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Abstract: For Wireless Sensor Networks, energy efficiency is always a key consideration 

in system design. Compressed sensing is a new theory which has promising prospects in 

WSNs. However, how to construct a sparse projection matrix is a problem. In this paper, 

based on a Bayesian compressed sensing framework, a new adaptive algorithm which can 

integrate routing and data collection is proposed. By introducing new target node selection 

metrics, embedding the routing structure and maximizing the differential entropy for each 

collection round, an adaptive projection vector is constructed. Simulations show that 

compared to reference algorithms, the proposed algorithm can decrease computation 

complexity and improve energy efficiency. 

Keywords: Bayesian compressed sensing; routing structure; wireless sensor networks 

 

1. Introduction 

For data collection Wireless Sensor Networks (WSN), since sensor nodes are always densely 

distributed, there exists abundant redundancy in data from neighboring nodes. During the data 

collection process, besides how to route data to the sink, one of the key problems is how to remove 

redundancy and improve energy efficiency. There are a large number of algorithms that have 

integrated data compression into data collection [1–6]. Work described in [1,2] uses aggregation 

functions (e.g., ( )Max  , ( )Min  , ( )Average  , etc.) to extract the required information during data 

routing. However, while data size is reduced, data structure is lost. In [3,4] the authors adopt lifting 
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schemes to compress data during routing. These schemes need to exchange intermediate coefficients 

between nodes during compression, which results in a waste of energy. Many traditional data 

compression algorithms such as KLT [5], wavelet [6], data mining [7], have been used in data 

collection. These algorithms have high computational complexity, and are difficult to integrate with 

routing processes. Compressed Sensing (CS) [8] is a new emerging theory in signal processing which 

has promising prospects to be applied in WSN [9–16]. Firstly, in CS, data sampling and compression 

can be integrated harmoniously into one step, which meets the requirements of WSN energy efficiency. 

Secondly, in compressed sensing, the computational complexity of decoding and encoding is highly 

asymmetrical; encoding complexity is very low, which implies a limitation for sensor nodes with weak 

computational power and limited energy supplies. Finally, during the encoding process in CS, no 

original or intermediate data is required to exchange among nodes, which is beneficial for distributed 

sensor network design. 

However, it is not feasible to straightforwardly apply compressed sensing to WSN. Traditional 

projection matrices are always dense. From Figure 1, one can find that, if the projection matrix is 

dense, the number of packets transmitted among nodes will be very large. To increase energy 

efficiency, a sparse projection matrix must be utilized. 

Figure 1. Relationship between routing and projection matrix: (a) Routing process;  

(b) Projection matrix. 

 

There is some work devoted to the design of optimized projection matrices [9–16]. In [12] an iterative 

algorithm to build a sparse projection matrix and decrease its coherency with the transform matrix was 

proposed. In each collection round, one randomly chooses one node to begin, and then selects the next 

node from the previous one’s neighbors which can minimize the coherency between these two 

matrices as the next hop. This procedure loops until a complete route to a sink is formed. Work in [14] 

defines a metric named mutual-coherency to optimize the projection matrix. Based on this metric, a new 

iterative scheme is proposed to reduce the coherence step by step. Unlike the aforementioned 

algorithms, work in [15] suggests the use of Bayesian theory to solve the problem of projection matrix 

building. The main idea is that, based on some initial observed samples, one may obtain the posterior 

probability of the underlying signal to aid the construction of the projection vector for the next 

collection round. The optimization object for the new vector is to maximize the information retrieved 

in one collection round. However, the projection matrix formulated in this algorithm is always dense, 

with no routing structure embedded. Based on the framework proposed by [15], work in [16] proposes 

a greedy algorithm to build a sparse projection vector, which maximizes the information retrieved in 

one unit of energy consumption. Since the algorithm is greedy, its computation complexity is very high. 
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Furthermore, this algorithm tends to select only one node from a sink’s one hop neighbors to build the 

projection vector, therefore, its reconstruction performance is degraded. 

In this paper, on account of these issues, a new adaptive algorithm to design a projection vector to 

meet the requirements of sparseness and routing structure is proposed. The rest of this paper is 

organized as follows: a brief description of the Bayesian compressive sensing framework is provided 

in Section 2. In Section 3, the complete idea of the proposed algorithm is presented. Section 4 gives the 

simulation results and Section 5 concludes the work. 

2. Bayesian Compressive Sensing Framework 

For an underlying signal vector       , which is sparse on basis Ψ: 

     

s.t.       ,     
(1) 

if x is noise contaminated, and the observation process does not introduce noise, then the observed data 

       using projection matrix        can be expressed as: 

          (2) 

where           ,    , C is a constant.    is independent and identically distributed 

sensing noise. 

Based on observed y, adopting Bayesian learning theory, the differential entropy of the underlying 

signal x can be obtained as [15,16]: 

      
 

 
                              (3) 

where const is irrelevant to projection matrix, and: 

                         (4) 
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Here               is independent and identically distributed hyper-parameter.    is the noise 

power. Assuming there are    initial observed samples, to obtain the (    )-th sample, a new 

projection vector       must be constructed, and the new projection matrix becomes:  

      
 

     
  (6) 

The information retrieved in the (    )-th collection round can be expressed as [16]:  
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which indicates the reduction of uncertainty of x after a new sample       has been received. In 

Equation (7),         is a matrix acquired from Singular Value Decomposition of  : 
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T
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It is straightforward that in order to maximize the information retrieved in round     ,       

should be obtained by solving the following optimization problem: 

         
   
 

             

      
 (9) 

It should be noted that,       obtained using the above algorithm is always dense, which means it is 

not energy efficient. Another problem is that this new derived projection vector does not have a routing 

structure embedded. 

3. Adaptive Projection Vector Construction Algorithm 

Firstly, we give out some assumptions for the WSN. All sensor nodes are static, and the network is 

fully connected. The sink knows the neighboring context of each node. As nodes are densely deployed, 

data from neighboring nodes is highly correlated. 

Secondly, we present the constraints an optimal projection vector       should meet: (1) The vector 

should be sparse. (2) Nodes selected in the vector can form a complete routing structure to sink.  

(3) For all vectors with the same number of nodes selected, the vector constructed by the proposed 

algorithm can retrieve the maximum information. (4) To meet energy conservation constraint,       

should be normalized: 

 
0 01 1 2,|| || 1N

M M  r R r  (10) 

Since the problem described by (1), (3), (4) is NP-hard [16] and
 
constraint (2) makes it more 

difficult to solve, we try to find a solution for each constraint and to get a sub-optimal solution for the 

whole problem. For constraint (1), the key is to select optimal number of nodes—target nodes. Since 

each non-zero element in the projection vector corresponds to one sensor node, the task here is to find 

out the nodes from which to harvest information in (    )-th collection round. A proper metric 

should be defined for node selection. Constraint (2) is supplementary to the first one. When the vector 

obtained in the first step cannot form a complete routing structure, we need to add the least 

supplementary nodes to complete it. For condition (3), it is equivalent to determine the optimal 

projection coefficients for each selected nodes. This can be solved through maximizing the differential 

entropy of signal x. 

3.1. Determine the Target Nodes 

Given a certain number of initial observed samples, in order to determine which nodes need to be 

harvested the most, we define two metrics from different points of view. 
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3.1.1. Principle Component Analysis Based Metric 

Under the Bayesian compressive sensing framework, one can get the differential entropy of the 

underlying signal x, and then obtain a new projection vector by maximizing the reduction of 

uncertainty of x. However, the vector obtained by this means always has too many non-zero items. 

Since the direction of a vector is mainly determined by its principle components, we can find out the 

indices of L elements which have the most amplitude in the vector to represent target nodes. For  

a normalized vector r and a given threshold    , L is determined in the following way: 

min  L l  
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1

. .  | | ,   {1, }
k

l

i th k

k

s t r E i N


   
(11) 

3.1.2. Node’s Total Coefficients Energy Based Metric 

In compressive sensing theory, transform matrix Ψ and projection matrix   of the underlying 

signal x should be incoherent in order to improve reconstruction performance. At the same time, in 

order to sparse signal x, Ψ and x should have good coherency. That is to say, ideally,   and x should 

be completely incoherent. Therefore, for all nodes, the statistic feature of their coefficients in   should 

be identical, and there is no clue to find out from   that which node is more or less important. Based 

on this observation, for each node, we can study its projection coefficients by defining node’s total 

coefficients energy. An example to illustrate the node’s total coefficients energy for node 2 is 

illustrated in Figure 2. 

Figure 2. Explanation of node 2’s total coefficients energy. 
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Define (node’s total coefficients energy): Given a projection matrix             , we define 

the total coefficients energy of node i to be the sum of absolute value of i-th column elements in  

matrix  : 

1

| |
M

i ji

j

P 


  (12)  

Total coefficients energy    indicates the contribution of data from node i to the observed samples. 

Ideally, total coefficients energy for each node should be identical in a statistical sense, however, in an 

adaptive compressive sensing algorithm, the initial projection matrix has a relatively small number of 

rows, making the total coefficient energy of some nodes much less than that of others. Therefore, when 

a new projection vector is to be built, it is reasonable to select these nodes first. 
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It should be noted that, most projection matrices currently proposed meet the attributes we presented 

here, i.e., their total coefficients energy for each node is identical in a statistical sense. For example: 

(1) Gaussian random matrix: every element in the matrix follows Gaussian distribution with zero 

mean and 1/N variance. 

(2) Rademancher matrix: elements of the matrix are selected randomly from set {+1, −1}. 

(3) Partial Fourier matrix: randomly select M rows from NxN Fourier matrix. 

(4) Cyclic matrix: each row of the matrix is a different arrange of a same set. 

3.2. Build Routing Structure 

3.2.1. Style of the Routing Structure 

As stated in the previous subsection, the target nodes selected can’t guarantee formulation of  

a complete routing structure, therefore, some supplementary nodes are needed. These nodes can be 

used in two styles. One is to use them as routing nodes, and no data is collected from them. The other 

is to use them both as routing nodes and data collection nodes. 

Traditional data collection schemes usually adopt the first style, as adding data collection nodes will 

increase the transmission packet size, and consume more energy. But in compressive sensing, in one 

collection round, all data will be projected into a fixed length buffer regardless of the amount of 

sensors, which means collecting data from routing nodes will not distinctly increase the power 

consumption. Moreover, there is tangible benefit for this style as it can increase the information 

collected and decrease the coherency between projection vectors. Therefore, we adopt the second style. 

Next, let’s discuss how to arrange the selected nodes to form a complete routing structure. In one 

data collection round, the sink needs to send out packets containing projection coefficients to selected 

nodes; then the corresponding node will project its data to the projection field of the packet; finally this 

packet will be routed back to sink. There are several routing structures to complete this procedure, 

shown in Figures 3 and 4. 

Figure 3. Linear structure. 

sink

Target node Other node

Routing node
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In Figure 3, all selected nodes are arranged in a linear structure; the back and forth paths of the 

packet are the same. In this style, except for the endpoint node, each node will receive and send the 

packet twice; however, only one time they can project their information into it, which means energy 

waste. As is shown in Figure 3, there are in total 18 transmissions, but only nine nodes’ information 

is collected. 

Figure 4. Single-ring structure. 

sink

Target node Other node

Routing node

 

To improve this, the structure shown in Figure 4 is another option. In this style, all selected nodes 

are arranged in a ring structure. Every node on the path only needs to transmit the packet once. In the 

figure, there are totally 13 transmissions, and 12 nodes’ information is collected. It’s more energy 

efficient than structure 1. However, this structure leads to a pretty long routing path, making the time 

needed for one round very long in case of large scale wireless sensor networks. 

Figure 5. Tree structure. 
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To shorten the time spent for one collection round, the structure shown in Figure 5 utilizes a tree 

structure. Like structure 1, data packets pass a same node twice. The structure shown in Figure 6 uses  

a multi-ring structure to arrange the selected nodes. Packets are duplicated into multiple copies in case 
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of necessity utilizing the broadcast property of wireless channels to speed up the collection process. 

Meanwhile, multiple copies of the packet are reunited when necessary to save energy. This structure 

takes the advantage of the structures proposed in Figures 4 and 5, and has the virtue of both energy 

efficiency and short collection path. In this paper, we propose to design a multi-ring routing structure 

as shown in Figure 6. 

Figure 6. Multi-ring structure. 

sink

Target node Other node

Routing node

 

3.2.2. Build the Routing Structure 

However, how to build an efficient routing structure containing rings shown in Figure 6 is a problem. 

Fortunately, this structure can be split into tree structures. Without loss of generality, we take the 

structure shown in Figure 6 as an example. For each routing path with a ring, if we cut off the ring at 

the target node which is the most far to sink among all target nodes on that ring, and append this target 

node to the two new endpoints, we can get two routing trees. Each tree is rooted at sink, and has the 

same target nodes as leaf nodes. These trees have different direction. One tree is used to transmit 

packets from the sink to each selected node, and the other is used to transmit packets toward the sink. 

The former is called downlink tree, and the latter is called uplink tree. 

Consequently, the problem of building multi-ring routing structures is transformed into building 

two multicast trees. There are many classic algorithms to build multicast trees, for example [17,18]. 

However, it should be noted that, there is some different between the proposed multicast tree and the 

classic one. Firstly, each of the trees built here does not need to cover all the target nodes; only the 

combination of the two trees to cover all target nodes is required. This makes the optimization process 

more complex than in a classic one. Secondly, two trees built are node disjoint, except the leaf nodes. 

Finally, as the path for each packet is a ring, there is no strict upstream or downstream relationship 

among nodes; therefore, a new packet format must be defined. 

Formal Description of the Problem (Node Disjoint Double Multicast Trees, NDDMT) 

Given a graph                          is the set of sensor nodes and E is the set of 

edges. Define D as the target nodes set. The object is to build two node disjoint multicast trees 
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                 , which has minimum cost and can cover all target nodes in D. To build a sparse 

projection vector, the cost here is defined as the total number of nodes on the two multicast trees. 

Define i  to indicate whether node iv  is in target nodes set D: 

1,

0,

i i

i i

v D

v D





 


 
 (13) 

Define 
,i j  to indicate whether node iv  is on the multicast tree ,  {1,2}j j  : 
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Define i  to indicate whether node iv is a leaf node: 

1,  is not a leaf node

0,  is a leaf  node     

i i

i i

v

v









 (15) 

and, define ih  to indicate the hops from iv  to sink. 

Then, the optimization problem can be expressed as: 

1 2min  | |T T  

s.t. ,

{1,2}

,     0i i j

j

v D 


    

1 2 ,

{1,2}

,     2i i i j

j

v T T  


      

{ | 0},     (1 ) 1
ii j j iv v          

1 2 ,

{1,2}

( ),   0i i j

j

v V T T 


      

(16) 

The object function means to find two trees with least nodes on them. Condition 1 means each node 

in set D must be covered by at least one tree. Condition 2 has two implications. For a leaf node, it must 

be covered by both two trees; for a non-leaf node, it is covered by only one tree. Condition 3 means 

that only node in the target set can be used as leaf node. Condition 4 refers to the node outside of the 

multicast trees. 

Property. NDDMT problem is NP-hard. 

Proof. Study one of its sub-problems. If this sub-problem is NP-hard, then the original problem is 

NP-hard. Let’s reduce the optimization space to the problem of building two trees separately. First, we 

build the downlink tree    to cover all the nodes in D, which is denoted as problem   . Then, we build 

the uplink tree    to cover the leaf nodes of   , which is denoted as problem   . Since both problem    

and    are standard Steiner tree problems [19], which is NP-hard, NDDMT is NP-hard. 
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Algorithm to Build NDDMT 

Since the NDDMT problem is NP-hard, we design a two steps heuristic algorithm to solve this problem. 

Firstly, in graph        , build multicast tree    rooted at the sink to cover all target nodes. 

Secondly, in graph           , build a tree    which can cover all leaf nodes on   , where    is the 

set of nodes in V except non-leaf nodes on tree   . The optimization object for each tree is to minimize 

the number of nodes on it. Since the nodes on tree    is excluded when building tree   , the two trees 

are node disjoint. As sensor nodes are always densely deployed and the target nodes set D is always 

small, so after deleting nodes on tree   , the nodes in    still have a high probability to build tree   . If 

some nodes in the graph are unconnected when building tree   , we can reuse nodes in tree    to 

ensure the success of the building process. 

The Steiner tree building problem is to let nodes on the tree share their path as much as possible, so 

as to minimize energy cost. There are many classic Steiner tree building algorithms, such as MPH [17], 

ADH [18]. In this paper, if we define the cost of each edge to be 1, then the problem of building Steiner 

tree with minimum cost is equivalent to the problem of building a multicast tree with minimum nodes. 

Uplink tree ( 1T ) building algorithm: 

Let 
1,tT  denote the partial tree built at step t, and 

1,tC  be the cost of 
1,tT . Let 

1,tD  denote the set of 

target nodes that haven’t joined tree 1T  till step t. Denote s to represent sink. 

INPUT: graph ( , )G V E , target nodes set D . 

OUTPUT: tree 1T  and its cost 1C . 

(1) Initially, t = 0, 
1,0 1,0 1,0{ }, 0,T s C D D   . 

(2) At step t, for each 
1,i tv D , use Dijkstra algorithm to calculate its cost (denoted as ic ) to tree 

1,tT

Define '

1,tT  to be a virtual tree if iv  joins 
1,tT , then the total cost of '

1,tT  is 
1,t iC c . 

(3) Based on their distance to '

1,tT , sort the reminder target nodes in 
1,( )t iD v  from near to far, and 

calculate the total cost ic  for them to join tree '

1,tT . 

(4) Choose the node iv  which can minimize 
1,t i iC c c   to join tree 

1,tT . 

(5) Let 
1, 1,1, t t it t D D v    , go to (2) unless all target nodes have joined the tree. 

Building the algorithm for tree 2T  is similar to 1T . It is omitted here due to space limitations. 

Complexity 

First, calculate the shortest path from each target node to every other node in advance. The 

complexity for this step is 2( )O LN . In the process of multicast tree building, each iteration will try to 

add one target node to the tree; computational complexity for each iteration is 2( )O L . In total there are 

L iterations, so the computational complexity for all iterations is 3( )O L . In conclusion, the 

computational complexity for double multicast trees building is 2 3( )O LN L . 

3.2.3. Packet Structure 

Assume the wireless channel is ideal. From the previous subsection, we are informed that in 

compressive sensing, one routing structure will be maintained only during one collection round, and 
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there is no distinct downstream or upstream relationship between nodes on a path. Therefore, the 

routing problem here is different from that in a classic WSN. To solve this problem, a new data packet 

structure is required. 

Figure 7. Packet structure. 

Sender ID Routing & CoefficientsProjectionValueSeqNo
 

As is shown in Figure 7, the SenderID field contains the ID of the node that sends the current packet. 

SeqNo field is used to uniquely identify one collection round. Due to the broadcast nature of the wireless 

channel, all neighbors of a sender can receive its packet. This feature can be utilized to improve energy 

efficiency. When receiving a packet, a node (assumed to be   ) checks the Routing & Coefficients field to 

determine if it is one of the children of the sender. If it is false, the packet will be dropped, otherwise 

   finds out its projection coefficient ir  in the packet and updates the Projection Value field using: 

( ) /new old i i iprojection projection x r child    (17) 

where childi indicates the number of children of iv . The reason to divide the projection value by childi 

is that the packet from iv  will be received by all its children, which is illustrated in Figure 8 as an example. 

Figure 8. An example of the routing structure. 
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Table 1. Routing & coefficients table of Figure 8. 

Node Upstream Downstream Coeff. 

s 1 7 N.A. 

1 2,6 s r1 

2 3,4,5 1 r2 

3 9 2 r3 

4 9 2 r4 

5 9 2 r5 

6 7 1 r6 

7 s 6,8 r7 

8 7 9 r8 

9 8 3,4,5 r9 
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Next, iv  updates the Routing & Coefficients field by deleting the expired information, and 

broadcasts the packet to its children. (Table 1 illustrates the routing & coefficients table built from 

Figure 8). If a node is the child of multiple nodes, it reunites the packets received from all of its parents 

to one packet before sending it to its child. 

3.2.4. Determine Projection Coefficients 

Once the nodes for one collection round are determined, we need to compute the projection 

coefficients for them. Equation (9) can be used to accomplish this task. Due to the constraint of 

sparseness, projection vector       has only small part of elements with non-zero value. To obtain 

     , first delete the rows and columns in            and     corresponding to the position of 

unselected nodes; then use the shrunk matrix pencil to determine the non-zero elements in      . 

4. Simulation and Discussion 

4.1. Simulation Scenarios 

Assume nodes are uniformly distributed. The sink is located at the center of the area. The normalized 

communication radius of each node is   ,       . Assume the communication media is ideal, with no 

channel noise or access collision. To evaluate the proposed algorithm, three related algorithms are 

selected as reference, including adaptive CS [16], adaptive Laplace BCS (adaptive BCS) [20], and 

Compressed Sensing with Random Walk routing (CS-RW) [21]. 

In the simulation, the maximum length of observation vector y  is      . M includes two parts: 

(1) initial observation vector with length   ; (2) adaptive observation vector with length     . The 

initial observation vector is used as the basis for the adaptive collection stage. For adaptive BCS, the 

initial projection matrix is generated at the sink before collection, and then transmitted to all sensor 

nodes using a traditional routing mechanism. During the adaptive collection process, for each 

collection round, the sink determines a projection coefficient for each node and sends it out using the 

same routing path. For CS-RW, the probability to choose a node is fixed at 0.5. 

Data used in simulation is generated using a computer. The model for data generation only assumes 

the data is compressible, while its sparse structure is unknown [22]. It is described as follows: assume 

nodes are uniformly distributed in the area, and      is the distance between node i, j. Define the 

correlation between data from node i, j to be  
    

     , where β indicates the degree of correlation. 

Then, the matrix C describes the correlation is: 

11 12 1

21 22 2

1 2

N

N

N N NN

c c c

c c c
C

c c c

 
 
 
 
 
 

 (18) 

Perform Cholesky decomposition to, C: 

T C G G  (19) 
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and assume 
0

Nn R  is a uniform random vector, with each element independent and identically 

distributed. Then, data vector x  is generated as: 

0 s  x G n n  (20) 

where 
sn denotes sensing noise. 

4.2. Evaluation Metric 

4.2.1. Reconstruction Error 

Assume the original data vector is x ( ,1ix i N  ), and the reconstruction data vector is x̂   

( ˆ ,1ix i N  ), then the reconstruction error is defined as: 

2

2
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ˆ|| ||

|| ||
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x x

err

x








 




x x

x
 (21) 

4.2.2. Energy Cost 

Energy cost is a key metric for wireless sensor networks. In the simulation, only the energy used in 

data transmission is counted, and the energy used for sensing and computation is not included. Energy 

consumed by the sink is not included either. Assume the transmission power is fixed, then the energy 

cost of a node is proportional to the number of bytes it sent. 

4.2.3. Computation Complexity 

For compressive sensing, a node only needs to perform one multiplication and one addition 

operation in one projection round; therefore, the computational complexity for a node is negligible. 

However, the computation complexity for the sink, which includes three parts: BCS reconstruction, 

projection route building and projection vector computation, is much higher. In the simulation, the 

time elapsed in one simulation is used as metric to evaluate an algorithm’s computational complexity. 

The simulation performed on a PC equipped with an Intel E2200 dual core processor. 

4.3. Simulation Results 

4.3.1. Reconstruction Error 

From Figure 9, it can be found that, when the data is contaminated by noise, reconstruction 

Bayesian-based algorithms outperform CoSaMP [23]. Meanwhile, when the number of collection 

rounds is fixed, the reconstruction error will increase with the increase of node number N. Among all 

five algorithms, the proposed algorithm performs the best. When N = 400, it can reduce the 

reconstruction error by 2.3% in comparison with adaptive BCS. Although the adaptive method is 

utilized in adaptive BCS too, its performance is worse than that of the proposed algorithm, due to the 

fact that the Bayesian learning process is likely to choose the same basis, which leads the algorithm to 
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fall into a local minimum [24]. Although a random noise disturbance can be added to the vector to help 

the learning process jump out of local minima, the performance improvement is limited while the 

energy cost increases dramatically. In the figure, it can be found that adaptive CS always performs the 

worst among the five algorithms. This is due to the fact that this algorithm tends to choose only one 

node in a sink’s one hop neighbors as its target node. The reason for this is that adaptive CS uses 

( ) / ( )h E p p  as a metric to select the path. As ( )E p  is counted in the hop, when the path length 

increases from 1 hop to 2 hop, ( )E p  increases once. However, as data from neighbor nodes has a strong 

correlation, in most cases, the increase of information ( )h p  can’t increase once. Therefore, adaptive 

CS tends to choose only one node among the sink’s one hop neighbors. 

Figure 9. Reconstruction error vs. number of nodes. 

 

4.3.2. Energy Cost 

It can be found from Figure 10 that the cost of adaptive BCS surpasses the others. 

Figure 10. Communication cost vs. number of nodes. 
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This is due to the fact adaptive BCS adds a random disturbance noise to improve the performance, 

which leads to a dense projection matrix. Meanwhile the projection vector built by the proposed 

algorithm has the majority part of elements in the projection vector as zeros, and can save 50% energy 

cost compared to adaptive BCS. As shown in the figure, adaptive CS consumes the minimum energy 

among all the algorithms, since it only collects information from one node in most collection  

rounds. The proposed algorithm consumes 8% more energy than adaptive CS, while the improves 

reconstruction performance by 6%. 

4.3.3. Computation Complexity 

Since CS-RW does not use the adaptive mechanism and only needs to perform one reconstruction 

procedure, its simulation time is the lowest among the four algorithms. Adaptive BCS performs one 

reconstruction for each collection round, so its simulation time increases dramatically compared to 

BCS, while the adaptive CS, in addition to performing the reconstruction for each collection round, 

should calculate routing and projection vectors, so its simulation time increases dramatically with the 

number of nodes. From Figure 11, it can be found that the computational complexity of the proposed 

algorithm is much lower than that of adaptive CS. 

Figure 11. Computation complexity vs. number of nodes. 
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Figure 12. Reconstruction error vs. initial observation length. 

 

4.3.5. Impact of Target Node Selection Metric 

In this paper, two target nodes selection metric are proposed. Here we compare their performance.  

It can be found from Figure 13 that, the reconstruction error using node’s total coefficients energy as 

metric is smaller than using principle components of the eigenvector as metric. The reason lies in that 

the Bayesian learning process tends to select the same basis, which will reduce the difference between 

projection vectors and degrade reconstruction performance. On the contrary, node’s total coefficients 

energy metric always can build a different projection vector. 

Figure 13. Reconstruction error for different node selection metrics. 
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reconstruction error only decreases 0.6%. Therefore, a proper number of target nodes should be 

selected. In the simulations, this number is fixed at four. 

Figure 14. Energy cost vs. number of target nodes. 

 

Figure 15. Reconstruction error vs. number of target nodes. 

 

Figure 16. Impact of noise power. 
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4.3.7. Noise Power 

From Figure 16, it can be found that, with increasing noise power, the reconstruction error of all 

algorithms will increase. Among them, the proposed algorithm has the best reconstruction performance 

in all experiments. 

5. Conclusions 

In this paper, a new adaptive data collection algorithm based on a Bayesian compressive sensing 

framework is proposed. Since the problem of finding the optimum projection vector with routing 

structure embedded is NP-hard, we propose a heuristic algorithm with three steps, including target 

nodes selection, routing structure building and projection coefficients computation. Firstly, by defining 

two metrics, named principle component of eigenvector and node’s total coefficients power, the 

sub-problem of target nodes selection is solved. Secondly, we transform the problem of routing 

structure building to the problem of building double node disjoint broadcast trees. Finally, utilizing the 

theory of maximizing the differential entropy, the optimum coefficient for each selected node is 

obtained. Simulation results show that, compared with the reference algorithms, the proposed 

algorithm has better reconstruction performance with lower communication cost. Future research will 

study the problem of adaptive compressive sensing in a lossy communication medium and to 

parallelize the reconstruction process in a multi-core processor platform. 
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