
Sensors 2014, 14, 8669-8685; doi:10.3390/s140508669

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Super-Resolution in Plenoptic Cameras Using FPGAs

Joel Pérez
1
, Eduardo Magdaleno

1,
*, Fernando Pérez

2
, Manuel Rodríguez

1
, David Hernández

1

and Jaime Corrales
1

1
 Department of Fundamental and Experimental Electronic, Physics and Systems,

Universidad de La Laguna, Avd. Francisco Sanchez s/n, 38203 La Laguna, Spain;

E-Mails: jperizq@ull.es (J.P.); mrvalido@ull.es (M.R.); dhernane@ull.es (D.H.);

jaime.abraham.08@ull.edu.es (J.C.)
2
 Department of Statistics, Operations Research and Computation, Universidad de La Laguna,

Avd. Francisco Sanchez s/n, 38203 La Laguna, Spain; E-Mail: fdoperez@ull.es

* Author to whom correspondence should be addressed; E-Mail: emagcas@ull.es;

Tel.: +34-922-318-657; Fax: +34-922-318-228.

Received: 30 December 2013; in revised form: 8 May 2014 / Accepted: 10 May 2014 /

Published: 16 May 2014

Abstract: Plenoptic cameras are a new type of sensor that extend the possibilities of

current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of

the limitations of plenoptic cameras is their limited spatial resolution. In this paper we

describe a fast, specialized hardware implementation of a super-resolution algorithm for

plenoptic cameras. The algorithm has been designed for field programmable graphic array

(FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware

description language). With this technology, we obtain an acceleration of several orders of

magnitude using its extremely high-performance signal processing capability through

parallelism and pipeline architecture. The system has been developed using generics of the

VHDL language. This allows a very versatile and parameterizable system. The system user

can easily modify parameters such as data width, number of microlenses of the plenoptic

camera, their size and shape, and the super-resolution factor. The speed of the algorithm in

FPGA has been successfully compared with the execution using a conventional computer

for several image sizes and different 3D refocusing planes.

Keywords: plenoptic cameras; lightfield; field programmable graphic array (FPGA);

super-resolution

OPEN ACCESS

Sensors 2014, 14 8670

1. Introduction

Human beings live in a world of images, a stream that surrounds us every day so it is difficult to

imagine life without them. Over the last centuries, there is evidence of the continuous evolution of

devices to capture images in its design, size, and optical components. Simultaneously new and

sophisticated techniques have been developed for image processing leading to a better experience for

the user and to more realistic results. Precisely at the junction between photography and computers

appears the Computational Photography [1] field that refers to the capture, processing, and

manipulation of images that improve the capabilities of photography using computers. Computational

Photography combines digital sensors, modern optics, actuators and intelligent lighting to overcome

the limitations of traditional cameras. One of the drawbacks present in most of current cameras is the

capture of a 2D projection of the 3D scene. To overcome this limitation and to capture a “real” image

of the world, several 3D cameras have been developed. They allow viewing an object, a place or scene

considering its three dimensions: height, width and depth. Using this technique, the real space with the

objects and their volumes are described using three coordinate axes, two for the 2D planar spatial

coordinates and one for depth. The plenoptic camera is a device that makes possible to obtain images

focused at several 3D positions after the camera shot (from a captured plenoptic image or lightfield),

which has brought a revolution in the photography field. A lightfield describes the light flowing along

all rays in three-dimensional (3D) space. A plenoptic camera captures the 4D lightfield modifying the

design of conventional cameras by inserting a microlens array between the lens of the camera and the

image sensor to measure the radiance and direction of all the light rays in a scene. Conventional 2D

photographs focused on determined 3D positions are obtained by 2D projections of the 4D lightfield.

The fundamental ideas behind the use of plenoptic cameras can be traced back to the previous century

with the works of Lippmann and Ives on integral photography [2,3]. More recently, one of the first

plenoptic camera based on the principles of integral photography was proposed in Computer Vision by

Adelson and Wang [4] to infer depth from a single image. In their design, the plenoptic camera

consisted of a camera body with a single main lens, a microlens array in front of the camera sensor,

and a relay lens to form the image on the sensor. A fundamental impulse to plenoptic cameras was

given by Ng et al. [5] that presented a similar design, but produced in a portable hand-held device.

Plenoptic cameras have left the research laboratories and some commercial models from several

companies [6,7] can now be found in the market.

Unlike their conventional counterpart, plenoptic cameras capture light beams instead of dots or

pixels of information. This means that when we capture a photograph, we obtain different perspectives

or views of the world allowing the user to refocus the image after the shot, to obtain 3D information or

to select between different views of the image.

An important drawback of plenoptic cameras is the generation of low-resolution images due to their

spatio-angular lightfield sampling [8]. The angular information that is recorded reduces the spatial

resolution and results in a small output image in comparison with sensor size. Methods based on

super-resolution techniques that overcome this limitation in spatial resolution have recently been

presented [9,10]; however, such methods are too slow to be executed in real time on an ordinary CPU.

A solution for real-time processing is the use of dedicated hardware that increases the computational

processing power. In recent years, field programmable graphic array (FPGA) have been used to

Sensors 2014, 14 8671

perform general purpose computations in sensor development for telecommunications, networking, or

consumer and industrial applications with a significant speedup. The low cost of the FPGA

implementation and its low-consumption of energy makes this solution attractive for an

implementation embedded in plenoptic cameras. In this article we describe an implementation on

FPGAs of the super-resolution algorithm for plenoptic cameras presented in [10]. Currently, the same

problem is being solved using other technologies based on systolic and GPU architectures [11–14].

This work is structured in five sections including this Introduction. First, we describe the theoretical

background of the super-resolution algorithm. Then, Section 3 describes the design of the architecture

using FPGA. Section 4 explains the experimental results and finally conclusions and future work are

presented in Section 5.

2. Background

Conventional 2D photographs in a plenoptic camera are obtained theoretically using the

photography transform. This transform takes a 4D lightfield as its input and generates a photograph

focused on a determined plane [5]. To introduce the photography transform we parameterize the

lightfield defined by all the light rays inside a camera. We will use the two-plane parameterization of

this lightfield and write LF(x,u) as the radiance travelling from position u = (u1, u2) ́ (apostrophe

denotes transpose) on the lens plane to position x = (x1, x2) ́ on the sensor plane. F is the distance

between the lens and the sensor (see Figure 1 adapted from [5]).

Figure 1. Two plane parameterization of the lightfield.

The lightfield LF can be used to compute conventional photographs by virtually placing the sensor

plane at any distance αF (see Figure 1). Let be the operator that transforms a lightfield LF at a

sensor depth F into a photograph formed at sensor depth αF. The operator can be formulated as:

 (1)

This equation explains how to compute a photograph formed at a virtual sensor plane that is

located at distance αF from the lens plane. Points in the 2D photograph depend on the spatial variable

t. When we compute the photographs for every distance αF we obtain the focal stack transform of

the lightfield.

Without loss of generality and to simplify the exposition we will absorb the constant term 1/F
2
 into

 . For rendering purposes we want the photograph taken from a constant lightfield to be a constant

independent of so we normalize the photography operator removing the 1/ term. Also, in order to

u=(u1, u2)´

x=(x1, x2)´

u1

u2 x2

x1

Lens
Sensor

F

Sensors 2014, 14 8672

make the discretization easier we reparametrize the focusing distance using (1 − 1/) = q leading to the

normalized focal stack defined in terms of the normalized photography operator as:

 (2)

In practice, the continuous formulation of the photography operator cannot be used since a

plenoptic camera only captures discrete samples of the lightfield (Figure 2). To discretize we

need to resample the lightfield and to approximate the integration process.

Figure 2. Plenoptic image and details from the white square in the plenoptic images [5].

A simple discretization of could be done by resampling the lightfield through local

interpolation and replacing the integration process with sums. In this approach, the Discrete

Photography Operator
 is defined as follows [10] for a lightfield sampled in a 4D grid

 :

 (3)

with and . is the number of microlenses and

 is the number of pixels behind each microlens. Variables with a tilde denote integer

variables. In order to simplify the notation we will assume that and The

generalization to the non-equality case is straightforward. To compute
 we need to obtain values

of for values that are not in the 4D grid. If we use nearest neighbour interpolation we have for

 (4)

with if and 0 elsewhere. Now, since division by implies that

 , where is the super-resolution factor, is the corrected

focusing distance, the algorithm to obtain the Discrete Photography transform at points and focused

at a distance is shown in Algorithm 1.

When the super-resolution factor d is an integer, round ()= − round() and the

positions for all can be easily precomputed.

Sensors 2014, 14 8673

Algorithm 1 Pseudo-code for the algorithm

for all (Microlenses loop)

 for all (Pixels loop)

 Compute = round()

 Update numerator() = numerator() +

 Update denominator() = denominator() +

 endfor

endfor

for all

 Compute
 = numerator()/denominator()

endfor

3. Algorithm to Hardware

The FPGA implementation of the algorithm is based on Equation (4). The Matlab-code for the

super-resolution algorithm is shown in Algorithm 2.

Algorithm 2 Matlab-code for the algorithm

%d is the super-resolution factor

%qp is the 3-D focusing plane

%np+1 is the center of the super-resolved output image

%num is the numerator of Equation (4) and den is the denominator of Equation (4)

%lf is the input lightfield and onesml is a lightfield with all its %values set to one

%ret is the output super-resolved image

precomputed_position=round(d*qp*[-nu:nu]);

for x=-nx:nx

 posx=x*d+precomputed_position+np+1;

 %New position in the “x” microlens

 for y=-nx:nx

 posy=y*d+precomputed_position+np+1;

 %New position in the “y” microlens

 for u=1:Nu

 for v=1:Nu

 num(posx(u),posy(v))=num(posx(u),posy(v))+

 + lf(x+nx+1,y+nx+1,u,v);

 den(posx(u),posy(v))= den(posx(u),posy(v))+oneml(u,v);

 end

 end

 end

end

ret=double(num)./double(den); %element-wise division

Sensors 2014, 14 8674

The Matlab-code loops each (u, v) pixel of each (x, y) microlens. Thus, the algorithm calculates, for

each image data which pixel in the output image to contribute using posx and posy signals. These

positions depend on pre-computed positions posx and posy, the super-resolution factor d and the

selected slope qp.

In the innermost part of the algorithm is computed the contribution of each incoming data to the

output image by adding its value with the existing data in the num matrix and taking account this

contribution in the den matrix (which keeps track of the number of contributions for all pixels in the

output image) in order to normalize the image. This last step is performed on the last for-loop for the

three colors and requires the implementation of a division. We have called Stage 2 to this last step.

The algorithm can be accelerated using parallel processing power of FPGAs instead of other

classical technology platforms [15,16]. In our implementation the improvements are due to the

fact that:

 Arithmetic computations are performed in pipeline and as parallel as possible.

 The algorithm is implemented fully in parallel for each color component.

 We have used a hardware divider that performs the division operation for the normalization

task in a single clock cycle.

Furthermore, the algorithm implementation using FPGA offers the following additional advantages:

 Independence of the technology. The algorithm is fully implemented in VHDL. Thus it can be

implemented on any FPGA from any vendor provided that meets the hardware requirements.

 The implemented system is modular and scalable because we have used VHDL generics and

packages. The implemented system is easily reconfigurable by using these resources of the

language. We can easily change the image size, the width of input data and intermediate

calculations, the slope and the number of microlenses of the sensor.

The image is introduced into the FPGA by rows as a conventional image. This involves rearranging

the nested loops in Algorithm 1. So, the order of the indexes has to change from (x,y,u,v) to (y,v,x,u).

In addition, the origin of the indexes of all the loops has to start at zero, because they will be

implemented using hardware counters. Given these considerations, the Matlab-code has been modified

as shown in Algorithm 3. Taking into account these considerations, the overall implemented

architecture is depicted in Figure 3. The precomputed estimator module acts as the global controller of

the system.

The functional architecture of the design has five sub-modules and a package in which is

implemented the mask of microlenses used by the plenoptic sensor. This mask takes into account that

microlenses vary in size and shape. The name of this component is Geometric Unit and it is

customizable for different sizes and/or shapes of microlenses. Basically, it is a read-only memory

(ROM) that stores the geometry of the microlens. The task of the Positions Estimator is to go over the

image pixel by pixel and to compute the positions of the output image for each incoming pixel data

(posx and posy signals). The Addresses Generator module calculates memory positions where the

partial sum has to be added with the new incoming data pixel using an accumulation operation

(Equation (3)). The Data Accumulator unit computes the num array in Algorithm 2 and stores the new

partial data of the re-focused image in memory.

Sensors 2014, 14 8675

Algorithm 3 Matlab-code for the algorithm for hardware implementation

%d is the super-resolution factor

%qp is the 3-D focusing plane

%np+1 is the center of the super-resolved output image

%num is the numerator of Equation (4) and den is the denominator of Equation (4)

%ps is the input plenoptic image and onesml is a plenoptic image with all its %values set to one

%ret is the output super-resolved image

precomputed_position=round(d*qp*[-nu:nu]);

for y=0:Nx-1

 for v=0:Nu-1

 posy=(y-nx)*d+precomputed_position+np+1;

 global_counter_y=Nu*y+v;

 for x=0:Nx-1

 posx=(x-nx)*d+precomputed_position+np+1;

 for u=0:Nu-1

 global_counter_x=Nu*x+u;

 num(posx(u+1),posy(v+1))=num(posx(u+1),posy(v+1))

 + ps(global_counter_x+1, global_counter_y+1);

 den(posx(u+1),posy(v+1))=den(posx(u+1),posy(v+1))

 +onesml(u+1,v+1);

 end

 end

 end

end ret=double(num)./double(den);

Figure 3. Architecture of the designed system.

Image_red_in

d

qp

Addresses

Generator
Positions Estimator

Onesml_in

R_add

R_add_prev

W_add

Memory

out

Contribution

Accumulator Unit

R_add_empty

W_add_empty

Geometric

Unit

R_add_ones

ml

Ones

ml_in

Image_out_red

Image_green_in

Image_blue_in

Image_out_green

Image_out_blue

Data_Valid

d

End

stage 2

qp

Stage 2

Data_valid

Pos_x

Pos_y

u

v

Pos_x

Pos_y

u

v

Stage 2

R_add

R_add_prev

W_add_empty

R_add_empty

W_add

R_add_onesml

Image_in

R_add

R_add_prev

W_add

Memory

out

Data Accumulator

Unit

R_add_empty

W_add_empty

Combinational

divider

A

B

System

output÷

Sensors 2014, 14 8676

There are three modules, one for each color component. The Contribution Accumulator unit

computes the den array in Algorithm 2. It has a similar structure to the above mentioned module.

Finally, the Divider module implements the normalization of each pixel in the output image by the

number of contributions that apply. There is also one for each color component.

3.1. The Positions Estimator Module

The implementation of this module is depicted in Figure 4. According to the algorithm, this module

generates the pre-computed positions (Algorithm 1). The output positions posx and posy for each

incoming data are generated based on precomputed_positions array, according to Algorithm 2. This

module uses five clock cycles to perform the calculation of the positions.

The module contains four nested counters according to the Matlab-code of Table 3. Pixels of the

lightfield are read by rows (y,v,x,u) using these counters as mentioned in Section 2. It also comprises a

multiplier for the product of slope and super-resolution factor (qp and d), four multipliers, two stages

of rounding, four subtractors and two adders to obtain posx and posy signals.

Figure 4. Diagram of the positions estimator module.

In addition, the Position Estimator module acts as the global controller of the FPGA design of the

system. In this sense, it is responsible for switching the operation of the accumulation modules

according to the value of the Stage 2 signal. The evolution to Stage 2 occurs when the 4 nested

counters reach the maximum value. This event indicates that all pixels of the lightfield have been

accumulated. Then, the system has to realize the dump of data of the new output image (and its

Sensors 2014, 14 8677

corresponding normalization using the divisor module). The storage modules return a finish signal

when the emptying of memory is complete. Thus, it is continuously switching between the two phases

of operation of the accumulators.

3.2. The Addresses Generator

This block is responsible for estimating the memory addresses from the pre-computed positions for

reading and writing of memories, for both the accumulation stage and the memory emptying stage

(Stage 2), where the memory addresses for the emptying are generated by a counter that goes from 0 to

the size of the re-focused output image. The block diagram of the module is shown in Figure 5.

Figure 5. Diagram of the addresses generator.

3.3. The Data Accumulator Unit

This block is the key element of the architecture, since it makes the sum of the contributions to

obtain the output image. The schematic of this module is shown in Figure 6.

Figure 6. Diagram of the data accumulator.

v

u
Read_add_ones_ml

Nu

Pos_y

Pos_y
Read_add_memo

Read_add_memo_

prev

Write_add_memo

Np

Count
top

ceStage 2
Read_add_ones_ml

+ +

Memory

we

Image_in6
Data_new

Consecutives sum

Sel_cons

DQ

Mem_out Mem_in

R_add ==

r_add_previous?

Sensors 2014, 14 8678

The most important blocks of this module are the intermediate memory of storage and the two

accumulators in series that precede it. The datum of entry (Image_in6) is delayed five clock cycles to

be synchronized with the calculus of the output positions (posx y posy) and of the memory addresses

that are associated with them. This supposes that in the sixth clock cycle (Included) the super-resolution

algorithm begins.

3.3.1. Design Considerations

An important hardware problem appears when two or more consecutives data have to be

accumulated in the same output pixel. These data have associated the same values of posx and posy,

and for that reason, they need to access to the same memory address. Since memory consumes one

clock cycle for the reading and writing operations, the data extracted from memory for accumulation is

not updated for the second consecutive data and the following arriving data.

For this reason, one accumulator is implemented to store the data which is called: “Consecutive

data”. It is determined analyzing the actual and previous read addresses with a comparator. Both

directions are obtained with a simple register. When both directions coincide, the sum of all the

consecutive values is made in the first accumulator (sum_consecutives). In this process the line of

write enable (we signal) is disabled through an inverter to avoid overwriting memory with wrong data.

When data is no longer consecutive, the feedback register is deactivated in the first accumulator. After

that, the writing operation is activated and the sum of the new accumulation (data_new) and the

existent data which is contained in memory (mem_out) is performed with the second accumulator.

3.3.2. Data Dumping

After accumulating all the lightfield data, it is necessary to dump the data of the super-resolved

image in a process called Stage 2. In this case, the reading of the memory data is performed

consecutively (Consecutive addresses). In this stage the memory is erased and prepared for the

execution of the algorithm with a new lightfield input. For this reason, the writing permission of the

memory has always to be activated. Then, we introduce multiplexors in the entry of we of the memory

and in the reading and writing addresses, as it is shown in Figure 7.

If the Stage 2 signal is 0, the algorithm in Algorithm 2 is performed. The we signal will have a

value as mentioned in the previous section, and the memory address will be provided by the Addresses

Generator module. If Stage 2 signal is 1, the address direction multiplexor switches to a standard

counter, we signal is 1 and the data of entry to memory is always set to 0, to erase it.

3.4. The Contribution Accumulator Unit

The accumulator module of contributions of the output pixels has a similar architecture to the

previous accumulator. The principal difference is that the size of memory is lower, as the data that has

to be stored uses a lower quantity of bits.

Sensors 2014, 14 8679

Figure 7. Switching between modes of accumulation and dump/erase of the memory.

3.5. Divider Module

This is a pipeline divider which makes the division using nine clock cycles. This module makes the

division between A and B, of XBits and YBits respectively, with the unique restriction

XBITS ≥ YBITS (Being A and B natural numbers), obtaining each nine clock cycles the quotient (Q)

and the remainder (R) [17].

It is arranged as three combinational divisor modules, one for each color channel of the image that

operates when the Stage 2 of the process begins. It consists in the division of each output of the

memories Red-Green-Blue (RGB) by the common contribution memory (Contribution accumulator

memory). The remainder of the divider is used to round the quotient of the division. This allows us to

deliver the system output with the same data type of the input image.

3.6. Geometric Unit

This module is a ROM which stores a mask with the geometry of the microlenses in the lightfield.

The content of this ROM is defined in one package inside the VHDL design. In this way, it is easy to

modify this ROM for the size and the shape of the microlenses defined by the user.

4. Results and Discussion

The design for an entry image of 341 × 341 pixels (31 × 31 microlenses) is been implemented using

the hardware description language VHDL and the synthesizer Xilinx Synthesis Technology (XST) in a

development board Digilent Atlys with a Spartan 6 SX6SLX FPGA. The complete system is been

checked using the simulation software ModelSim (Mentor Graphics Inc., Wilsonville, OR, USA) and

the hardware simulation through Matlab-Simulink Xilinx System Generator (MathWorks, Natick, MA,

USA). The maximum frequency is 149.591 MHz. However, the prototype currently operates at 100

MHz, a frequency which provides the Atlys FPGA board. The critical path is located inside the

Position Estimation module (count_y block, 6.685 ns).

The architecture of the design allows selecting the 3D plane (slope) where we want to re-focus

the image. Furthermore, it allows choosing the super-resolution factor which is applied to the

original image.

Count(u,v,x,y)
=

Full?

Count from 0
to the last
memory
address

Stage 2 = ‘1’

R_add_empty

Mux

Mux

Standard
Read_address

we

‘1’

R_add

w_add

To

divisor
Memories

we

R_add

W_add

Sensors 2014, 14 8680

Figure 8 depicts the original plenoptic image used for simulations and debugging. In Figure 9 the

final results of the test image is displayed for different refocused 3D planes. We selected the lengths of

the signals in the design in order to keep full precision throughout the design, avoiding overflow. In

this case, the length of the incoming data is set to 8 bits. The length of the intermediate signals is such

that overflow problems are avoided. The algorithm consists of accumulations of integer numbers and a

final division that returns an integer quotient and an integer remainder. Thus, there is no precision loss

and the resulting image is exactly the same as the integer part of the image calculated using Matlab

(MathWorks, Natick, MA, USA).

Figure 8. Original plenoptic image.

Figure 9. (a) Slope 0.4. (b) Slope −0.4.

(a) (b)

In Figure 10 the result of the super-resolution algorithm is displayed on the right side. This result is

compared with up-sampling the refocused image without super-resolution using bicubic interpolation.

The comparison shows that the super-resolution technique obtains better details in the output image.

Sensors 2014, 14 8681

Figure 10. Super-resolved (d = 2) (b) and bicubic interpolation based magnification (a).

(a) (b)

4.1. Computational Time Analysis

The implemented architecture is a pipeline that permits continuous data streaming. Considering this

and assuming that the throughput is the number of frames produced per unit of time, the throughput is

859.99 frames per second (116,281 cycles at 100 MHz for an entry image of 341 × 341 and 31 × 31

microlenses) and 9.76 frames per second (10,246,401 cycles at 100 MHz for an image of 3201 × 3201

pixels entry and 291 × 291 microlenses). The use of internal memory allows simultaneous accesses to

the data for each color component. Furthermore, the implemented pipeline divider allows us to obtain

one division for each clock cycle after the latency. The method and the technology used in this

implementation is useful for mobile applications where GPUs may not be available, for instance

embedded on a plenoptic camera, allowing real-time super-resolution on the camera without having to

transfer the image to a host machine. Thus, the transfer from the PC to the FPGA has not been

considered in the computational time analysis. Taking into account this considerations and the

definition of the super-resolution algorithm, the cycles for the operation of the module are:

 (5)

where:

 (6)

and:

 (7)

Independently of the plenoptic image dimensions, there is a delay of 5 cycles for calculate the

values of posx and posy. The execution of the algorithm is performed in streaming, so it is necessary to

take into account the size of the plenoptic image

 . The change of stage in the system entails an

additional cycle and another nine cycles are needed for the output of the pipelined divider.

Sensors 2014, 14 8682

In Table 1 the time used for the super-resolution algorithm implemented in Matlab, C++, and for

the entry image in the FPGA development board is shown. The size of the super-resolved output image

is slightly larger than two times the number of microlenses. It is due to border effects and can be

corrected if desired by cropping the final image.

Table 1. Execution time of the algorithm in Matlab.

Parameter Image 1 Image 2 Image 3

Plenoptic input image resolution (pixels) 341 × 341 341 × 341 3201 × 3201

Number of microlenses 31 × 31 31 × 31 291 × 291

Super-resolved output image resolution (pixels) 69 × 69 69 × 69 589 × 589

Slope 0.4 −0.4 −0.4

Super-resolution (d) 2 2 2

Total time (Matlab) 7.685 s 7.685 s 573.601 s

Total time (C++) 56.9793 ms 56.9793 ms 5325.81 ms

Time Stage 1 (FPGA) 1.162 ms 1.162 ms 102.4641 ms

Time Stage 2 (FPGA) 47.71 µs 47.71 µs 3.4693 ms

Total time (FPGA @ 100 MHz) 1.210 ms 1.210 ms 105.9334 ms

For the computational time analysis in Matlab we have used a Lenovo Z580 computer (Lenovo

Group Ltd., Beijing, China) with the following characteristics: Windows 7 Professional 64 bits, Intel

Core i7 3612QM 2.10 GHz, 8 Gb RAM DDR3, NVIDIA GeForce GT 630 M. For the time analysis in

C++ we have used a Toshiba Satellite A200-1DY (Toshiba Corporation, Tokyo, Japan) with the

following characteristics: Xubuntu 12.04 32 bits, Intel Core 2 Duo T7100 1.8 GHz, 3Gb RAM

DDR2-OpenCV 2.3.

Results show the improvement in the computational time of the FPGA implementation over the Matlab

and C++ simulations. The time reduction factor has been 6,350 for the Images 1 and 2 (341 × 341 pixels

each one), and a value of 5,415 for the Image 3 (3,201 × 3,201 pixels) in comparison with the Matlab

solution and 47 and 52, respectively, in comparison with the C++ solution. The reduction factor is

approximately constant since the computational complexity of the super-resolution algorithm is linear

on the size of the plenoptic image. This can be verified noting that true super-resolution is only

possible if the size of the output image
 is lower than the size of the available data

 so the

computational complexity in Equation (5) is bounded by 2

 . Thus, for the complete

plenoptic image of 29.3 Mbytes, the FPGA processes at 276.7 Mbytes/s and is able to obtain 9 refocused

planes per second. Due to the linearity in the computational complexity, increasing the operation frequency

by a determined factor increases the number of refocused planes per second with the same factor.

4.2. Hardware Resources

Block RAMs are the critical resource for the implementation of the system in a FPGA device.

Table 2 shows the memory resources used for some FPGAs. The Configuration of image column of

Table 2 refers to the configuration of the memories that store the contributions of the incoming data to

the pixels of the output image. Other resources such as DSP48 (arithmetic modules inside the FPGA)

or slices (distributed logic elements) are always below 20% for the FPGAs under consideration.

Sensors 2014, 14 8683

Table 2. FPGA internal memory resources. BRAM: Block RAM.

FPGA device Configuration of image Basic internal RAM module
BRAM

(used/available)

XC6SLX45 Spartan 6 65 × 65 × 4 BRAM 18 Kb 28/116 (28%)

XC6VCX75T Virtex 6 65 × 65 × 4 BRAM 18 Kb 28/312 (8%)

XC6VCX75T Virtex 6 205 × 205 × 4 BRAM 36 Kb 112/156 (71%)

5. Conclusions and Future Work

This paper presents the first FPGA implementation of a super-resolution algorithm for plenoptic

sensors. The main contribution of this work is the use of FPGA technology for processing the huge

amount of data from the plenoptic sensor. The algorithm execution is significantly faster than the

equivalent solution on a conventional computer. This result is due to the extremely high-performance

signal processing and conditioning capabilities through parallelism based on FPGA slices and

arithmetic circuits and its highly flexible interconnection possibilities. Furthermore, the use of a single

FPGA can meet the size requirements for a portable commercial camera.

The design of the super-resolution algorithm was developed using functional VHDL hardware

description language and is technology-independent. So, the system can be implemented on any FPGA

independently of its size and vendor. The design of the FPGA also makes possible to adapt the

hardware to different sizes and shapes of the microlenses.

As future improvements, we are planning to implement the algorithm in bigger FPGAs, for

processing plenoptic images of bigger size. The current bottleneck of the implementation is the

sequential input of the plenoptic data from the charge-coupled device (CCD) to the FPGA. We are

planning to use CCDs that allow parallel transfer of the image data blocks. Taking advantage of the

inherent parallelism of the FPGA, and using a device large enough, the system could obtain images

focused at different distances simultaneously sharing the input data. We are also considering the

implementation of other algorithms based on different super-resolution interpolation kernels.

Acknowledgments

This work has been partially supported by “Ayudas al Fomento de Nuevos Proyectos de

Investigación” (Project 2013/0001339) of the University of La Laguna.

Author Contributions

The work presented here was carried out in collaboration between all authors. Fernando Pérez

developed the algorithm for super-resolution. Eduardo Magdaleno designed the architecture for the

FPGA implementation. Joel Pérez, Manuel Rodríguez and David Hernández implemented the

prototype. Jaime Corrales programmed a C++ script for the algorithm comparisons. Eduardo Magdaleno,

Joel Pérez, Fernando Pérez and Manuel Rodríguez contributed to the organization and early versions

of the manuscript as well as they performed several rounds of critical revisions. All authors have

contributed to the interpretation and discussion of the results and have read and approved the final

version of the manuscript.

Sensors 2014, 14 8684

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bimber, O. Computational Photography-The Next Big Step. Computer 2006, 39, 28–29.

2. Ives, F.E. Parallax Stereogram and Process of Making Same. U.S. Patent 725567, 14 April 1903.

3. Lippmann, G. Epreuves reversibles donnant la sensation du relief. J. Phys. 1908, 7, 821–825.

4. Adelson, E.H.; Wang, J.Y.A. Single lens stereo with a plenoptic camera. IEEE Trans. Pattern

Anal. Mach. Intell. 1992, 14, 99–106.

5. Ng, R.; Levoy, M.; Brédif, M.; Duval, G.; Horowitz, M.; Hanrahan, P. Light Field Photography

with a Hand-Held Plenoptic Camera; Technical Report; Stanford University: Stanford, CA,

USA, 2005.

6. Lytro Inc. Available online: http://www.lytro.com (accessed on 19 December 2013).

7. Raytrix Inc. Available online: http://www.raytrix.com (accessed on 9 October 2013).

8. Georgiev, T.; Zheng, K.C.; Curless, B.; Salesin, D.; Nayar, S.; Intwala, C. Spatio-angular

resolution tradeoff in integral photography. In Proceedings of the Eurographics Symposium on

Rendering, Nicosia, Cyprus, 26–28 June 2006; pp. 263–272.

9. Lumsdaine, A.; Georgiev, T. Full Resolution Lightfield Rendering; Technical Report; Adobe

Systems Inc.: San Jose, CA, USA, January 2008.

10. Perez Nava, F.; Lüke, J.P. Simultaneous estimation of superresolved depth and all-in-focus

images from a plenoptic camera. In Proceedings of the 3DTV-Conference: The True

Vision-Capture, Transmission and Display of 3D Video, Potsdam, Germany, 4–6 May 2009.

11. Wimalagunarathne, R.; Madanayake, A.; Dansereau, D.G.; Bruton, L.T. A systolic-array

architecture for first-order 4-D IIR frequency-planar digital filters. In Proceedings of the IEEE

International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012;

pp. 3069–3072.

12. Lumsdaine, A.; Chunev, G.; Georgiev, T. Plenoptic rendering with interactive performance using

GPUs. In Proceedings of the Image Processing: Algorithms and Systems X; and Parallel

Processing for Imaging Applications II, Burlingame, CA, USA, 22 January 2012.

13. Hahne, C.; Aggoun, A. Embedded FIR Filter Design for Real-Time Refocusing Using a Standard

Plenoptic Video Camera. In Proceedings of the SPIE 9023, Digital Photography X, San Francisco,

CA, USA, 3 February 2014.

14. Lüke, J.P.; Pérez Nava, F.; Marichal-Hernández, J.G.; Rodríguez-Ramos, J.M.; Rosa, F. Near

Real-Time Estimation of Super-Resolved Depth and All-In-Focus Images from a Plenoptic

Camera Using Graphics Processing Units. Int. J. Digit. Multimed. Broadcast. 2010, 2010,

942037:1–942037:12.

15. Magdaleno, E.; Rodríguez, M.; Rodríguez-Ramos, J.M. An Efficient Pipeline Wavefront Phase

Recovery for the CAFADIS Camera for Extremely Large Telescopes. Sensors 2010, 10, 1–15.

16. Magdaleno, E.; Lüke, J.P.; Rodríguez, M.; Rodríguez-Ramos, J.M. Design of Belief Propagation

Based on FPGA for the Multistereo CAFADIS Camera. Sensors 2010, 10, 9194–9210.

http://ieeeexplore.net/search/searchresult.jsp?searchWithin=p_Authors:.QT.Madanayake,%20A..QT.&searchWithin=p_Author_Ids:37270779600&newsearch=true
http://ieeeexplore.net/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dansereau,%20D.G..QT.&searchWithin=p_Author_Ids:37270808500&newsearch=true
http://ieeeexplore.net/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bruton,%20L.T..QT.&searchWithin=p_Author_Ids:37270810800&newsearch=true
http://www.mdpi.com/1424-8220/10/10/9194
http://www.mdpi.com/1424-8220/10/10/9194

Sensors 2014, 14 8685

17. Sutter, G.; Bioul, G.; Deschamps, J.P.; Boemo, E. Power Aware Dividers in FPGA. Lect. Notes

Comput. Sci. 2004, 3254, 574–584.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

