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Abstract: A complete error calibration model with 12 independent parameters is established 

by analyzing the three-axis magnetometer error mechanism. The said model conforms to an 

ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid 

coefficient matrix is derived. However, the calibration matrix cannot be determined 

completely, as there are fewer ellipsoid parameters than calibration model parameters. 

Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a 

different matrix decomposition method is not unique, and there exists an unknown rotation 

matrix R between them. This paper puts forward a constant intersection angle method 

(angles between the geomagnetic field and gravitational field are fixed) to estimate R. The 

Tikhonov method is adopted to solve the problem that rounding errors or other errors may 

seriously affect the calculation results of R when the condition number of the matrix is very 

large. The geomagnetic field vector and heading error are further corrected by R. The 

constant intersection angle method is convenient and practical, as it is free from any 

additional calibration procedure or coordinate transformation. In addition, the simulation 

experiment indicates that the heading error declines from ±1° calibrated by classical 

ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the 

signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further 

corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a 

constant intersection angle method. 
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1. Introduction 

Accurate measurement of the geomagnetic field has been widely applied in geophysical research, 

space magnetic measurement, military defense, mineral resources exploration, and drilling practice [1]. 

Common magnetometers include a helium optical-pumping magnetometer, a proton magnetometer, a 

three-axis flux gate magnetometer, and an anisotropic magnetoresistive magnetometer. The former two 

magnetometers could only be used to measure geomagnetic field magnitude, whereas the latter two 

magnetometers, belonging to the vector magnetometer type, are the most common magnetic sensors in 

an attitude and heading reference system (AHRS), which is characterized by low cost and high 

reliability. However, the magnetometer is full of inevitable errors such as zero deviation, sensitivity 

errors, non-orthogonal errors, misalignment errors, measurement noise, hard iron errors, and soft iron 

errors, and consequently there are large errors between the measurement results and actual geomagnetic 

field vector. As a result, calibration and error compensation should be conducted before the application. 

The calibration of magnetometers can be divided into the geomagnetic domain calibration and the 

heading domain calibration. The heading domain calibration only calibrates the heading error of the 

magnetic compass composed of the magnetometer, but each axis output of the magnetometer has not 

been calibrated. The geomagnetic domain calibration directly calibrates the output of each axis of the 

magnetometer. The magnetometer output after calibration can not only calculate the accurate heading 

angle ( 1α = tan ( / )n n

v xH H ) but also can be used in geomagnetic navigation for providing rich  

component information. 

The “two-step” algorithm directly calibrates the magnetometer error without an external heading 

reference. The principle of the two-step algorithm is that when the magnitude of the true geomagnetic 

field is invariable at the calibration spot, the ideal locus of the three-axis magnetometer output lies on a 

spherical surface, whereas the actual locus of the magnetometer measurement outcome lies on an 

ellipsoid under the disturbance of error. The first step of the two-step algorithm transforms the 

non-linear observation equation based on the square of the magnetic field magnitude into a linear 

equation of the new unknown parameter by a mathematical transformation and acquires the unknown 

parameter by a batch least squares solution. In the second step, the biases and the scale factors can be 

derived from an inverse analytical solution [2], but the non-orthogonal and misalignment errors cannot 

be calibrated because of the error model, which includes only zero deviation and sensitivity error. The 

iterative batch least squares method is used in [3] to obtain the ellipsoid parameter unbiased estimation, 

from which the initial conditions can be acquired by the aforementioned two-step algorithm. The 

algorithm possesses consistent convergence, and the posterior covariance could be used as a metric for 

the compensation effect. The “extension of the two-step” algorithm improves the two-step calibration 

algorithm by compensating for the non-orthogonal error [4]. However, as the assumed sensor x-axis 

coincides with the body x-axis (it is also possible that none of the three axes coincides in reality), the 

misalignment error cannot be calibrated. 
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It is proposed in literature [5] that there are only nine independent parameters in the fitting ellipsoid 

model. Failing to clarify the 12 parameters in the calibration model mathematically could also be 

interpreted to mean that there is more than one method to decompose the ellipsoid coefficient matrix into 

two orthogonal matrixes (error parameter matrix). According to matrix theory, an orthogonal rotation 

matrix (indicating the rotation transform in three-dimensional space) exists between matrixes, resulting 

from different decomposition methods. In other words, magnetometer data can be compensated for 

sensor errors and the presence of magnetic distortions by mapping an ellipsoid of data to a sphere; 

however, the rotation of the sphere is unknown [5,6]. The essence of this difference discloses the failure 

to clarify the three-axis misalignment error. It has been shown in [7] that the magnetometer 

measurement noise is zero-mean Gaussian white noise, but the noise of the square of the magnetometer 

output is not zero mean, and ordinary least square (OLS) estimation is an inconsistent biased estimation. 

Adaptive least square (ALS) is utilized to obtain a consistent unbiased estimator of ellipsoid parameters 

because of the continuous adjustment procedure to the OLS cost function. This adjustment requires a 

known noise variance. Consistent estimation to an unknown noise variance, however, can be realized [8]. 

ALS improves the accuracy of the ellipsoid fitting, but the calibration parameters derived by eigen 

decomposition are not always true because of the different matrix decomposition methods mentioned 

above. In addition, the coefficient matrix of the ellipsoid fitting could also be used to derive the error 

parameter matrix from singular value decomposition [9]. However, the error model of this method 

approximates a symmetric matrix, which contains only nine undetermined coefficients; thus, the 

application of this method has limitations. In [10] a geomagnetic field vector and some auxiliary vector 

dot products are choosen as the constants to exam the effect of the rotation matrix in rectifying and 

compensating the error. This method does not require additional calibration, and the compensation 

accuracy depends on the choice of auxiliary vector. When the auxiliary vector is nearly parallel with the 

geomagnetic vector, the worst compensation result is obtained, whereas the best result is obtained when 

the former vector is perpendicular to the latter vector. Because the auxiliary vector is a constant vector of 

the earth coordinate system, it should be converted into components of the body coordinate system in a 

mathematical operation. Maximum likelihood estimation is used in the error parameter fitting, and 

misalignment error requires additional independent calibration for identification [11]. 

The transition matrix defined in [12] between the sensor coordinate system and body system contains 

six unknown parameters. This matrix completely describes the non-orthogonal error and misalignment 

error and adopts the “three-step” algorithm in magnetometer pre-calibration before flight, without 

reference to any direction information. The misalignment rotation matrix can be derived from the 

condition that the vertical component of the geomagnetic field remains unchanged while rotating the 

magnetometer respectively around the x-axis, y-axis, and z-axis in the geoid. It is proposed in [13] that 

the rotation matrix of the misalignment error could be obtained when the sensor rotates around an axis, 

and the projection of the magnetic field output is invariable, which lies on the plane that is perpendicular 

to the said axis. This method is more valuable in engineering as it is unnecessary to keep leveling. This 

paper is based on the constant intersection angle between the geomagnetic field vector and gravitation 

field vector [14], without additional independent calibration and coordinate system conversion, and 

seeks to derive a rotation matrix more conveniently, furthering the compensation of magnetic field 

measurement error and heading error. 
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2. Error Modeling 

Because of the influence of the manufacturing processes and environment, a three-axis magnetometer 

has manufacturing, installation and environmental errors. The manufacturing error contains a 

zero-deviation H0 and sensitivity error Ks; installation error includes non-orthogonal error      and 

misalignment error   
  ; environmental error includes the soft iron error    and hard iron error Hp. On 

account of all the errors listed above, the relationship between the true geomagnetic field    and the 

three-axis magnetometer output    is demonstrated in Equation (1), in which    indicates the Gaussian 

white noise is zero-mean and its standard deviation is σ:  

             
                                  (1)  

The different types of errors are specifically shown in Subsections 2.1–2.6. 

2.1. Sensitivity Error 

Sensitivity represents the proportional relationship between the magnetometer input and output. 

Sensitivity error results from the inconsistency between the amplification of the measuring electronic 

circuit and its nominal value, which can be expressed as: 

s s s sdiag( )x y zK K K K     (2)  

If sensitivity is the only error that affects the sensor, the Equation (2) refers to the measurement 

m s eH K H  .  

2.2. Zero Deviation 

There is often a small voltage bias in the sensor output signal, even when there is no magnetic 

intensity. In such conditions, the sensor produces non-zero output, which can be expressed as: 

0 0 0 0[ ]T

x y zH H H H  (3)  

If zero deviation is the only error that affects the sensor, the Equation (3) refers to the measurement 

Hm = He + H0.  

2.3. Non-Orthogonal Error 

Non-orthogonal error is caused by the limitation of machining, which leads the x-, y- and z-axes to not 

being completely orthogonal to each other. This is shown in Figure 1, assuming that the z-axis of the 

sensor completely coincides with the z-axis of the orthogonal coordinate system   : 

nor

cosα 0 sin α

sinβcosγ cosβcosγ sinγ  

0 0 1

K

 
 


 
  

 (4)  

If non-orthogonal error is the only error that affects the sensor, Equation (4) refers to the 

measurement m nor eH K H  .  
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Figure 1. Sensor coordinate system non-orthogonal error. 

 

2.4. Misalignment Error 

During the installation, the sensor x-axis may not totally coincide with the body vertical axis, as 

illustrated in Figure 2. The resultant transition matrix (rotation matrix)   
  exists between the virtual 

orthogonal coordinate system    and the body orthogonal coordinate system   
 , which is equivalent to 

a slight angle generated from rotations of the sensor around the x-axis, y-axis and z-axis, respectively: 

  
   

         
         

         

  (5)  

If misalignment is the only error that affects the sensor, the Equation (2) refers to the measurement 
b

m m eH T H H   .  

Figure 2. Body orthogonal coordinate system and virtual orthogonal coordinate system. 

 

2.5. Soft Iron Errors 

Ferromagnetic materials produce an inductive magnetic field under the influence of a geomagnetic 

field and the induced electric current around the sensor. It also varies with the attitude of the 

magnetometer and the position in the magnetic field, which can be expressed as: 

    

         

         

         

  (6)  
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The     terms represent the effective soft iron coefficients and are the constants of proportionality 

between the magnetic field applied to soft iron and the resulting induced magnetic field [3]. For example, 

axy represents the effective coefficient relating the field generated in the x-direction in response to an 

applied field in the y-direction, where the effective soft iron coefficients appears insignificant when 

   . Mathematically, the soft iron error for principal diagonal elements is equivalent to the sensitivity 

error; and non-diagonal elements correspond to the non-orthogonal error and misalignment error. If soft 

iron is the only error that affects the sensor, Equation (2) takes to the measurement Hm = Cs · He.  

2.6. Hard Iron Errors 

This type of error results from permanent magnets and magnetic hysteresis, that is, remanence of 

magnetized iron materials. Mathematically, this error is equivalent to zero-deviation: 

                (7)  

If hard iron is the only error that affects the sensor, Equation (2) refers to the measurement 

m e pH H H  .  

Ignoring the measurement noise in Equation (1), the geomagnetic field vector    can be derived as: 

                (8)  

in which        

         

         

         

 . 

3. Classical Ellipsoid Assumption Algorithm 

When an ideal magnetometer rotates in the calibration spot, the geomagnetic field magnitude remains 

constant, and the output locus of the three-axis magnetometer is a sphere. In contrast, a non-ideal 

magnetometer output locus would be an ellipsoid because of the influence of error. The square of    is 

derived from Equation (8), and sorted into the quadratic form of the surface: 

0 0

m

p 0 p 0 p p

m m2 2 2

e e e

H H 2H H
2 1

T T T T T T TT
T

H G G G G GH GH HG G
H H H

H H H

  
    (9)  

Equation (9) is rewritten as a general form of the quadratic surface equation: 

  2 2 2

m m m m m m m m m m m m mξ, 0x x y y x z y z z x y zF H aH bH H cH dH H eH H fH pH qH rH s            (10)  

where                         . 

Generally, non-diagonal elements of the soft iron matrix   , the non-orthogonal error and 

misalignment error of the soft iron error, are minuscle, therefore, the error matrix   is strictly diagonally 

dominant [5]. Therefore,     is also strictly diagonally dominant, belonging to a positive-definite real 

symmetric matrix, and Equation (9) is a quadratic ellipsoid equation, then for convenience, Equation (9) 

can be written as: 

0 0 02 + =1T T TX AX X AX X AX  (11)  
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where, 

/ 2 / 2

= / 2 / 2

/ 2 / 2

a b d

A b c e

d e f

 
 
 
  

 is the coefficient matrix after ellipsoid fitting, and         
 
 
 
  are 

the spherical center coordinates. The objective of magnetometer calibration is to conduct ellipsoid fitting 

based on the set of N measurement data, deriving the coefficient matrix A and spherical center 

coordinates X0. 

The principle of ellipsoid fitting is finding an ideal ellipsoid where the sum of squares of the algebraic 

distances calculated from the measured data point to the ellipsoid is minimized [15], which is expressed 

as Equation (12) or (13): 

   
     

           
 

 

   

 (12)  

   
     

 
      

(13)  

where:    
    

                
                         

                    

   
    

   

 . 

In order to assure that the fitting result is an ellipsoid, Nikos contends that parameter σ should 

guarantee that matrix A in Equation (10) is positive definite matrix or negative matrix [16]. This 

constraint is analyzed in literature [16], which states that the equality constraint          can be 

imposed for the convenience of calculation, which would not lose its generality and can be expressed in 

the matrix form: 

 
      (14)  

where    
      

        
  and     

   
    
   

 . 

By introducing a Lagrange multiplier  , we can obtain the simultaneous equation from Equation (13) 

and Equation (14) as follows: 

      
          σ     (15)  

In order to obtain the extremum under constraints, the first-order derivative could be derived from 

Equation (15), and Equation (16) could be obtained when the first-order derivative of Equation (15) is 

set to zero: 

         (16)  

Therefore, the extremum under an ellipsoid constraint could be obtained: 

 
        

 
     

  (17)  

It has been proved in [17] that only one of the generalized eigenvalues in Equation (16) is positive, 

and its eigenvector is the best ellipsoid fitting parameter  . The ellipsoid coefficient matrix   and 

spherical center coordinate    is derived from further calculation. It could be concluded from the 

comparison between Equation (9) and Equation (10) that: 
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  (18)  

     is not necessarily the actual magnitude of the geomagnetic field because its magnitude only 

affects the components on the x-axis and y-axis, whereas the heading hinges on the proportion of the 

geomagnetic field projection on the x-coordinate and y-coordinate [9]. Introducing p 0 0= ( )H G X H  

to Equation (8), we obtain      e m 0 0 0 m 0= =H G H H G X H G H X    . Therefore, it is not 

necessary to use H0. The 3 × 3 matrix G combining scale factors, non-orthogonal errors, misalignments, 

and soft iron disturbances is not strict symmetrical, including nine independent parameters, and there are 

three combined biases in the error model. The total number of error parameters should be 12. 

Therefore, the key to deriving calibration matrix G is to decompose the ellipsoid coefficient matrix 

into two orthogonal matrixes. However, the calibration matrix cannot be clarified, as the orthogonal 

matrix resulting from a different decomposition is not exactly the same. Because G is also a positive 

definite matrix, the decomposition results G1 and G2 only differ in an orthogonal rotation matrix R, 

which is equivalent to a fixed rotating angle in the body coordinate system between the geomagnetic 

field vector after compensation and the true geomagnetic field vector [5].  

This paper provides a constant intersection angle method to solve the rotation matrix R. On the basis 

of this rotation matrix, the matrix G resulting from orthogonal decomposition could be transformed into 

the calibration matrix that is needed. The calibrated geomagnetic field could be obtained by solving 

Equation (8) and Equation (18) simultaneously: 

             (19)  

where Q = R · G. 

4. Constant Intersection Angle Method 

Similar to the classical ellipsoid fitting method, the constant intersection angle method also requires 

calibration in the same location in order to satisfy the condition that the magnitude and direction of the 

geomagnetic field and gravitation field are invariant. The intersection angle between the geomagnetic 

field vector and gravitation field vector at the same measurement spot is constant [14], and the dot 

product of magnetic field vector    and gravity acceleration vector Ag, which e g cosθH A  , is 

invariable and can be calculated from the model of geomagnetic field and gravitation field. In the said 

equation,   is the intersection angle between the geomagnetic field vector and gravitation field vector, 

and its value can be interpreted to have approximately the same effect as      in Equation (18). 

Therefore, different values of   would only affect the magnitude of the geomagnetic field after 

calibration rather than the heading solution. In addition, the acceleration coordinate system is also the body 

coordinate system as the accelerometer is fixed on the body and keeps moving with the body. Thus the 

intersection angle between the geomagnetic field vector    and gravitation field vector    at the same 

measurement spot is constant, even if there is no transformation into a geodetic coordinate system. 
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4.1. Rotation Matrix Solution 

To begin, calibration matrix   is obtained by a singular value decomposition of the positive matrix 

    
    generated from Equation (18). Then,    can be derived as below, by introducing   and    

into Equation (19) and preliminarily calibrating the geomagnetic field: 

             (20)  

where the gravity acceleration vector is     

   

   

   

 , the magnetic field vector is        , and   as 

the undetermined rotation matrix can be represented as    

          

         

         

 . Additionally, the dot product 

of the magnetic field vector and the gravity acceleration vector could is described as: 

   
 

     

   

   

   

 

 

  

          

         

         

   

   

   

   

                =const (21)  

Recasting Equation (21) as a linear combination of a changing input vector and an estimation 

parameter vector, Equation (22) is obtained: 

      

 
 
 
 
 
 
 
 
 
 
 
      

      

      

      

      

      

      

      

       
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
   

    

    

    

    

   

    

    

     
 
 
 
 
 
 
 
 

 (22)  

The matrix containing As for the set of N input vectors    and   , is expressed as Equation (23): 

 
 
 
 
 
     

 
 
 

      
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
                   

                   

                   

                   

                   

                   

                   

                   

                     
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
    

    

    

    

    

    

   

    

     
 
 
 
 
 
 
 
 

 (23)  

 φY x  . 

The least squares solution                 is derived by batch a least squares solution. In the 

calculation process according to the method proposed in [6] we find the problem that the condition 

number of matrix   is larger, which decrease the estimation accuracy of the rotation matrix. Therefore, 

the Tikhonov method is adopted to obtain a better estimator. 
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4.2. Noise Suppression 

A high rotation matrix accuracy plays an important role in further correcting the heading error, which 

is calibrated by the classical ellipsoid fitting method. The measurement noise, however, are inevitable 

and have influence on the estimator of rotation matrix R. The noise suppression methodology can reduce 

the sensitivity of the solution to measurement noise. 

When the condition number of matrix   in Equation (23) is very large, the matrix is approximately 

singular, or when observation data is inaccurate, the solution will be submerged by errors. The Tikhonov 

regularization method could solve the problem by adding other information about the solution, so as to 

identify a meaningful, stable solution [18]. The principle of adding information is that the 2-norm of the 

solution should be minimized. The regular solution defined by the regularization method is shown  

below [18]: 

   
 

       
   

      
  (24)  

Where   is generally a unit matrix,   is a regularization parameter that controls the sensitivity of  , 

and   is the disturbance caused by the solution. The selection of   mainly relies on experience to 

guarantee matrix  
 

  
  is of full column rank. A least squares solution is derived as the solution of 

Equation (24) is equivalent to the solution of Equation (25): 

   
 

  
 

  
   

 

 
  

 
 (25)  

Equation (25) can be derived from the QR (decompose a matrix into a orthogonal and an upper triangular 

matrix) orthogonal least square algorithm, which is equivalent to solving the following linear equations: 

      
           (26)  

     is then obtained by singular value decomposition of the coefficient matrix            . 

The coefficient matrix is a square matrix; matrix U is an orthogonal matrix and matrix S is a diagonal 

matrix containing the eigenvalues, V = U. Then  
1

1 1= φ = φT T T Tx USV y V S U y


    and rotation matrix 

R will obtain by recasting matrix x . Though the noise suppression can reduce the influence of 

measurement noise, other methods are needed to ensure that R is close to a rotation matrix. For example, 

a quite large number of samples can improve the estimation accuracy. Another method is set a constraint 

= ITR R  on matrix R , and try to minimize mR R  to obtain rotation matrix R. where mR is recast by 

matrix x , R is the constrained optimization rotation matrix, its determinant is one. R is more close to the 

true rotation matrix R0 than Rm. Introducing it into Equation (19) or the equation        , heading 

error will be calibrated completely. 

5. Simulation Study 

During magnetometer calibration, to ensure the quality of the measurement data set, a proper uniform 

distribution of the data over all directions must be accomplished [19]. Firstly, 46 data points are 

collected for the simulation, which are evenly distributed on the sphere. According to the principles of 

the equivalent intersection angle, regarding the sphere center as the coordinate origin, and the radius of 

the sphere as one, the x-axis, y-axis and z-axis coordinates are collected in the        matrix, which is 
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composed of 46 sample points. The collection method is shown in Figure 3, where the intersection 

angles        and        between any two adjacent data points are equal. Secondly, 46 data points 

are collected for the acceleration data, of which the magnitude is 9.8. As demonstrated in Figure 4, 

assuming that the acceleration vector and unit sphere intersects each other in    and   ,        is 

equivalent to       . 

Figure 3. Collecting data according to the equivalent intersection angle principle. 

 

Figure 4. Constant intersection angle between the geomagnetic field vector and gravitation field vector. 

 

Then assuming that error matrix    
            
            
           

 , zero deviation     
    
    
    

 , and hard 

iron error     
     
    
    

 , the output of the three-axis magnetometer influenced by the errors is 

                    , which is distributed on the disturbing ellipsoid. Then, the Gaussian white 

noise of N(0, 0.002
2
) is added into           , where 0.002 is the standard deviation of the noise. 

After determining the ellipsoid coefficient matrix, the preliminary calibration matrix   is derived by 

singular value decomposition. Regarding the heading as a reference, which is calculated from the 

original data set        that is free from the influence of the error matrix, the heading error calibrated 

by matrix   is shown in Figure 5a. The heading error is ±1° where the blue dashed line refers to the 
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heading error curve after a preliminary calibration of matrix G, which is derived from the classical 

ellipsoid fitting. Because the ellipsoid model after fitting only contains nine independent parameters, it 

can’t determine the 12 error parameters in the error model completely. In other words, the classical 

ellipsoid fitting method can transform the ellipsoid into a sphere, where transformed sphere and the 

original sphere differ by an undetermined rotation matrix R. Consequently, this influences the accuracy 

of the heading calibration. The proposed constant intersection angle method can derive R. 

The constant intersection angle method is not necessary for the additional calibration procedure 

mentioned in reference [11,12] and the coordinate transformation mentioned in reference [10]. Rotation 

matrix R can be derived from three-axis magnetometer and accelerometer data. The calibration matrix G 

derived from ellipsoid fitting coefficients is further corrected by rotation R, allowing us to improve the 

estimation of the calibration matrix Q. the heading error calibrated by matrix Q is lower than ±0.2°, 

which smaller than the heading error of ±1° when calibrated by classical ellipsoid fitting, shown as the 

red solid line in Figure 5a.  

Figure 5. (a) Heading error when the standard deviation of the noise is 0.002; (b) Heading 

error when the standard deviation of the noise is 0.003; and (c) Heading error when the 

standard deviation of the noise is 0.005. 
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Figure 5. Cont. 

 

(c) 

When the standard deviation of the Gaussian white noise is 0.003, and the magnitude of the 

simulation data is one, the heading error shown is shown in Figure 5b. The heading error calibrated by 

the constant intersection angle method decreases to ±0.4° from the value of ±1° when calibrated by the 

classical ellipsoid fitting. When the standard deviation of the noise is 0.005, the heading error is also 

shown in Figure 5c. The heading error decreases from ±1.2° to ±0.6° when calibrated by the constant 

intersection angle method. The error increases with the noise. 

6. Experiments 

6.1. Measurement Equipment and Measurement Spot 

In order to compare the calibration results between the classical ellipsoid fitting method and the 

constant intersection angle method proposed earlier, the nonmagnetic turntable experiment adopts a 

self-developed magnetic compass, which is mounted on the nonmagnetic turntable. The magnetic 

compass adopts a PIC24HJ128GP504 microprocessor (Microchip Technology, Chandler AZ, USA), 

equipped with a fluxgate sensor as the magnetic sensing element, and a Honeywell QA-T160 

accelerometer (Honeywell Conglomerate Company, Morristown, NJ, USA) is used. The output heading 

angle of the optical–electrical encoder is regarded as the true heading reference, where the error is less 

than 3 . As shown in Figure 6, the magnetic compass is fixed on the nonmagnetic turntable. Where the 

body coordinate frame (b) takes the forward direction in the magnetic compass as the direction of xb-axis, 

taking the downward direction as the zb-axis, and setting the yb-axis in conformity with the left-hand rule, 

the navigation coordinate frame (n) takes a direction in the north-east-downward frame. It can be 

inferred from the body coordinate frame and navigation coordinate frame that the clockwise heading 

angle is positive, and the heading angle is 0° when the xb-axis points northward. 

The experiment was performed in a Beijing suburb, where the magnetic environment in the vicinity 

of the magnetometer is better than that in the laboratory in the city. The principle of the constant 

intersection angle is adopted to ensure that the data points are distributed evenly on the sphere. The data 

collection is composed of 46 sets of data spread on the x-axis, y-axis and z-axis, collected as follows.  
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To begin, where the magnetic compass is fixed on the nonmagnetic turntable, and the roll angle is 0°, 

and pitch angle is 60° and −60°, respectively, the nonmagnetic turntable is rotated clockwise such that 

the magnetic compass xb-axis can intersect with the north direction at angles of 6°, 66°, 126°, 186°, 246° 

and 306°; Where the roll angle is 0°, and the pitch angle is respectively 60° and −60°, the nonmagnetic 

turntable is rotated clockwise such that the magnetometer xb-axis can intersect with the north direction at 

angles of 6°, 42°, 78°, 114°, 150°, 186°, 222°, 258°, 294° and 330°. Where both the roll angle and the 

pitch angle are 0°, the nonmagnetic turntable is rotated clockwise such that the magnetometer xb-axis can 

intersect with the north direction at angles of 6°, 36°, 66°, 96°, 126°, 156°, 186°, 216°, 246°, 276°, 306°, 

and 336°. Where the roll angle is 0°, and the pitch angle is 90° and −90°, the xb-axis is vertically upward 

and downward, respectively. The accelerometer data should be collected simultaneously at the same  

46 positions, because the method is attitude-dependent. 

Figure 6. Nonmagnetic turntable. 

 

Then, magnetometer preliminary calibration can be conducted through the ellipsoid assumption 

method. The heading angle   could be is derived Equation (27). It should be noted that magnetic field 

data in the body coordinate frame (  
 ,   

 ,   
 ) should be transformed to the navigation coordinate 

frame (  
 ,   

 ,   
 ). The transformation matrix is shown in Equation (28): 

  

 
 
 
 

 
 
 
                                 

       
    

                           
    

                            
       

    
 

 
   

       
    

  

 
   

       
    

  (27)  

where            
   

   . 
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  and   respectively refer to the pitch angle and roll angle, which are determined by the three-axis 

accelerations   ,   , and   , when either angle is not zero and where       
    

    
 : 

         
  

    (29)  

         
  

    (30)  

6.2. Accelerometer Calibration 

As a type of inertial sensor, accelerometers are reliable, independent, and immune to environmental 

impacts. The primary errors of accelerometers are bias, sensitivity error, and non-orthogonal error. Such 

errors are similar to the magnetometer errors, as observed in Equation (1–3). The following equation 

describes the accelerometer observation: 

m nor 0 0s e e  = + = +g k k g g C g g    (31)  

where, 
0

g is the bias of accelerometer, eg  is the actual acceleration of gravity, and 

 0 α

= β γ

0 0

x x

y y y

z

S S

C S S S

S

 
 
 
 
  

 is derived from Equation (1) and Equation (3). Generally, the non-orthogonal 

angle of a three-axis accelerometer provided by the manufacturer is less than 0.5°. For calculation 

purposes, the trigonometric functions of Equation (3) can be simplified. The actual acceleration of 

gravity is derived from Equation (31) as follows: 

 m 0
1

e =g C g g    (32)  

The output trajectory of the three-axis accelerometer accords with the ellipsoid hypothesis as well. 

There are nine unknown parameters consisting of three sensitivity errors, three non-orthogonal error and 

three bias. Thus, the error parameters of the accelerometer can all be derived from the coefficients of the 

ellipsoid equation. The experiment is performed on the turntable shown in Figure 6 by mounting the 

magnetic compass on the aligned turntable, aligning the body frame of the magnetic compass with the 

turntable by using the location pins, and then rotating the turntable to different angular positions. The 

results in Figure 7 show that the absolute error declines from 0.1582 m/s
2
 to 4.6323 × e

−4
 m/s

2
, and the 

mean square root error drops from 0.0545 m/s
2
 to 1.0358 × e

−4
 m/s

2
; thus, the maximum error of the 

accelerometer can be reduced by a factor of approximately 1,000. 
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Figure 7. The accelerometer error before calibration and after calibration. 

 

6.3. Experimental Result 

The calibration matrix G of Equation (18) is derived from the ellipsoid coefficient matrix by  

eigen-value decomposition and singular value decomposition in the classical ellipsoid fitting method. 

Then G is introduced into Equation (20) to calibrate the measurement of the geomagnetic field    and 

obtain    calibrated by the classical ellipsoid fitting method. However, calibration matrix G is not the 

actual calibration matrix, which should be multiplied by the rotation matrix R mentioned earlier. R is 

obtained using the constant intersection angle method to further improve the accuracy of magnetic 

sensor. This method can be used to other type of three-axis inertia sensor including misalignment error. 

Then, the complete calibration geomagnetic field         is obtained. The heading error is shown in 

Figure 8a. The red solid line refers to the heading error calibrated by the constant intersection angle 

method, which is less than ±0.3°, and the blue dashed line refers to the heading error calibrated by the 

classical ellipsoid fitting method, which is within the range of ±0.8°. 

Figures 8b,c are the results of two other experiments conducted in the laboratory in the city, where the 

red solid line refers to the heading error calibrated by the constant intersection angle method, and the 

blue dashed line refers to the heading error calibrated by the classical ellipsoid fitting method. The 

maximum heading errors calibrated by the constant intersection angle method are ±0.35° in Figure 8b 

and ±0.4° in Figure 8c. The maximum heading errors calibrated by the classical ellipsoid fitting method 

are approximately ±0.9° in Figure 8b and ±1.1° in Figure 8c. This shows that the constant intersection angle 

method has similar calibration performance in the laboratory in the city. The heading errors after calibration 

are slightly larger because magnetic perturbations are larger in the city. 

As mentioned in Section 4.2, the accuracy of rotation matrix R affects the heading error directly. The 

measurement noises, however, are inevitable and have influence on the estimator of rotation matrix R. 

The noise suppression methodology can reduce the sensitivity of the solution to measurement noise, and 

the constrained optimization (set a constraint =TR R I  on matrix R) can further improve the estimation 

accuracy of R. In order to verify the effect of this methodology, we conduct a comparison experiment 

shown in Figure 9.  

The green line refers to the heading error that the rotation matrix R is estimated directly by the 

measurement data; the red line is the heading error that the estimation of R is adopted the noise suppression 

methodology. It can be seen from Figure 9 that the heading error decrease from ±0.48° to ±0.32°. 
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Figure 8. (a) Experiment results comparing heading error in Beijing suburbs;  

(b) experimental results comparing heading error in laboratory in the city; and (c) more 

experimental results comparing heading error in the laboratory in the city. 
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Figure 9. Comparison experiment about the noise suppression methodology. 

 

7. Conclusions 

This study thoroughly analyses the three-axis magnetometer measurement errors and establishes a 

complete error model including 12 independent parameters, which is more universal and conforms to the 

ellipsoid restriction. However, the calibration matrix derived from the ellipsoid coefficient matrix by a 

different matrix decomposition method is not unique, and there exists an unknown rotation matrix R 

between them [5]. A constant intersection angle method (angles between geomagnetic vector and 

gravitational vector are fixed in the same location) is proposed to estimate R. The geomagnetic field 

vector and heading error are further corrected by R. The simulation experiment indicates that the heading 

error declines from ±1° when calibrated by the classical ellipsoid fitting method to ±0.2° when calibrated 

by the constant intersection angle method, and the signal-to-noise-ratio is 50 dB. The actual experiment 

demonstrates that the heading error is further corrected by the constant intersection angle method 

decreases from the value of ±0.8° when calibrated by the classical ellipsoid fitting method to a value of 

±0.3°. The method proposed is convenient and practical, as it is free from any additional calibration 

procedure mentioned in references [11,12] and the coordinate transformation mentioned in reference [10].  

In addition, the noise suppression methodology can reduce the sensitivity of the solution to measurement 

noise and obtain higher accurate estimator of the rotation matrix than reference [6].  
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