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Abstract: This paper presents a swirl-shaped microfeatured ionic polymer-metal 

composite (IPMC) actuator. A novel micromachining process was developed to fabricate 

an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur 

between the electrodes of the actuator. We demonstrated a microfluidic scheme in which 

surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size 

and investigated the flow velocity of Nafion solutions, which formed the backbone 

polymer of the actuator, within the microchannel. The unique fabrication process yielded 

top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring 

surface resistance was developed and used to characterize the resistances of the electrodes 

for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, 

caused a nonzero-bias current when the device was driven using a zero-bias square wave, 

and we propose a circuit model to describe this phenomenon. Moreover, we discovered and 

characterized a bending and rotating motion when the IPMC actuator was driven using a 

square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the 

direction perpendicular to the electrode surfaces during 4.5-V actuation.  
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1. Introduction 

Ionic polymer metal composites (IPMCs) are a class of electroactive polymers (EAP) that exhibit 

important characteristics for usage in smart sensors and actuators. IPMCs have been broadly studied as 

biomimetic transducers because of their large dynamic deformation in relatively low electric fields, 

compared with other smart materials such as piezoelectric ceramics. Nowadays, IPMCs have considerable 

potential as dynamic sensors, soft robots, flexible actuators and artificial muscles [1–5]. Shahinpoor 

and Kim published a series of review papers about IPMCs. For example, the fundamental properties 

and characteristics of IPMCs as biomimetic sensors and actuators and artificial muscles have been 

systematically presented [6]. Also, description of various techniques and experimental procedures in 

manufacturing ionic polymer- metal composites (IPMCs) has been reported in detail [7].  

In general, an IPMC transducer consists of a backbone ionomer (e.g., Nafion) which is chemically 

plated metal layers (e.g., platinum) on top and bottom surfaces to serve as a pair of electrodes.  

The sandwiched structure allows the voltage or current which is applied the pair of electrodes to 

control the motion of IPMC actuator [8–12]. The working principle of IPMCs can be explained 

through electromechanical transduction. The bending motion is generated by the movement of the 

cations toward the cathode accompanied by water molecules while an electric field is exerted [13–15]. 

The nature of the backbone ionomer, the structure of electrodes, the cations, and the level of hydration 

are all significant factors that affect the performance of IPMC actuators [16]. 

Common researches about IPMC manufacture use a commercially available Nafion polymer sheet 

as a basis and grow metal electrodes on both surfaces of the sheet. A cutting tool is then employed to 

slice the IPMC sheet as an actuator with relative simple geometry such as a strip. Accordingly, available 

options for versatile IPMC actuators are restricted. Recently Feng and Chen reported the fabrication of 

an array of microfeatured IPMC actuators based on a silicon-bulk micromachining [17,18]. Chen and 

Zhang presented a photolithography method for monolithic, batch processing the Nafion sheet to form 

IPMC actuators which allow a complex deformation under electrical control [19]. La and Sheng 

applied the robust adaptive control with leakage modification to design a nonlinear controller for the 

IPMC’s position control so the displacement response of the IPMC is stable and robust in the presence 

of random disturbance [20]. Besides, a micromachined 4-electrode column structured IPMC actuator 

enclosed a section of optical fiber, which allows the electronic directional control of conducted laser 

light, can be found in the literature [21].  

In this paper, we propose a novel fabrication process using a microfluidic scheme to construct 

arbitrarily shaped planar IPMC devices. An application for the swirl-shaped IPMC could be its use as a 

micromirror actuator [22]. A micromirror can be placed at the center endpoint of this actuator to 

perform up-and-down movements for deflecting a laser beam. Besides that, the swirl-shaped IPMC can 

be operated in an air environment for perturbing the air flow. This could be useful for locally directing 

or mixing laminar gas flows. The swirl-shaped IPMC can also be applied to a biochip as a soft actuator 

for manipulation of bioparticles. In addition, we present study results regarding a swirl-shaped IPMC 

actuator fabricated using this method (Figure 1). In the proposed method, a photolithography technique 

was used to delineate the arbitrarily shaped IPMC actuator, enabling a swirl-shaped Nafion device to 

form within a photoresist-created microchannel. A sacrificial layer on a glass substrate was 

subsequently released, and a chemical electrode plating process was used to complete the arbitrarily 
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shaped IPMC actuator. The design, fabrication, and device characterization are detailed in the 

following sections. 

Figure 1. Configuration of the swirl shaped IPMC actuator with defined xyz axes.  

 

2. Device Design 

The investigated swirl-shaped IPMC actuator was fabricated based on a photomask using a 

systematic design rule (Figure 2). A rectangle with dimensions of 5 mm × 2.5 mm (length-to-width 

ratio: 2) was first used as a reference shape. A second rectangle, featuring dimensions three-fourths 

those of the first rectangle (i.e., 3.75 mm × 1.875 mm) but retaining the length-to-width ratio of 2, was 

then created. The bottom-right corner of the second rectangle was overlapped with the top-right corner 

of the first rectangle. The angle between the two long sides of the rectangles was set as 135°. A third 

rectangle was created by reducing the dimensions of the second rectangle by 75%, and the top-left 

corner of this rectangle was superimposed onto the top-right corner of the second rectangle. The angle 

formed by the long sides of the second and third rectangles was set as 90°. This process was repeated 

until 11 rectangles were plotted and connected. Two arcs were then drawn through the three outer and 

inner vertices of the first through third rectangles. The AutoCAD
®

 software function used for 

sketching an arc through three points was employed in this design. The remaining arcs determined 

according to the third through fifth, fifth through seventh, seventh through ninth, and ninth through 

eleventh rectangles were then drawn. The connected outer and inner curves along with the short sides 

of the first and eleventh rectangles construct the boundaries of the swirl-shaped actuator. The region 

inside the boundaries defines the microchannel used in the subsequent IPMC device fabrication. The 

design features a tapered width; in this study, the width was greatest (2.5 mm) at the outer end and 

lowest (140 μm) at the inner end. 

A common strip IPMC actuator exhibits the greatest displacement at the free end, which is the 

farthest point from the anchor position. The purpose of the swirl-shaped design was to create an 

actuator that features a long moveable length at its center endpoint, which is not the farthest point from 

the anchor position. We investigated the electrical and mechanical properties of the swirl-shaped 

actuator in this study. 
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Figure 2. Photomask design procedure for a swirl shaped IPMC actuator. 

 

3. Device Fabrication 

3.1. Fabrication Process 

Figure 3 shows the fabrication process flow of the developed swirl-shaped IPMC device. We began 

by sputtering a 2-μm-thick zinc oxide (ZnO) layer on a glass substrate. An approximately 200-μm-thick 

photoresist JSR was then spin coated onto the substrate. JSR is a negative-type photoresist that is 

suitable for shaping microfeatured structures. JSR can be dissolved in sodium hydroxide after UV 

exposure and baked at 150 °C; this ability is crucial for the subsequent device-releasing process [18]. 

The designed swirl-shaped channel was then patterned on the JSR photoresist through the photomask. 

The amount of 2.5 μL Nafion solution (Nafion PFSA polymer dispersions D-2021, an alcohol-based 

solution purchased from Dupont Co., Wilmington, DE, USA) was dropped into the fabricated 

microchannel in the region close to the outer endpoint by using a magnet-assisted pipette. This region, 

which features the greatest width in the channel, serves as a reservoir that enables the Nafion solution 

to be pipetted easily. Once the Nafion solution contacts the edges of the channel, the surface  

tension drives the Nafion solution toward the microsized portion of the channel. The characterization 

of the flow speed of the Nafion solution in the channel at various viscosities is detailed in the 

following section.  

The solidification of Nafion dispersion was performed at room temperature. The Nafion solution in 

contact with the micromold shows hydrophilic features. We can replenish the Nafion solution through 

the refill region to make the surface of Nafion device nearly flat after it solidifies. During Nafion 

solution solidification, no cracking problem is observed with our developed fabrication method. The 

shrinking problem can be minimized by using our developed microfabrication technology [4]. Using 

the design of a refill region along with the designed shaping cavity, we replenish the Nafion solution to 

fully fill the designed shaping cavity through the refill region. Then, most shrinking phenomenon 

occurs at the refill region, which has little effect on the portion of the designed Nafion device. After 

5

2.5

Unit: mm
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the dispensed Nafion solution solidified, we immersed the processed device into a diluted hydrochloric 

acid (HCl) solution (H2O = 1:10). This treatment serves two purposes: (1) the sacrificial ZnO layer is 

etched to release the Nafion element along the sidewall protecting the photoresist from the glass 

substrate; (2) the HCl solution swells the Nafion device and exchanges the possible zinc ions inside the 

IPMC, produced in the solution during the ZnO layer etching, for hydrogen ions. In other words, the 

likely impurity ions in the IPMC could be removed by the HCl treatment. 

Figure 3. Fabrication process flow of the swirl shaped IPMC actuator. 

 

Using nickel as the electrode could have the advantage of a high storage modulus and an increasing 

modulus while a magnetic field is applied. When the nickel-electroded IPMC device operates within a 

proper voltage range, good electric responsive properties without oxidation-induced performance 

degradation can be observed [23]. The released membrane, which was composed of the shaped Nafion 

device and protected photoresist, was soaked in a 1 M NiSO4 solution for 6 h. After being washed with 

DI water, the processed membrane was treated with a reducing agent, 1 M LiBH4, for 15 min to cause 

the nickel particles within the Nafion surface layers to precipitate on the surface of the Nafion device, 

thus forming the electrode. Finally, the nickel-coated membrane was immersed in a 1 M NaOH 

solution for 8 h. This step enables the protected JSR photoresist to dissolve in the NaOH solution. The 

swirl-shaped IPMC actuator was thus completed and prepared for testing (Figure 4a). 

  

1. Sputter ZnO on a 
glass substrate

2. Spin-coat JSR on ZnO layer 
and soft bake

3. Pattern JSR photoresist

4. Develop JSR to form a 
microchannel

5. Dispense Nafion solution into 
the micro channel 6. Use HCl solution to etch ZnO

7. Acquire JSR-supported 
Nafion element 

8. Immerse into NaSO4

solution for 6 hr
9. Immerse into LiBH4

reduction agent for 20 min

10. Immerse into NaOH to remove 
supported JSR layer

11. Finished swirl-shaped IPMC 
device
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Figure 4. (a) Fabricated IPMC actuator: Top view (left) and bottom view (right);  

(b) Cross-sectional view of the IPMC actuator with a diced section. 

 

(a)                                                         (b) 

One major advantage of the proposed fabrication process is that it effectively protects the sidewalls 

of the microfeatured device from any metal deposition, because only the top and bottom surfaces of the 

IPMC device are coated with nickel electrodes. This prevents shortcircuiting during actuation.  

To verify the fabricated actuator without shortcircuit occurrence, we sliced a small section from the 

actuator and observed its cross-sectional profile under a microscope (Figure 4b). The formed Nafion 

layer thickness is approximately 50 μm. The transparent portion of the element represents the solidified 

Nafion, and the upper and lower dark edges represent the plated nickel electrodes. We confirmed that 

the isolation between the two electrodes was adequate.  

3.2. Measurement of Nafion Solution Flow Speed in a Fabricated Microchannel 

We observed that the Nafion solution inside the channel flowed at various velocities at room 

temperature for different processing periods. The experiments were performed in a laboratory 

environment with a relative humidity in the 30% to 70% range. The dispensed Nafion solution 

occasionally blocked the channel before the entire channel was filled, possibly because the solvent in 

Nafion solution evaporates over time, altering the evaporation rate of the solvent in Nafion solution. 

Therefore, a microscope equipped with a CCD camera was used to quantitatively characterize the flow 

velocity of the Nafion solution.  

One major concern was that Nafion solution stagnated inside the channel before it was completely 

full. Because the Nafion solution flowed from the outer endpoint to the inner endpoint of the designed 

swirl-shaped channel, we focused on the channel region near the endpoint to observe details. Figure 5a 

shows the image captured using the microscope with a field of view set around the central portion of 

the channel. The flow velocity characterization was focused on the black marked region. The measurement 

procedure is described as follows. We slowly pipetted the defined amount of Nafion solution into the 

reservoir region of the channel. The Nafion solution flowed along the channel, driven by the surface 

tension induced by the side and bottom walls. Figure 5b–f shows images captured at various time 

intervals. The travel angles of the flow contacting the inner and outer walls were similar, indicating 

that the flow close to the outer wall was faster than that close to the inner wall. Because the channel 

was not constructed of a simple geometric shape, such as a circle, we measured regions with the same 

(a) (b)

200 μm
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inner and outer radii. Therefore, the distance D between two specific points on the sidewalls could be 

calculated according to the equation D = R × θ, where R is the radius and θ is the angle between the 

two points. We measured the travel distance from the point at which the flow entered the black region 

to the point at which the flow reached the center endpoint of the swirl-shaped channel. 

Figure 5. Images for characterization of Nafion solution flowing in the fabricated microchannel. 

 

We compared the images captured by the camera at various time intervals and identified the 

locations the Nafion flow front reached. Figure 6a shows the relationship between the flow distance 

and flow time when the Nafion solution was removed from a −5 °C refrigerator, kept at room 

temperature (25 °C) for 5 min, and then dispensed into a pipette. The results obtained when the Nafion 

solution was kept at room temperature for 1 h and then distributed into the channel reservoir are shown 

in Figure 6b. We observed some stagnation effects at certain locations, and the time required for the 

Nafion solution to reach the endpoint was greater than 30 s. The slopes of the fitting curves represent 

approximate average flow velocities. The results revealed that the flow velocity measured after the 

Nafion solution was exposed to room temperature for 60 min was 20% of that measured after the 

solution was kept at room temperature for 5 min. However, the Nafion solution still filled the channel 

without creating a void. Since the Nafion solution containing 34% water and 44% 1-propanol which is 

easily vaporized in an opened container at room temperature, the reduced amount of water and  

1-propanol decreases the mobility of Nafion. Thus, the Nafion taken out 5 min from the fridge and 

kept at room temperature has faster flow-rate than the Nafion kept at room temperature for 1 h.  
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Figure 6. Results of Nafion solution flow velocity measurement: processed at (a) 5 min  

(b) 1 h after taken from refrigerator.  

 

(a)                                                         (b) 

3.3. Surface Roughness Measurement of the Processed Nafion Device 

In the proposed process, the top surface of the solidified Nafion device formed through the 

evaporation of the solvent in Nafion solution inside an open channel (i.e., the surface was simply 

interfaced with the air). However, the bottom surface was interfaced with the ZnO layer coated on the 

glass substrate. This asymmetric surface formation condition yielded dissimilar roughness on both 

surfaces and affected subsequent metal electrode growth. 

Figure 7 shows the results of the surface roughness measurements obtained using a white-light 

interferometer (BMT Co., Tuttlingen, Germany). The amplitude of fluctuation on the top surface was 

approximately 0.1 µm, and that on the bottom surface was 0.25 µm. A sputtered ZnO film typically 

exhibits a rough surface. This surface effect substantially increased the degree of roughness at the 

interface between the ZnO film and solidified Nafion.  

Figure 7. Surface roughness of (a) front surface (b) bottom surface of the fabricated 

Nafion element. 

 

(a)                                                         (b) 
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4. Experimental Setup 

4.1. Resistance Measurement of the Surface Electrodes of the Fabricated Actuator 

Because the top and bottom electrodes were grown under the different interface conditions 

described in the Device Fabrication section, and the swirl-shaped geometry and tapered width were 

unique, we investigated the surface resistance at various locations on the device. The measurement was 

not trivial because the finished IPMC actuator was constructed of a soft material; using probes to 

gauge the resistance and maintain equal pressure on the detected points on the device is essential. We 

implemented a resistance detection device by using a piece of print circuit board (PCB). In Figure 8a, 

the measured locations are numbered. These locations were contacted with conductive patterns on the 

PCB, and the outer ends of the patterns were then soldered to wires to facilitate measurement using an 

LCR meter. 

Figure 8. (a) Nine points selected for surface resistance measurement; (b) Illustration of 

the developed tool for surface resistance measurement; (c) Implementation of the tool on a 

PCB chip. 

 

The layout of the photomask used in fabricating conductive patterns on the PCB is shown in Figure 8b. 

Standard photolithography and etching processes were used to engrave the conductive pattern on the 

PCB (Figure 8c). Because of the swirl-shaped design, the conductive patterns crossing multiple points 

of the fabricated actuator might hinder resistance measurement. An isolation layer was deposited to 

solve the problem. A 2-μm-thick pinhole-free, conformal parylene was coated on the processed PCB. 

The photoresist AE 5214 was then applied to the processed PCB. Nine circular holes were patterned 

for use in resistance measurement, as shown in Figure 8b. The oxygen plasma reactive ion etching 

process was performed to remove the parylene on specific regions. The PCB, which featured conductive 

patterns and a selective area isolated by parylene, was thus processed. 

To facilitate surface resistance measurement, the outer conductive patterns without parylene were 

soldered to wires so that they could easily be connected with the LCR meter. The swirl-shaped IPMC 

actuator was aligned and positioned on the fabricated PCB device. A glass slide was diced to an 

appropriate size to fully cover the IPMC actuator but not the wire soldering region. The diced glass 

slide was then placed on the IPMC actuator, and a 50-g weight was placed on top of the glass slide. 

The glass slide and additional weight provided suitable pressure between the IPMC actuator and the 

(a) (b) (c)
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conductive patterns at the measured locations. We then recorded the resistance values between various 

detection points of the electrodes on both sides of the IPMC actuator.  

4.2. Characterization of the Driving Voltage and Current of the Fabricated Device 

To characterize the electrical properties of the IPMC actuator, the wide-ended portion of the 

actuator was anchored to an insulating clip by using two strips of conductive tape, which were 

individually adhered to each side of the clip as electrode pads. Control signals were applied to both 

electrodes to activate the IPMC actuator. A circuitry designed for acquiring the voltage drop between 

the electrodes and the current flowing through the actuator was used (Figure 9). A 330-Ω resistor (Raux) 

served as an auxiliary element. A function generator drove the device by producing a square waveform 

with zero bias. Driving signals with differing amplitudes operating at a frequency of 0.1 Hz were 

studied and compared. The voltage drops across the auxiliary resistor V1(t) and across both the resistor 

and IPMC actuator V2(t) were acquired using a data acquisition system (Model #6211, National 

Instrument, Austin, TX, USA). Because the internal resistance (>1 GΩ) of the data acquisition system 

was much greater than the auxiliary resistor resistance, the current flowing through the data acquisition 

system was ignored. Therefore, the current flowing through the IPMC device was calculated according 

to the following equation: id(t) = V1(t)/Raux. The voltage drop across the device was calculated 

according to the following equation: Vd(t) = V2(t) − V1(t).  

Figure 9. Designed circuitry for measuring the voltage across and current through the 

IPMC actuator. 

 

4.3. Multipoint Displacement Measurement of the Fabricated Device 

A CMOS video camera was employed in capturing images continually at a frame rate of 30 fps to 

track the displacement of the device. However, characterizing the displacement of the fabricated 

device is not as simple as characterizing that of a one-dimensional device such as an IPMC strip, 

because the swirl-shaped planar structure can consist of multidimensional displacements. To investigate 

this phenomenon, two cameras were set at different view angles. The optical axis of the first camera 

was perpendicular to the horizontally placed IPMC actuator, thus enabling the in-plane motion  

(xy direction, Figure 1) to be monitored. The optical axis of the second camera was set at a 45° angle, 

crossing that of the first camera. Because the distance between the device and the camera was much 
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greater than the displacement of the device, the principle of triangular geometry was applied to acquire 

the z-axis displacement from captured images. The five points indicated in Figure 1 were used to 

characterize the displacement. The captured images were processed using AutoCAD
®

 software to 

determine the displacement at selected points according to a calibrated scale.  

5. Results and Discussion 

5.1. Results of Surface Resistance Measurement and the Electrical Actuation Property of the 

Fabricated IPMC Actuator 

Figure 10 shows the measured results of surface resistance for the top and bottom electrodes of the 

fabricated IPMC actuator. The numbers 1 through 8 shown on the horizontal axis represent the 

resistance values between the defined locations 1 and 2, those between 1 and 3, and so on (Figure 8a). 

For both electrodes, the longer the measured length of the actuator portion was, the higher the resistance 

value that could be obtained. Comparing each measured interval for both electrodes indicated that the 

top electrode, which formed on the shaped Nafion surface interfaced with the air, always exhibited a 

higher resistance than did the bottom electrode, which formed on the shaped Nafion surface interfaced 

with the sputtered ZnO layer. The difference in resistance from 80 to 150 Ω can be attributed to the 

surface roughness of the shaped Nafion device, as described in the Device Fabrication section. The 

resistance asymmetry between electrodes causes asymmetrical motion during actuation, as detailed in 

the subsequent section.  

Figure 10. Measured surface resistances of the fabricated swirl shaped IPMC actuator. 

 

Figure 11 shows the voltage across and current flowing through the top and bottom electrodes 

measured at the anchor location of the IPMC actuator. The driving signals were bipolar square 

waveforms with amplitudes of 3, 3.5, 4, and 4.5 V. During the first half of the cycle, positive voltage 

was applied to the top electrode, and the current flowed from the top electrode to the bottom electrode. 

During the second half of the cycle, negative voltage was applied to the top electrode, and the current 

flowed from the bottom electrode to the top electrode (negative current values). The resulting voltages 

rapidly reached approximately constant values within 1 s. The current exhibited an obvious charging 

effect attributable to the capacitance effect of the IPMC device. The current curve indicated an 
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asymmetric phenomenon about zero current values for all cases. In this study, nickel is used as an 

electrode material and it would be not so stable as gold or platinum. For the driving case of 4.5 V, the 

current through the actuator increases dramatically compared with other driving cases. This could be 

explained as Faradic process occurrence while the applied voltage reaches 4.5 V (Figure 11b). 

Figure 11. (a,b) The voltage across and current flowing through the top and bottom 

electrodes measured at the anchor location of the IPMC actuator; (c) The corresponding 

charge caused by current flow. 
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To describe the electrical characteristics of the fabricated IPMC actuator, we used a circuit model 

reported in the literature [24] (Figure 12). This model can be used to delineate the asymmetric surface 

resistance characteristics of the top and bottom electrodes. In this model, we use the variable resistor 

Ra and Rb to indicate the surface resistance of the top and bottom electrodes, respectively, and Rt 

represents the “through-polymer” resistance. The capacitance C in conjunction with resistor Rc can be 

considered the simplified impedance for ion movement dynamics, representing the characteristics of 

the exponential step response curve of the current. The values of the variable resistors Ra and Rb rely 

on the curvature/displacement of the IPMC actuator at the given point [24]. When the surface stretches 

or compresses the Ra and Rb varies differently. Thus, our experimental results can be justified with this 

circuit model. 

Figure 12. Circuit model for our swirl shaped IPMC actuator using presented fabrication process. 

 

5.2. Results of Multipoint Displacement Measurement of the Fabricated Device 

Figure 13a shows the results regarding periodic displacement in the z direction (Figure 1) at the five 

selected points when 0.1-Hz, 4.5-V bipolar square wave actuation was applied. We observed the 

highest value at Point D, which is the point on the IPMC actuator farthest from the anchor in the 

defined x direction. The points are ranked according to displacement in the x and y directions, 

respectively, as follows: D > B > A and A > C > E. The upward displacements (i.e., the current flow 

from the top to the bottom electrodes) exhibited relatively high values compared with the downward 

displacements at all selected points. Hence, non-horizontal baselines were observed according to all 

measured displacement data. This can be attributed to the generated unbalanced strains of the IPMC 

actuator caused by the driving currents during upward and downward motions. The fabricated IPMC 

can be operated in air for approximately 5 min before the need for re-hydration. In addition, the total 

charge Q of the swirl-shaped IPMC actuator on the surface at time t can be expressed as: 

 dttitQ )()(  (1) 

The term i(t) is the current flowing through the actuator and can be obtained experimentally.  

  

RtRt

0.5Ra 0.5RaRa

0.5Rb 0.5RbRb

Rc
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Figure 13. (a) Displacements at five selected points under a 0.1 Hz 4.5 V bipolar square 

wave actuation; (b) Displacement result in the z direction at the inner endpoint A of the 

IPMC actuator based on different external actuation voltages; (c) displacements in x-direction 

for five selected locations based on 4.5 V actuation. 

 

According to our current measurement, the charge calculation for each driving cycle can be 

expressed as shown in Figure 11c. The unequal distribution of charge magnitudes in each half cycle 

indicated the different slopes of upward and downward moment generation, so as the displacement. 

Thus, the phenomenon of the nonzero-slope baseline for the measured displacement was justified. 
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Furthermore, we defined the x-direction strain ratio as the z-directional displacement divided by the 

x coordinates of the five selected points (the anchor position x coordinate is set to zero), and the results 

are listed in Table 1. The maximal value was observed at the inner endpoint. Location D shows the turning 

point of this ratio. A length of the actuator greater or less than this point exhibited an increased ratio. 

Table 1. x-direction strain ratio defined as the z-direction displacement divided by the  

x coordinates of the five selected points. 

Location x Coordinate (mm) Strain Ratio 

A 3.42 14.59% 

B 4.51 12.98% 

C 3.25 11.35% 

D 6.96 9.38% 

E 3 11.31% 

Figure 13b shows the displacement result at the inner endpoint, Point A, of the IPMC actuator 

according to various external actuation voltages. A higher voltage causes greater displacement, but a 

nonlinear trend can be observed. We examined the steady-state current flowing through the actuator in 

the case in which the device was driven at 4.5 V, and the current exhibited a pattern different from 

those of the other three voltage actuation cases, particularly during the upward motion. Figure 13c 

shows the displacements in x-direction for five selected locations. The values are much smaller than 

the z-directional displacements. The points with larger x-coordinates demonstrate larger displacement 

values. Points A, C, and E have almost similar displacements. Since the displacement in y-direction is 

even smaller than in x direction; therefore, we determined that the motion of the fabricated  

swirl-shaped actuator IPMC was substantial in the z direction and slight in the x direction.  

Table 2 compares existing IPMC devices and the swirl-shaped IPMC actuator in terms of the raw 

material, shaping method, possibility of fabrication with microfeatures, complex geometry of devices 

and their functions. The results indicate our developed fabrication method, along with the presented 

device, have unique characteristics.  

Table 2. Comparison and summary of existing and our developed IPMC devices. 

Ref. 
Raw 

Material 

Shaping  

Method 

Possibility for Fabricating 

Microfeatures 

Fabricating  

Complex Geometry 
Device Function 

[25] Nafion film Knife cutting 
Depending on  

cutting skill 

Depending on  

cutting skill 

Biomimetic robotic  

Venus flytrap 

[26] Nafion film 
Cutting and 

thermal treatment 

Sliced strip  

determines the feature 

Suitable for making 

helical structure 

Helical IPMC actuators  

for radius control 

[19] Nafion film Knife cutting 
Electrode can be made  

with microfeatures 

Photolithography-made 

electrodes can have 

complex geometry 

Monolithic fabrication of 

multi degree-of-freedom 

IPMC actuator 

[27] Nafion film Laser machining 
Yes  

(depend on laser spots) 

Controlled by moving 

work station 

Microstrips for microsensing  

 and microactuation 

This 

work 

Nafion 

solution 

Micromold using 

photolithography 

Yes (microfabrication 

technology) 

Depending on the  

microchannel design 

Swirl-shaped device  

for directing laser beams 
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6. Conclusions 

We have designed, fabricated, and tested a micromachined swirl-shaped IPMC actuator. The 

microfeatured IPMC device fabricated using the proposed process features plated metal layers only at 

the top and bottom regions and does not contain sidewalls, preventing the occurrence of shortcircuits. 

Conductive patterns were created on a PCB chip serving as a surface resistance measurement tool for 

the fabricated IPMC actuator. The top and bottom electrodes exhibited differences in surface resistance 

ranging from 80 to 150 Ω. The bottom electrodes consistently exhibited surface resistance values 

lower than those of the top electrodes and this could be due to the device fabrication process with 

rough rough-surfaced ZnO layer as a sacrificial layer. The current flow patterns exhibit asymmetric in 

relation to zero current values when bipolar square waves were used to drive the actuator with zero 

voltage bias. The motion of the fabricated actuator was characterized by measuring five selected points 

on the device. The results indicated that the actuator produced substantial out-of-plane displacement 

(the direction perpendicular to both electrodes) and slight in-plane displacement. The developed 

microfabrication process enables the creation of a versatile microfeatured IPMC actuator. The  

swirl-shaped actuator exhibited a simultaneous bending and rotating motion and might be useful as an 

active reflector for directing electromagnetic waves or laser beams.  
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