins 1 and 8 (Figure 3). By combining Equations (1) and (2) we 

can express the dependence between gain G and REXT as: 

1
)5.555(

)6111(9







EXT

EXT

R

R
G  (3)  

In order to achieve the gain value G = 100, but only for higher frequencies, we connected a 

capacitor (C1 = 100 μF) between pins 1 and 8 (see Figure 2). In that case, gain G expressed by 

Equation (1) will become: 

50 k
1

G

G
Z


   (4) 

where ZG is frequency-dependent impedance which replaces resistance RG from Equation (2), and 

which can be expressed as: 

ZG = 5555.5 || (555.5 + 
1

1

ωC j
) = 5555.5 || (555.5 +

410

ωj
) (Ω) (5)  

By combining Equations (4) and (5), we can express the gain G by the following equation (Figure 2): 
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  (6)  

In this case, the gain of preamplifier is: G = 100 = 40 dB, and the cut-off frequency is: 

cut_off cut_off

1 1 1
*ω * Hz 2.8 Hz 3 Hz

2π 2π 0.0555
f      (7)  

The amplitude-frequency characteristic of the preamplifier is presented in Figure 4. 
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Figure 3. AD621 instrumentation amplifier: Gain setting. 

 

Figure 4. Amplitude-frequency characteristic of the preamplifier. 

 

Having in mind somewhat high tolerance of capacitor C1 capacitance of ±20%, we have calculated  

the border values of fcut-off. For C1 = 100 μF + 20% = 120 μF, fcut-off is obtained to be 2.38 Hz. For  

C1 = 100 μF − 20% = 80 μF, fcut_off is obtained to be 3.58 Hz. We can conclude that the possibly  

spread of fcut-off between values 2.38 Hz and 3.58 Hz does not influence significantly on the 

preamplifier function.  

2.1.2. Main Amplifier Design 

For the second cascade of the bioamplifier (main amplifier) we used an operational amplifier, OP07, 

manufactured by Analog Devices Inc. (Norwood, MA, USA) [27], resistors and capacitors (Figure 2).  

The CMRR of OP07 has a high value of 120 dB. The PSRR is 5 μV/V. Capacitor C2 = 10 μF was 

aluminium solid electrolytic capacitor, manufactured by Jamicon (New Taipei City, Taiwan) with a 

rated voltage of 250 V, and capacitance tolerance of ±20%. Capacitor C3 = 33 pF was metallized 

polyester film non-polarized capacitor, manufactured by BC Components (Malvern, PA, USA), rated 

voltage of 63 V, and capacitance tolerance of ±5%. The general purpose of the main amplifier is to 

further amplify EMG signals to a level compatible with the analog/digital (AD) converter, eliminate 

direct current (DC) offset, and act as an anti-aliasing filter. Therefore, we constructed the main 

amplifier as a band-pass filter, with the gain G = 20, and cut-off frequencies of fcut_off_low = 3.13 Hz 3 Hz, 
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and fcut_off_high = 482 Hz  500 Hz. High cut-off frequency was set to 500 Hz, in consideration of 

Nyquist sampling theory and EMG signal sampling frequency of 1,000 Hz. The frequency- dependent 

gain, G of the main amplifier, can be expressed as (Figure 2): 

OUT 32

OUT1
1 3 5

2 3

1

ω ω 1

1 1 5.1 33
1 ω 1 ω

ω ω 100 10

U C jR j
G

U
R R j j

C j C j

      

   

 (8)  

The amplitude-frequency characteristic of the main amplifier is presented in Figure 5. 

Figure 5. Amplitude-frequency characteristic of the main amplifier acting as a band-pass filter. 

 

As seen in Figure 5, band-pass gain is G = 20 = 26 dB, and cut-off frequencies are: 

cut_off_low cut_off_low

1 2

5

cut_off_high cut_off_high

3 3

1 1 1 1 100
ω Hz 2.8 H 3 Hz

2π 2π 2π 5.1

1 1 1 1 10
ω Hz 482 Hz 500 Hz

2π 2π 2π 33

f z
R C

f
R C

       

       

  (9)  

The band-pass filter has somewhat gentle roll-off of 20 dB/dec. We made this choice by following 

the guidelines for detection and recording EMG signals provided by De Luca in his report [13] where 

he suggested the judicious filtering with a roll-off of 12 dB/oct.  

Regarding the somewhat high tolerance of capacitor C2 capacitance of ±20%, we have calculated 

the border values of fcut-off-low. For C2 = 10 μF + 20% = 12 μF, fcut-off-low is obtained to be 2.6 Hz. For  

C2 = 10 μF − 20% = 8 μF, fcut-off-low is obtained to be 3.9 Hz. As in case of preamplifier, we can 

conclude that the possibly spread of fcut-off-low between values 2.6 Hz and 3.9 Hz does not significantly 

influence the function of the main amplifier.  

2.2. EMG Signal A/D Conversion and Labview—Based Acquisition 

For A/D conversion of recorded and amplified EMG signal we used 16 bit A/D card with 16 analog 

inputs, type NI 6034E, manufactured by National Instruments (Dallas, TX, USA) [28]. The full scale 
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of AD can be selected; we used the range of ±5 V, since our measured and rectified EMG signals did 

not exceed the amplitude of ±5 V. The resolution of the AD card with the selected full scale range is: 

Resolution = 
16

10 V (peak to peak)
0.15259 mV

2
  (10)  

Raw EMG signals’ recording was done in Labview. We made simple Labview interface which can 

record EMG signals from eight channels and save them in *.lvm files. Those files have ASCII format 

and can be easily imported into Matlab. Therefore, we imported recorded EMG signals from Labview 

to Matlab, and performed off-line processing, as depicted in Figure 1. 

3. EMG Signal Processing 

In this section the detailed workflow of digital processing performed on EMG signals is described. 

Since we were focused on wavelet-based denoising, a short overview of discrete wavelet 

transformation (DWT) is presented. Afterwards, the algorithms for DWT-based white noise and 

motion artifact removal are described. In order to reach the decision which wavelet and which 

threshold would be the most appropriate to apply for EMG signals denoising, we simulated an artificial 

EMG signal with added white noise and motion artifact, and with known signal to noise ratio (SNR). 

Several different wavelets and classical digital filtering procedures were tested. From the obtained 

results, we could decide which wavelet is the most appropriate for EMG signals denoising. After we 

have denoised measured EMG signals by using the chosen wavelet, we rectified signals, and then we 

calculated EMG signal envelopes. Envelopes were averaged over all measured subjects, and the 

trajectory of average envelope for each measured muscle was presented against the duration of one gait 

cycle. Finally, we compared our signals envelopes with the data available in literature [29]. 

3.1. Discrete Wavelet Transformation, DWT 

The algorithm of discrete wavelet transformation, DWT, uses digital filtering techniques in order to 

obtain a time-scale representation of a digital signal. DWT employs two sets of functions, called 

scaling functions ϕ(t) and wavelet functions ψ(t), which are associated with low-pass filters h(n) and 

high-pass filters g(n) through the following expressions [30,31]: 

1

0

( ) 2 ( ) (2 )
N

n

t h n t n 




   (11)  

1

0

( ) 2 ( ) (2 )
N

n

t g n t n 




   (12)  

The decomposition of the signal into different frequency bands is obtained by successive high-pass 

and low-pass filtering of time domain signals, followed by downsampling by two. The two filtering 

and downsampling operations can be expressed by: 

-1( ) ( ) (2 )i i

n

cA k cA n h k n    (13)  

-1( ) ( ) (2 )i i

n

cD k cA n g k n    (14)  
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where cAi describes approximation coefficients and cDi describes detail coefficients of i-th level. In 

summary, the result of J-th level DWT performed on N samples of digital signals sampled with 

frequency Fs is a set of detail coefficients cDi, i = 1 to J and approximation coefficients cAJ, 

concatenated into a single matrix of length N, as shown in Figure 6. 

Figure 6. Wavelet coefficients concatenated into matrix. 

 

The total number of N/2
i
 detail coefficients of i-th level, cDi, represents the original signal in a 

frequency band of [Fs/2
i+1

-Fs/2
i
] Hz. N/2

J
 samples of approximation coefficients, cAJ, represent signals 

in the lowest frequency band between 0 and Fs/2
J+1

 Hz. 

The procedure of signal decomposition is followed in reverse order for signal reconstruction or inverse 

DWT. The coefficients at every level are upsampled by two, passed through the synthesis filters h′(n) and 

g′(n) (low-pass and high-pass, respectively) and then added. The analysis and synthesis filters are known as 

quadrature mirror filters, QMF. The reconstruction formula for each level becomes: 

1 1( ) ( ( ) '(2 ) ( ) '(2 ))i i i

n

cA k cA n h k n cD n g k n       (15)  

and the reconstructed signal is: 

1 1( ) ( ( ) '(2 ) ( ) '(2 ))
n

x k cA n h k n cD n g k n      
(16)  

3.2. White Noise Removal by DWT and Thresholding 

The thresholding approach to wavelet-based noise removal, WBNR, was developed by Donoho and 

colleagues [32–34]. This method, which removes Gaussian white noise from a signal, relies on the 

following principle: wavelet transforms compress the energy of a noise-free signal into a small number 

of large coefficients called ―true‖ signal coefficients. As a consequence of the higher energy of a noisy 

signal, more wavelet coefficients are of a relatively larger (non-zero) magnitude, but much smaller 

than the ―true‖ signal coefficients. These coefficients, contributed by the noise, can then be identified 

and thresholded, and the reconstruction yields a cleaned, de-noised version of the signal. The general 

wavelet denoising procedure we used is as follows [35]: 

 Choose the appropriate wavelet for signal denoising 

 Apply DWT to the noisy signal to produce the noisy wavelet coefficients. 

 Select an appropriate threshold limit at each level and the threshold method (hard or soft 

thresholding) which best removes the noise.  

 Perform inverse wavelet transformation of the thresholded coefficients to obtain a denoised signal. 
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3.3. Motion Artifact Removal by Wavelets 

EMG signals usually contain low-frequency noise ranging from 0 to ~15 Hz, as mentioned earlier. 

In this work the following procedure for artifact removal was implemented: 

 Prior to the decomposition of EMG signals by DWT, the level of decomposition, J, is 

calculated as follows: 

s
noise12J

F
f


  (17)  

As the sampling frequency Fs is 1,000 Hz and fnoise is 15 Hz, J is obtained to be 5. 

 DWT of J-th level is performed. Approximation coefficients are on the fifth level, and cA5 

represents EMG signals in the frequency range of 0 to Fs/2
6
 ≈ 15 Hz. Therefore, these 

coefficients represent artifacts and are removed (replaced by zero values) in order to clean the 

signal from the artifact. Detail coefficients are left unchanged. 

 Performing of signal reconstruction. 

3.4. Simulation of Artificial EMG Signal for Testing of Denoising Algorithms 

In order to test wavelet based noise removal techniques and compare them to classical filtering 

methods, we have simulated artificial EMG signal, shown in Figure 7. Gaussian white noise, N ~ (0,1), 

was filtered by 4th order Butterworth filter with 20–150 Hz bandwidth, in order to obtain frequency 

spectrum similar to EMG signal. Amplitude of the signal was modulated to obtain two active intervals, 

separated by resting intervals with no EMG activity. Sampling frequency was 1,000 Hz and the time 

duration of the signal was 2.6 s. The frequency spectrum of the artificial signal is presented in Figure 8.  

In order to obtain a noised signal, simulated EMG signal was contaminated by normally distributed white 

noise and an artifact pattern extracted from a real EMG signal measured on the tibialis anterior muscle 

during gait. The so-obtained noised EMG signal, shown in Figure 9, consisted of two different zones: a 

burst zone where noises and myoelectric activity coexist, and an inter-burst zone where only the noise 

contribution is present. The frequency spectrum of a noised simulated signal is shown in Figure 10. 

Figure 7. Simulated artificial EMG signal. 

0 500 1000 1500 2000 2500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (ms)

E
M

G
 (

u
V

)

 



Sensors 2014, 14 8246 

 

 

Figure 8. Power spectrum of simulated artificial EMG signal. 
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The efficacy of denoising techniques was determined by calculation of signal to noise ratio (SNR) 

and root mean square error (RMSE), according to the following formulas: 
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    2

1

1
ˆ( )

N

n

RMSE x n x n
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   (19)  

where: 

 nx : simulated artificial EMG signal, shown in Figure 7 

 nx̂ : noisy signal (shown in Figure 9), or denoised signal, depending on the context 

N: number of signal samples (in all test cases, N = 2,600) 

The SNR for simulated artificial EMG signal with added noises is obtained to be 7.9 dB. For testing 

the wavelet-based denoising techniques, DWT on 5-th level was performed, and some of the used 

wavelets were: Daubechies5 (db5), Daubechies8 (db8), Symmlet8 (sym8), Coifflet5 (coif5), and 

Discrete Meyer (dmey). Motion artifact is filtered by elimination of approximation coefficients of  

the 5th level. White noise is filtered by thresholding detail coefficients of levels 1 to 5, by employing 

soft and hard version of sqtwolog, minimaxi, rigrsure and heursure thresholds, implemented in 

Matlab’s Wavelet Toolbox [35]. Standard band-pass filters used for comparison with wavelet—based 

techniques were an eight order Butterworth filter and an eight order Chebyshev. Filter’s coefficients 

were calculated for band pass ranging from 15 to 200 Hz. Denoising results are presented in Section 5.1. 
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Figure 9. Simulated artificial EMG signal with added noises. 
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Figure 10. Power spectrum of simulated artificial EMG signal with added noises. 
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3.5. EMG Signal Envelope Calculation 

In biomechanical applications, EMG signals are usually expressed by envelopes. In this paper, 

measured and wavelet-based denoised EMG signals were rectified and filtered by a moving average 

filter with a moving window consisting of N = 100 samples, in order to obtain linear envelopes  

of signals.  

3.6. Comparison of Measured EMG Signals with Existing EMG Data Base 

Winter provided in his book [29] a database of EMG signals recorded on twenty five leg muscles. 

For recording, he used concentric electrodes (inter-electrode distance was 2 cm), and thoroughly 

described the electrodes positions on each muscle. After recording, he rectified EMG signals, 

calculated envelopes of each signal, and then calculated averaged envelope trajectories over all 

measured subjects. He presented in Figures EMG averaged envelopes against the percentage of one 

gait cycle (from 0% to 100% of gait cycle). There are two main phases in the gait cycle, stance and 
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swing phase [36]. The stance phase begins at 0% of gait cycle, with heel-ground contact and ends 

when the foot leaves the ground (toe-off) at 60% of gait cycle. Therefore, during the stance phase 

(0%–60% of gait cycle), the foot is on the ground. During the swing phase (60%–100% of gait cycle) 

the same foot is no longer in contact with the ground and the leg is swinging through in preparation for 

the next foot strike, when the subsequent gait cycle begins.  

Besides EMG envelope graphical presentations against one gait cycle, Winter also included tables 

with numerical values of EMG envelopes amplitudes for each 2% of gait cycle, thus providing in  

total 51 samples of EMG signal amplitudes for each muscle. Therefore, he gave to the scientific 

community a valuable EMG database, and interested researchers could measure their own EMG 

signals and compare them to the signals provided by Winter (on condition that they follow a similar 

experimental protocol as Winter). Since Winter is well-known scientist and one of the pioneers of 

human biomechanics research, we considered his EMG data to be properly recorded and valuable for 

comparison. Therefore, in order to test the efficacy of the system prototype proposed in this paper, we 

have also chosen the Winter EMG data base as an appropriate reference point to compare our 

measured data with. In order to obtain comparable data, we also followed the Winter guidelines for 

experiment setup in such a manner that we have used an electrode distance of 2 cm and have 

positioned electrodes as Winter explained (a description of the electrode positions is given in Table 1). 

We also calculated the envelopes from denoised and rectified signals, then we averaged envelopes over 

all measured subjects, and presented the averaged envelopes against the percentage of one gait cycle. 

Furthermore, we also divided gait cycle in 2% intervals, thus obtaining 51 samples for each EMG 

signal, like Winter. Therefore, our opinion is that comparison of our and Winter data is reasonable. 

In order to provide quantitative measure about the difference between our measured EMG signals 

and signals provided by Winter, we calculated the RMSE, expressed by the Formula (19), where: 

 nx̂ : samples of the average envelope of signals measured by our EMG system 

 nx : samples of the average envelope provided by Winter 

N: number of envelope trajectory samples (N = 51)  

4. EMG Signal Acquisition: Experiment Procedure 

Ten volunteers (five male and five female), all students or employees at the University of Split, 

aged between 21 and 29 years (average = 24.6 ± 2.59 years), were recruited for the experiment. The 

purpose and procedures used in the experiment were thoroughly explained to the subjects and 

informed consent obtained. All subjects were healthy and did not suffer from any disease or 

malformation which might affect their motion patterns. Subjects were instructed to walk continuously 

on a horizontal laboratory surface at their most comfortable speed. EMG signals of six muscles from 

the most dominant activity during gait were recorded. The selected muscles were: gluteus maximus, 

biceps femoris (lateral hamstrings), sartorius, rectus femoris, tibialis anterior, and medial gastrocnemius. 

The electrode placements above the muscles were determined according to [29] (see Table 1). EMG 

activity during at least 10 gait cycles per subject was recorded.  
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Table 1. Surface electrode placement according to the Winter guidelines [29]. 

Muscle Surface Electrode Placement 

Gluteus maximus 
Over the area of greatest muscle bulk proximal to a line between the greater 

trochanter and the ischial tuberosity 

Biceps femoris (lateral 

hamstrings) 
Midway on a line between the ischial tuberosity and the head of the tibula 

Sartorius Eight cm distal to the ASIS along a line to the medial epicondyle of the tibia 

Rectus femoris Midway between the ASIS and the superior border of the patella 

Tibialis anterior 
Over the area of greatest muscle bulk just lateral to the crest of the tibia on the 

proximal half of the leg 

Medial gastrocnemius Over the area of greatest muscle bulk on the medial calf 

Table 2. Results of simulated EMG signal denoising. 

Wavelet/Filter Threshold Hard/Soft Thresh SNR (dB) RMSE (*10
−3

) 

Daubechies5 sqtwolog soft 11.7591 8.90 

Daubechies5 sqtwolog hard 10.4864 10.20 

Daubechies5 minimaxi soft 9.6712 11.20 

Daubechies5 minimaxi hard 11.1132 9.57 

Daubechies5 heursure soft 11.3166 9.50 

Daubechies5 heursure hard 10.8425 9.91 

Daubechies5 rigrsure soft 11.3383 9.32 

Symmlet8 sqtwolog soft 7.8654 13.80 

Symmlet8 sqtwolog hard 10.8622 9.82 

Symmlet8 minimaxi soft 10.0175 10.81 

Symmlet8 minimaxi hard 11.0711 9.60 

Symmlet8 heursure soft 11.4907 9.10 

Symmlet8 rigrsure soft 11.4845 9.11 

Coiflet5 sqtwolog soft 8.2002 13.30 

Coiflet5 sqtwolog hard 10.9028 9.70 

Coiflet5 minimaxi soft 10.2323 10.50 

Coiflet5 heursure soft 11.6118 9.00 

Coiflet5 rigrsure soft 11.5581 9.03 

Meyer sqtwolog soft 10.3258 10.35 

Meyer sqtwolog hard 11.4132 9.15 

Meyer minimaxi soft 11.3157 9.51 

Meyer minimaxi hard 11.5743 9.01 

Butterworth – – 3.5800 31.84 

Chebyshew – – 2.6374 36.23 

5. Results and Discussion 

5.1. Artificial EMG Signal Denoised by Wavelets 

Some of the results of wavelet-based denoising and denoising by classical filters are shown in  

Table 2. We show SNR and RMSE results for some of the tested wavelets, and the implementation of 

different thresholds. As can be observed from the table, wavelet-based denoising depends not only on 
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the chosen wavelet, but also on the threshold as well. Classical filters (Butterworth and Chebyshev) 

provide much worse results in comparison with wavelets. The best results are obtained for 

Daubechies5 wavelet, and the implementation of the soft sqtwolog threshold. Also, by the visual 

inspection of denoised signals, we have concluded that the choice of Daubechies5 wavelet with the 

soft sqtwolog threshold gives the best results, among all. Figures 11 and 12 show a simulated EMG 

signal denoised by Daubechies5 wavelet with the soft sqtwolog threshold, and its power spectrum, 

respectively. From the Figures, the efficacy of the denoising procedure can be clearly observed. As can 

be seen, the noise from the periods with no EMG activity is almost completely removed. Therefore, we 

have chosen Daubechies5 wavelet, and the implementation of the soft sqtwolog threshold for 

denoising of real signals, measured by the prototype of the EMG system proposed in this paper.  

Figure 11. Simulated artificial EMG denoised by Daubechies5 wavelet and 

implementation of the soft sqtwolog threshold. 
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Figure 12. Power spectrum of the simulated artificial EMG denoised by Daubechies5 

wavelet and implementation of the soft sqtwolog threshold. 
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Although we were doing off-line processing, we are aware of the fact that computation time of 

denoising algorithms is very important for some more complex applications such as online feedback 
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and online control of prosthetic devices. Therefore, we measured computation time of Daubechies5 

wavelet-based denoising of artificial EMG signal and compared it with computation times of classical 

filters. The obtained results are as follows: 14 ms for wavelet-based denoising and 16 ms for both 

Butterworth and Chebyshev filter. 

5.2. Measured EMG Signals Denoised by Wavelets 

Figures 13 and 14 present an experimental raw myoelectric signal, recorded on the tibialis anterior 

muscle as described in Section 4, and its power spectrum, respectively. Our measurements showed that 

we have obtained the most noised signals measured on tibialis anterior. Therefore, we purposely 

showed signal measured on that muscle to present the efficacy of wavelet-based denoising. As can be 

seen from Figure 13, the signal is corrupted by motion artifact, white noise, and the accurate observation 

of muscle activity from the raw signal is barely possible. Also, if we look at the power spectrum in 

Figure 14, the presence of line interference on 50 Hz and higher harmonics is apparent. Figures 15 and 16 

show the EMG signal (presented in Figure 13) denoised by wavelets and its power spectrum, 

respectively. From Figure 15 the efficacy of wavelet denoising can be noticed since the intervals of 

muscle activity and resting periods could be clearly observed. 

Figure 13. Raw EMG signal recorded on tibialis anterior muscle. 
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Figure 14. Frequency spectrum of raw EMG signal shown in Figure 13. 
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Figure 15. EMG signal (shown in Figure 13) filtered by wavelet method. 
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Figure 16. Frequency spectrum of signal filtered by wavelet method shown in Figure 15. 
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Also, by observing the power spectrum of the denoised signal presented in Figure 16, the absence 

of noisy frequency components can be observed, even those of 50 Hz harmonics, since the good 

feature of wavelet–based denoising is that during the signal decomposition, the noisy coefficients are 

identified and eliminated prior the signal reconstruction. Therefore, we suggest wavelets as a powerful 

tool for EMG signal denoising.  

5.3. EMG Activity of Dominant Muscles Recorded During Human Gait 

In order to validate the proposed prototype of EMG system, we measured the activity of six 

dominant muscles in ten healthy subjects during gait, and compared it with the EMG data provided by 

Winter [29], as explained in Section 3.6. Measured EMG signals from each muscle were denoised by 

wavelets, rectified and presented as envelopes. For each subject an EMG envelope of one complete 

gait cycle (0%–100% of gait cycle) was extracted. Envelope trajectories were averaged over all ten 

subjects and are represented in Figure 17 by thick red lines. Standard deviations (SD) of the envelopes 
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are also presented (red shaded area). All data are plotted against the percentage of the completed gait 

cycle, thus making the gait cycle duration invariant. Thick blue lines (±SD, represented by the  

blue shaded area) in Figure 17 present EMG envelopes available in the literature [29]. By visual 

comparison of measured and referent envelope curves, we found fairly good overlap for all muscles. 

The discrepancy between our and referent data was further validated by calculating the quantitative 

measure, RMSE, as explained in Section 3.6. Table 3 presents obtained results. Furthermore, from 

Figure 17 it can be noticed that the standard deviations of our measured data have smaller values than 

those of the reference data. The possible explanation why we obtained smaller values of standard 

deviations could be the fact that Winter did his measurements on a larger number of subjects. 

Specifically, he measured the activity of gluteus maximus on 16 subjects, the activity of biceps femoris 

on 27 subjects, sartorius on 15, rectus femoris on 28, tibialis anterior on 26 and medial gastrocnemius 

on 25 subjects. 

Figure 17. Average EMG activity of measured muscles during one gait cycle. Comparison 

of EMG data (± SD) measured by our EMG system (red lines ± red shaded area) and EMG 

reference data from the literature [29] (blue lines ± blue shaded area). (a) Average EMG 

activity of gluteus maximus during one gait cycle; (b) Average EMG activity of biceps 

femoris during one gait cycle; (c) Average EMG activity of sartorius during one gait cycle; 

(d) Average EMG activity of rectus femoris during one gait cycle; (e) Average EMG 

activity of tibialis anterior during one gait cycle; and (f) Average EMG activity of medial 

gastrocnemius during one gait cycle. 

  

(a) (b) 

  

(c) (d) 
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Figure 17. Cont. 

  

(e) (f) 

Table 3. RMSE errors between envelopes obtained from our measured EMG signals and 

envelopes provided by Winter [29]. 

Muscle RMSE (V) 

Gluteus maximus 4.3218 

Biceps femoris 21.1814 

Sartorius 4.3119 

Rectus femoris 5.1810 

Tibialis anterior 21.8500 

Medial gastrocnemius 20.1229 

Let us briefly analyse the role of each measured muscle during gait cycle. In Figure 17a it can be seen 

that the major activity of gluteus maximus begins in late swing and peaks during weight acceptance (10% 

of stride), decreasing to a low level by the end of mid-stance (30% of gait cycle) [29]. A second minor 

burst of activity occurs during the first half of swing. The gluteus maximus is a hip extensor and acts 

during weight acceptance to control hip flexion.  

The major activity of the biceps femoris (lateral harmstrings) (Figure 17b) begins in mid-swing 

(80% of stride) and continues into weight acceptance, peaking at 4% of stride. When heel contact 

occurs, the biceps femoris serves as a hip extensor to assist the gluteus maximus in controlling the 

forward rotation of the thigh.  

Two equal peaks of activity are evident in the sartorius muscle (Figure 17c). The first peak occurs 

during weight acceptance (8% of gait cycle). It acts as a hip flexor, helping other hip extensors that are 

active at this time (biceps femoris, gluteus maximus). The second burst occurs early in swing (peaking 

at 70% of stride) and acts in a small way as a hip flexor to help swing the lower limb.  

As regards the rectus femoris muscle (Figure 17d), one major and one minor burst of activity are 

present. The major activity begins before heel contact (90% of gait cycle) to extend the leg and foot 

just prior to heel contact and continues to a maximum during weight acceptance (10% of stride) when 

it acts as a knee extensor to control knee flexion. The second minor activity peaks just after toe-off 

(66% of stride), and has two simultaneous functions: hip flexion to pull the swinging limb forward, 

and knee extension to decelerate the backward swinging leg and foot.  

Tibialis anterior, the ankle muscle (Figure 17e), commences its major activity at the end of swing to 

keep the foot dorsiflexed during the reach phase. Immediately after heel contact, it peaks (6% of gait 
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cycle), which generate forces to lower the foot to the ground in opposition to the plantar flexing 

ground reaction forces. The second burst of activity commences at toe-off (60% of stride) and results 

in dorsiflexion of the foot for foot clearance during mid swing.  

One major, long, phase of activity of the medial gastrocnemius muscle (Figure 17f) is evident, and 

it begins just prior to heel contact and rises during the stance phase, reaching a peak at mid push-off 

(44% of gait cycle). Until it reaches the peak, this muscle lengthens as the leg rotates forward under its 

control. The fine-tuning of this forward rotation is critical to knee flexion. After the peak has been 

reached, activity drops rapidly until toe-off (60% of stride), and low-level activity continues throughout 

the entire swing phase.  

In conclusion, after comparing the close-matching measured and referent envelope trajectories, we 

can say that our EMG system performs well and can be used as an efficient tool for measurement of 

EMG activity during human motion. 

6. Conclusions 

In this paper we have described the design, development and testing of a prototype sEMG system. 

The intention was to provide detailed guidelines for researchers and engineers aiming to develop their 

own low-cost EMG systems applicable in biomechanical, clinical, rehabilitation, sport, and research 

contexts. We have suggested how to construct a bioamplifier suitable for recording low-amplitude 

biosignals such as EMG. Furthermore, we provided information on how to process EMG signals using 

wavelets in order to remove white noise, motion artifacts and line interference noise. We showed that 

wavelets, a state-of-the-art signal processing tool, provide better results in terms of signal denoising 

than classical digital filters.  

Finally, we conducted an experiment in which we recorded EMG activity on ten healthy volunteers 

during gait. The aim was to record EMG activity in six dominant muscles during gait and to compare 

them with the EMG database available in literature [29]. The results show that our system is suitable 

for biomechanical and other applications. 

Future plans include testing of the proposed system during more complex human motions such as 

sporting activities (cycling and rowing). Also, we plan to upgrade the existing prototype of the EMG 

system by developing a wireless system based on Bluetooth transmission [37], with higher sampling 

frequency (at least 2 kHz), and to implement more demanding EMG signal processing techniques like 

analysis of power spectrum with the intention to detect muscle fatigue and feature extraction for 

pattern recognition. 
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