
Sensors 2014, 14, 8961-8983; doi:10.3390/s140508961 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

A Ubiquitous and Low-Cost Solution for Movement Monitoring 

and Accident Detection Based on Sensor Fusion  

Filipe Felisberto 
1,2

, Florentino Fdez.-Riverola 
2,

* and António Pereira 
3,4

  

1
 FCT (Fundação para a Ciência e a Tecnologia), Foundation for Science and Technology,  

Lisbon 1249-074, Portugal 
2
 Higher Technical School of Computer Engineering, University of Vigo, Polytechnic Building, 

Campus Universitario As Lagoas s/n, Ourense 32004, Spain; E-Mail: fmfelisberto@uvigo.es 
3
 INOV INESC INNOVATION, Institute of New Technologies of Leiria, P-2411-901, Leiria, 

Portugal 
4
 Computer Science and Communications Research Centre, School of Technology and Management, 

Polytechnic Institute of Leiria, P-2411-901, Leiria, Portugal; E-Mail: apereira@ipleiria.pt 

* Author to whom correspondence should be addressed; E-Mail: riverola@uvigo.es;  

Tel.: +34-988-387-015; Fax: +34-988-387-001. 

Received: 7 April 2014; in revised form: 14 May 2014 / Accepted: 15 May 2014 /  

Published: 21 May 2014 

 

Abstract: The low average birth rate in developed countries and the increase in life 

expectancy have lead society to face for the first time an ageing situation. This situation 

associated with the World’s economic crisis (which started in 2008) forces the need of 

equating better and more efficient ways of providing more quality of life for the elderly. In 

this context, the solution presented in this work proposes to tackle the problem of 

monitoring the elderly in a way that is not restrictive for the life of the monitored, avoiding 

the need for premature nursing home admissions. To this end, the system uses the fusion of 

sensory data provided by a network of wireless sensors placed on the periphery of the user. 

Our approach was also designed with a low-cost deployment in mind, so that the target 

group may be as wide as possible. Regarding the detection of long-term problems, the tests 

conducted showed that the precision of the system in identifying and discerning body 

postures and body movements allows for a valid monitorization and rehabilitation of the 

user. Moreover, concerning the detection of accidents, while the proposed solution 

presented a near 100% precision at detecting normal falls, the detection of more complex 

falls (i.e., hampered falls) will require further study. 
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1. Introduction 

As of 2013, studies show that the reduction of the birth rate in developed countries associated with 

the increase of the life expectancy in both developed and in developing countries is causing the ageing 

of the World’s population. For the first time in history, the World’s population over 65 years old is 

larger than the population under 5 [1] and it is expected that by 2060 the population over 65 will have 

grown from the current 17.1% to 30.0% [2]. This situation entails two direct results, the first being an 

increase of health care necessities as, on average, with aging also comes a deterioration in health 

conditions; the second, a reduction of the workforce, which means there are more persons in need of 

support (both in terms of health care support and in terms of economic support) but less people 

available to provide that same support. By 2050 it is expected that the economic old-age dependency 

ratio in the European Union will have risen from 37% in 2003 to 70% [3]. 

At the same time, with the increased economic struggles faced by Western countries, many social 

problems have surfaced. The recession that started in late 2007 lead to a decrease in the gross domestic 

product (GDP) which was not accompanied by a similar decrease in health care expenditures (both 

public and private) [4]. 

In this context, the Elder Care platform was previously envisioned [5] with the goal of providing the 

necessary tools to mitigate the problems concerned with the need for personal monitoring of the 

elderly, both during activities of the daily living (ADL) as during rehabilitation processes. By 

delivering a system that is capable of constantly monitoring and analyzing the user’s health status, the 

solution enables the elderly to continue living in their own homes instead of having to be 

institutionalized in a nursing home.  

In this article, we tackle the specific problem of monitoring the user’s movement. The field of 

human movement monitoring is widely studied and different types of solutions have been presented 

over the years. These solutions vary widely in terms of what is being monitored and how the 

monitoring is done. The most precise solutions rely on external monitoring systems composed of 

advanced image processing equipment to identify the users’ movements, postures and infer the users’ 

ADL [6,7]. However, there are still some limitations for these types of systems. The first, to be able to 

guarantee the correct detection it is necessary to make sure that there are no blind spots and that every 

room in the elderly person’s home is equipped with the number of cameras required for the type of 

monitoring, so the high number of cameras necessary can become an economic detriment. Moreover, 

the monitoring ends if the user leaves his or her house. The second being the reluctance to accept a 

somehow Orwellian solution as an image processing solution requires waiving some of the user’s 

privacy. For historic reference, one of the first projects for a fall detection system, was forced to shift 

from image processing to body placed sensors due to privacy concerns [8]. 

On the other hand, while an inertial sensor based solution is unable to have the same precision as 

computer vision in terms of motion capturing, it was already shown that by resorting to the correct 
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sensor fusing techniques it is still a viable solution for movement recognition, and as it is placed on the 

user’s body it doesn’t suffer from spatial constraints and the user’s sense of privacy is maintained [9]. 

Like with computer vision-based solutions, the ones based on inertial sensors also vary in degrees of 

complexity. In one side of the spectrum are the solutions whose sole function is to detect sporadic 

events and require a very small number of nodes and sensors, e.g., fall detection can be done with a 

single node [10]. In the middle of the spectrum are the solutions that track body actions and body 

postures using one [11] or two nodes [12,13], depending on the complexity of the algorithm chosen. 

Finally, in the end of the spectrum are the solutions, which not only track changes but are also able to 

discern differences between actions of the same type. The number of nodes necessary varies with the 

number of body parts being monitored, some implementations are specific to a single body part and 

require less sensors [14] while others require the full body to be monitored and need a large number of 

nodes [15]. In this part of the spectrum are the great majority of the applications concerning elite sport 

monitoring. These applications have a very low error tolerance, thus requiring both a high sampling 

rate (some as high as 500 Hz [16]) and the data to be externally processed. A good review of some of 

these applications can be found in [17]. 

This study intends to prove that a solution using inertial sensors supported by a wireless sensor 

network (WSN) can be scaled to a system that is viable for day-to-day use and still have a high 

precision in detecting deterioration in movement, help in rehabilitation and detect accidents. With this 

purpose, the rest of the paper is structured as follows: Section 2 provides a brief introduction to the 

WSN architecture used in this work. Section 3 presents the available sensor data and shows how it was 

fused to obtain the necessary information for the proposed solution. Section 4 explains how the system 

copes with the individualized characteristics of each user. Section 5 describes the supported events, 

which will be subsequently recognized and categorized. Section 6 presents the experimental protocol 

and analyzes the results obtained from the different tests carried out. Finally, Section 7 summarizes the 

mains conclusions extracted from the work and identifies future research lines. 

2. Architecture of the System 

When designing a system that relies on information being processed in a WSN, it is important not 

only to take into account the processing power of the sensor nodes, but also to evaluate how this extra 

processing will affect the node’s autonomy. The architecture in which this solution relies is the result 

of the continuous improvements made to the BodyMonitor architecture [18]. While it was initially 

envisioned for a Fall Detection System (FDS), this constraint had already been taken into consideration 

and it was concluded that it was necessary to divide the processing tasks and relay some of the 

processing to an external system. This requires a rigorous study in advance to define what is processed 

internally and what is relayed, as heavy communication between the WSN and the external system has 

an even greater impact to the WSN’s autonomy. 

In this specific case, to be able to balance the cost between WSN processing and WSN 

communication, the data sampled by the sensor nodes are processed by the node itself but time series 

analyzes, both long and short term ones, are done on an external system. While the base principals 

from the initial architecture were kept, the architecture itself had to be redesigned taking into account 

the extra complexity of the new system. In the FDS each node was independent, relied solely on its 



Sensors 2014, 14 8964 

 

own data and it did not require the direction component or any advanced filtering as it only used one 

sensor. In the present work there are two more sensors involved, there is more information that needs 

to be compared and the sensor nodes have to communicate between each other in order to access the 

state of the entire body. In addition, it is not possible to have a type of ―one fits all‖ solution, as what 

can be normal values for a user can mean deterioration or improvement to another. 

For intra-WSN communication the standard that most closely conforms to this project requisites is 

the IEEE 802.15.6 Body Area Network (BAN), which as of March 2014 is still under being drafted [19]. 

As the name infers, the standard was specially designed for communication between devices placed on 

the human body, and one of the most important aspects of this standard is its requirement for ultra-low 

power consumption [20]. As during the development of the node’s prototype there was no available 

radio that already implemented the task group’s 2011 draft [21], it was necessary to choose a testing 

alternative. The standard that was chosen for this purpose was the IEEE 802.15.4 Low Rate Wireless 

Personal Area Networks (LRWPAN) [22], which already has multiple implementations both closed 

and open, and a great variety of readily available radios. While there are clear differences in terms of 

energy autonomy between both standards, the ones attained by the LRWPAN were considered 

acceptable for a testing environment. At the same time, the constraints defined in the BAN draft were 

also taken into account in order to guarantee a future transition.  

In terms of communication error handling and packet routing, both standards have already defined 

methods. As one of the objectives of this work is to minimize the main microcontroller utilization, it 

was given priority to techniques that were implementable in the radio itself. 

Thus, in summary, the proposed architecture keeps the bases from the previous architecture but its 

complexity is increased as new layers of processing and new capabilities are introduced, which require 

the use of improved information fusion technics [23]. In this context, Figure 1 shows a diagram of the 

BodyMonitor architecture followed by the description of its main components. 

Figure 1. BodyMonitor architecture. 

 

 Sensor node: The sensor node (see Figure 2) is responsible for the acquisition and processing of 

information relative to the respective body area. It is the first layer of decision regarding the importance 

of the gathered information. The microcontroller base board measures 4.8 cm   3.5 cm   0.8 cm and 

weights 11 g, the expansion board measures 3.6 cm   3.5 cm   0.4 cm and weighs 5 g. 
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 WSN: In case of an event whose relevance cannot be decided solely using the information gathered 

by a single node, that node may request information from the remaining nodes and make a decision 

accordingly. 

 Remote server: If even after contacting the remaining sensor nodes the data remains inconclusive, 

last samples from all sensors are sent to the remote server to be analyzed. The remote server is the 

one responsible to individualize each user’s information, keep this information updated and to 

detect long-term changes. 

Figure 2. New node developed for the proposed solution. (A) radio side of the node 

containing the 802.15.4 compliant radio. (B) microcontroller and expansion port side.  

(C) node with the sensorial board attached. 

 

3. Sensorial Data: Issues, Placement and Fusion 

For data sources, the proposed solution relies on three sensor nodes, each one equipped with three 

tri-axial Microelectromechanical Systems (MEMS) sensors. The used sensors are an accelerometer, a 

gyroscope and a magnetometer. The selected gyroscope was the STMicroelectronics L3GD20, the 

magnetometer and the accelerometer functions were both provided by a STMicroelectronics 

LSM303DLHC unit.  

As mentioned, by relying on sensors placed on the user’s body the study is prone to errors natural to 

internal monitoring systems. In order to minimize inaccuracy, it is important to understand what the 

limitations of each sensor are and how to minimize the deviation it introduces.  

During this and the following sections, and while describing movement and orientation, the global 

frame of reference has the X axis going backward to forward, the Y axis is left to right and the Z axis 

goes from bottom to top.  

3.1. Accelerometer  

The most commonly used sensor for both movement and orientation analysis is the accelerometer. 

In the past years, this type of sensor has become very precise and capable of handling a wide range of 

values. The selected accelerometer measures acceleration in all three axis. For the proposed 

application, the limitation of the accelerometer is that it measures proper acceleration, which is the 

acceleration relative to a resting referential [24], instead of directly measuring the movement’s 
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acceleration, making it unable by itself to differentiate the dynamic acceleration from gravity  

(
prop dyna a g  ). 

While integrating to obtain velocity, and in order to correctly understand the direction of the 

movement, gravity needs to be constantly subtracted from the previous vector. In order to accomplish 

this, data must be constantly updated from an initial reference. During slow changes of orientation the 

data loss from noise are minimal, but during fast activities, sudden changes of orientation or free fall it 

becomes impossible to correctly identify the node’s orientation.  

On the other hand, if the sum of all forces to which the system is being exposed are equal to the 

gravity force then the system is, most likely, in a stationary state. In this case, the formula used is

0propa g  ; meaning gravity is the only acceleration vector to which the node is being subjected and, 

as gravity is a static vector, it can be used as a reference to calculate the orientation of the sensor node 

(although only pitch and roll can be obtained). These reasons make the accelerometer very precise for 

long-term analyses but prone to error on smaller erratic events. 

3.2. Gyroscope 

The gyroscope measures the angular velocity  . Unlike the accelerometer, its measurements are 

more absolute as there is no external information to be taken into account. Therefore, each independent 

sample is more precise than the one’s obtained from the accelerometer. The first problem with the 

gyroscope is that the data it returns only represent the rate of change of the angular position, so to be 

able to know the sensor current angle it is necessary to have an initial reference. This initial orientation 

has to be continuously updated through integration of the gyroscope values. This leads to the second 

problem with gyroscopes, for a truly precise solution, it would be necessary to have an infinite number 

of samples, as for each sample not collected there is an increase in the aggregated error, this is known 

as angle random walk [25]. Moreover, as in all MEMS there is an inherent error. In the case of the 

gyroscopes the bias error causes an angular velocity to be detected even when there is no movement at 

all, which adds to the drift problem. Whereas while using the accelerometer it is possible to precisely 

infer the node’s orientation from the gravity vector, the same cannot be done using the gyroscope, as 

there is no reference to use. As the gyroscope is unable to reset to an initial state it is not possible to 

discard all the accumulated errors, resulting in it being less precise on the long-term. 

3.3. Magnetometer 

Finally, the magnetometer measures the Earth’s magnetic field in all three axis, allowing an 

accurate calculation of the sensor’s orientation. In perfect conditions (i.e., sensor perfectly calibrated to 

the geographic magnetic declination and in an area free of magnetic interference), with the 

magnetometer it is possible to have an instantaneous precision as high as the gyroscope with the  

long-term precision of the acceleration. Unfortunately, of all the considered sensors, the magnetometer 

is the one most prone to external interference. As the magnetometer measures all magnetic fields (not 

only the Earth’s one) it is very sensitive to hard iron distortions, which are commonly created by the 

magnetic fields generated by other devices.  

 



Sensors 2014, 14 8967 

 

3.4. Sensor Placement 

When selecting how many sensor nodes to use and where to place them, it was taken into account 

the ubiquity of the system, the costs to both deploy and maintain the WSN, and the easiness of use. A 

solution with a high number of nodes allows for a more complete monitoring, but it also implies a high 

deployment cost and greatly reduces its usability, jeopardizing its acceptance. Taking into 

consideration the economic disadvantages and the big percentage of digital exclusion, or even 

technophobia faced by this solution’s target population [26] it was decided to use as few nodes as 

possible, without endangering its capability to detect abnormalities. This meant not monitoring body 

areas that while helpful in identifying user movement patterns, were not strictly required in the scope 

of this study (e.g., arms). Taking into consideration previous covered ideas, sensor nodes were finally 

restricted to the upper torso, hip and leg. 

The upper torso sensor node (Nt) is primarily responsible for identifying bad back postures and 

recognizing when the user is lying. High accelerations in this area are always motive for further 

analysis, not only for being uncommon but also due to this node’s proximity to the head. 

The node placed in the hip (Nh) is the coordinator node, being responsible for maintaining the 

communication inside the WSN and to connect the WSN with the remote server. For its placement in a 

very stable position (under normal physical proportions in the center of mass [27]) this node is the sole 

responsible for keeping track of the body’s movement as a whole. 

The third node is located on one of the user’s legs (Nl). If the user has a homogenous gait, the 

sensor is simply placed parallel to Nh, otherwise (e.g., due to a limp) the node is placed on the affected 

leg. While in [28] it was proven that the size of each step can be measured by accelerometer data being 

recorded from the hip, this solution allows for more precise monitoring of the way the gait is being 

performed, and is also invaluable in terms of identifying the leg position when resting. 

In the following section, it will be discussed how it is possible to correctly identify movement 

patterns and variations by analyzing the data from the separate nodes and fusing the information 

among them. 

3.5. Sensor Fusion 

While the proposed system does not require the high precision necessary for motion capture, it is 

still important to have a degree of confidence on the data being analyzed. For that reason, the data 

collected has to be filtered and normalized prior to be used. In a first step, the accelerometer data are 

refined using a median filter (with a window of five samples) in order to smooth out the noise. If the 

noise is not taken into account, it will propagate while integrating for speed. Figure 3 shows both 

unfused (control) and filtered data belonging to a simple test of walking for two meters in a straight-line 

(the samples were collected from the node placed on the hip). Due to the error prone nature of the 

double integration needed to obtain the distance, it will not be used in this project. This trial was a 

straight-line test designed specially to minimize noise, so it can be used to illustrate the difference 

between using filtered and unfiltered acceleration. By integrating both filtered and control speeds over 

the recorded test time, we get two very different distance values of 3.68 m and 2.10 m, respectively. 
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This represents an accumulated error of 84% when using unfiltered acceleration and 5% when using 

filtered acceleration. 

Figure 3. Acceleration and speed data with and without filtering. 

 

Afterwards, and in order to obtain a correct orientation of the node, data from the three sensors need 

to be fused. For the current project, three different fusing algorithms were studied: (i) Extended 

Kalman Filter (EKF), (ii) Direct Cosine Matrix (DCM) and (iii) a control algorithm which fused each 

individual sample ignoring past knowledge. Figure 4 represents the orientation obtained from fusing 

the sensorial data collected from the hip node whilst the user was walking with the least wobbling 

possible. The control algorithm showed a constant increase in error and the orientation continued to 

climb even after the spikes were recorded. Both DCM and EKF algorithms were able to handle the 

incremental error, but the EKF coped with noise spikes better, smoothing them out immediately. Both 

studies are straightforward explained in our previous work [9]. 

Figure 4. Study of the three different algorithms used for calculating orientation. 
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While fusing the three sensors, the ones that are mostly used are the accelerometer and the 

gyroscope. The magnetometer is used for data confirmation and normalization as its susceptibility to 

interferences from other devices makes it very prone to indoor errors, where the proposed solution will 

be mostly used. 

Previous approaches that lack gyroscope and magnetometer use the absolute value of acceleration [10] 

permitting a direct subtraction of gravity by means of Equation (1): 

2 2 21 1dyn x y za a a a a       (1) 

However, by using this computation all the information about direction is lost. As the result of the 

pre-processing is a viable orientation quaternion (
G

N q ), it is possible to obtain the dynamic acceleration 

vector by removing the gravity component from the node’s filtered acceleration. To be able to subtract 

the gravity vector, it is necessary to displace it from the global frame of reference (
G g  ) into the node’s 

own frame (
N g ). To do that, the rotation quaternion must be applied to gravity, but as a quaternion 

rotation can only be directly applied to another quaternion, it is first necessary to convert the vector 

into a pure imaginary quaternion. A pure quaternion is a quaternion with a zero scalar part, so the new 

quaternion is defined as  0 0 0 1G g   and it can be rotated using Equation (2). Equation (2) is 

applicable because the rotation quaternion is a unit quaternion [29]: 

*N G G G

N Ng q g q  (2) 

The resulting quaternion will also have the scalar part zero, so its representation in 
3R  is the gravity 

vector 
N g . The dynamic acceleration can now be calculated using Equation (3): 

dyn propa a g   (3) 

By integrating the dynamic acceleration vector over time (using Equation (4)), we obtain the 

movement’s velocity. Unfortunately, even after filtering the data it still presents a degree of error, so in 

the long-term, velocity becomes unusable and it is best suited to support accident detection: 

   dynv t a t dt   (4) 

The sensor node’s orientation and its dynamic acceleration vector make up for the necessary 

information for studying the movement of the corresponding body part. 

3.6. Internal and External Sensor Fusion 

The wireless nodes collect information with reference to themselves and not the body part to which 

they are attached, so directly mixing information between users would lead to misclassification, as 

users with different body characteristics would have different orientation values for the same postures.  

The external system is only required during an initial calibration process where each user’s posture 

is calculated using Microsoft Kinect SDK. To avoid errors, data from both computer vision and 

wireless node are averaged during a period of ten seconds to define the initial orientation quaternions 

(Equation (5)) [30]: 

,qcv wnq  (5) 
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During regular use, to obtain the normalized orientation it is first calculated the rotation quaternion 

that would rotate the wireless node from its initial state to the current one ( q ) (Equation (6)). This 

rotation is then applied to the computer vision quaternion (Equation (7)) and the resulting orientation 

can be compared with other user’s normalized orientation: 

1

rot wnq q q    (6) 

norm cv rotq q q 
 (7) 

A similar approach was used in [31] to fuse gyroscope data and computer vision markers in order to 

better monitor the movement of a tennis player’s arm. 

4. Profiles 

To be able to accept any user (regardless of his size, weight or sex) the system uses a combination 

of two types of profiles: (i) an ideal profile also referred as default profile, which contains the ideal 

values for the user’s age, height, weight and health condition, which are defined by the supervising 

physician accompanying the user and (ii) a individual profile, storing information unique to each user 

together with the user’s deviations from the default profile. 

4.1. Default Profile  

The information stored in the default profile is shown in Table 1. 

Table 1. Variables present in the default profile. 

Id Description 

1P
 

Ideal orientation of the torso while standing 

1, 1,y( , )xP P  

2P
 

Ideal orientation of the torso while walking 

2, 2,y( , )xP P  

3P
 

Ideal orientation of the torso while sitting 

3, 3,y( , )xP P  

4P
 

Range of speed values while walking 

4,min 4,max( , )P P    

5P
 

Range of step cadence while walking 

5,min 5,max( , )P P    

6P
 Step length (ratio) 

7P
 Step force (ratio) 
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4.2. Individual Profile 

Additionally to the deviation from the default profile ( 1Pu ,.., 7Pu ), each user profile contains data 

unique to each user. Table 2 specifies this information. 

Table 2. Variables specific to each user. 

Id Description 

8Pu  Weight 

9Pu  Height 

10Pu  Leg length 

4.3. Inferred Information 

In the same way as velocity could be inferred by fusing the information from multiple sensors, 

additional information can be obtained by using the physical quantities already calculated in 

conjunction with the existing profile information. This extra information is presented in Table 3.  

Table 3. Calculated variables. 

Id Description 

Slt Step length 

Scd 
Step 

cadence 

Sf Step force 

A step is calculated by measuring the time between peak-to-peak acceleration values from the hip 

node. The step length (Slt) is calculated integrating velocity over the time interval of the step. The step 

cadenced (Scd) is the number of detected steps per second. The step force (Sf) is calculated using the 

vertical acceleration from the leg node (this does not represent the actual force as some of it is 

absorbed by both the foot and lower leg, but can still be used to detect deterioration or improvements). 

For energy conservation reasons, both Slt and Sf are only processed for the first step of each sample. 

5. Events 

During constant monitoring of the user, the sensor node will trigger an event whenever it detects a 

change in the state of its movement or orientation, or when the data being analyzed are different from 

what is defined in the user’s profile. There are three types of events used in this work: (i) state changes, 

(ii) anomalies and (iii) alerts. 

In this section and while describing the human body’s rotation, the frame of reference used has its origin 

in the hip joint area (Figure 5) and its axes follow the same rules defined for the global frame of reference. 

  



Sensors 2014, 14 8972 

 

Figure 5. Reference system used for the human body. 

 

Also, for rotation nomenclature we will use those terms normally associated with aviation. 

Accordingly, roll is a rotation over the X axis, pitch over the Y axis and yaw over the Z axis. 

5.1. State Change 

To be able to confirm and/or differentiate between events, it is necessary to know the user’s state. 

This requires that each sensor node, as well as the WSN itself, keeps track of the information regarding 

the state of the movement of both the entire body and individual nodes (see Table 4) and the body 

posture (see Tables 5 and 6). 

Table 4. Movement states. 

State Description 

  Movement state–Moving 

 Movement state–Stationary 

The algorithm used to differentiate between activity and inactivity is based on the Acceleration 

Moving Variance Detector function (Equation (8)) defined in [32], which is based on the work [13]. 

This algorithm compares the variance of a window of acceleration samples to a pre-defined threshold, 

and movement is detected if the variance surpasses this threshold. In our adaptation, the acceleration 

used (a) is the already filtered dynamic acceleration instead of raw acceleration. The window size (N) 

used is 20 samples and the threshold (γ) 0.0013:  

2

1

1 N

n k
kN

a a 


   (8) 

The full body movement state is defined by the hip node’s last state. 

While the full body movement state was dependent on solely the information from one node (hip), 

the orientation state is defined by the information from both the torso and leg nodes. Each node only 

informs the WSN once for each sampling period, only if the node’s final orientation would trigger a 

full body state change. In Table 5 are defined the state transitions functions for each of the three 

possible states (Standing ( StO ), Lying ( LO ) and Seated ( SiO )). Moreover, with the goal of simplifying 

the comprehension of Table 5, auxiliary Table 6 shows the sub equations used to define the torso and 

leg’s orientation as horizontal or vertical. 

  

MM

SM
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Table 5. Orientation states and respective state change equations. 

State Description Transition State Equation 

StO  Orientation state–Standing 

LO  
h hT L  

SiO  hL  

LO  Orientation state–Lying 
StO  v vT L  

SiO  vT  

SiO  Orientation state–Seated 
StO  vL  

LO  hT  

Table 6. Body part orientation equations. 

Orientation Description Equation 

hT  Horizontal Torso 
2

{ , }:
3 3

roll pitchNt Nt Nt Nt
 

     

vT  Vertical Torso { , }:
4

roll pitchNt Nt Nt Nt


    

hL  Horizontal Leg 
3 6 6

roll pitchNl Nl
  

      

vL  Vertical Leg 
6 12 12

roll pitchNl Nl
  

      

5.2. Anomalies 

An anomaly is a discrepancy between the data analyzed by a sensor node and what has been defined 

in the user’s individual profile. Anomalies can be detected based solely in the data from one sensor or 

it may require data from the WSN. Up to now, the supported anomalies are those showed in Table 7. 

Table 7. Description and equations of the events characterized as anomalies. 

Id Description Equation 

1An  Torso’s inclination 1,x 1, 1roll pitch yNh P Nh P An     

2An  Incorrect gait 6 9 9,min 9,max 2.Slt Pu Pu Pu Scd Pu An      

3An  Contact force of the step , 3

N

G dyn zNl a Sf An   

4An  Excessive vertical acceleration   , 4, , , 0 1N N

G dyn z G dynN Nh Nt Nl a a g An      

5An  
Excessive body velocity with a 

descendent direction 
, ,x , ,x 50 1G G G G G

dyn z dyn dyn z dyn dynv v v v a g An        

Whenever a sensor node detects an anomaly it will always be reported back to the remote server, so 

that it can be further analyzed in order to verify the existence of an alert. Before sending the anomaly 

the node buffers it for a predefined threshold (10 s), so extra information can be gathered. Moreover, 

for anomalies 1 to 3 (see Table 7) if after 10 seconds no other event was fired and the condition that 

led to the anomaly was corrected, the anomaly is stored and it is only sent during scheduled 
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information updates. This is necessary, as communication with the remote server is very burdensome 

to the batteries. 

5.3. Alert 

Alerts are in fact the specifications of the anomalies, which for motives of energy conservation and 

lack of processing power have to be identified after the information is analyzed in the remote server. 

Contrary to the anomaly, when discerning alerts it is taken into consideration samples that were 

collected prior and after the event (series analyses), so more than one anomaly may be necessary to 

trigger a given alert. The types of alerts already supported in our system are showed in Table 8. 

Table 8. Description and triggering effects of the events characterized as alerts. 

Id Description Trigger 

1Al  Normal fall 

Triggered by 
4An

 
and 

5An . To guarantee a high certainty both Bourke’s 

approach [33], which relies on the trunk’s vertical velocity, and the previously 

referred solution is used, which applies an acceleration threshold in the WSN 

and logistic regression in the remote server to confirm the actual fall [34]. 

2Al  Hampered fall 
Triggered by 4An , 5An  and requires sM . Being the current state sM  and x  

the number of occurrences of 4 5An An
 
in the last 3 seconds, 23x Al  . 

3Al  
Incorrect posture 

while seated 

Triggered by 1An
 
and requires stO . After three consecutive 1An  without a 

change of orientation 3Al . After the identification of 3Al , the WSN is 

notified to stop sending anomalies of the type 1An
 
until there is a change of 

posture. 

4Al  Gait deterioration 
Triggered by 2An , 3An

 
and requires MM . The procedure is the same as in

3Al . 

The rule of not sending anomalies directly to the remote server if the problem has been corrected, 

leads to alerts 3Al , 4Al and 5Al serving for posterior re-education of the way of correctly preceding 

rather than to actually correcting as it is taking place. 

6. Experimental Results 

To demonstrate the validity of our proposal, a set of different tests were designed and conveniently 

carried out. These tests were divided into two major groups: (i) the first group consists of experiments 

to verify if the states are being correctly identified while (ii) the second one consists of experiments to 

validate the abnormality and alert detection process.  

6.1. General Experiment Procedure 

As with any testing scenario that involves human interaction, the WSN data will have slight 

variations, even when the same person repeats the procedure. In this context, and with the goal of both 

having data to be reused and the experiments revalidated, all the experiments used pre-recorded data 

captured using the WSN. Moreover, to guarantee an adequate sampling rate data were captured with a 

sampling rate of 100 Hz, twice as high as what is considered the optimum for human movement 

recognition [11]. Each of the ten volunteers conducted every test twenty times. To guarantee a 
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maximum number of valid tests, each group of tests was validated using the developed software. In 

case of recording errors (due to prototype malfunction or user fault) those tests were immediately 

repeated under the same conditions. In terms of sex distribution, five volunteers of each genre were 

selected. The average age of the volunteers was of 27.2 years with a standard deviation of 3.73. The 

average height and weight were respectively 1.62 meters and 72.6 kilograms with a standard deviation 

of 0.08 and 16.98, respectively. Figure 6 shows how each node (chest, hip and leg) was placed in a 

volunteer for sensorial data recording. 

Figure 6. Volunteer using the recording platform. 

 

For practical reasons, the initial tests were run on an x86 hardware architecture instead of directly 

on the WSN. When the algorithms entered a stable state, they were ported to the WSN architecture and 

the experiments were again run, now using the actual nodes. For the current work all the experiments 

were done by healthy and young volunteers, as some of the rougher tests could cause injuries to a more 

elderly user.  

6.2. Movement State Experiments 

It is important for the system to be able to correctly detect any transition between states, otherwise 

it will not be able to correctly identify abnormalities. This is true because the system requires the 

knowledge of the current state to be able to identify the actual type of abnormality and, in some cases, 

to define the degree of importance of an alert (e.g., if the user’s state after an impact is laying, it is 

given a higher importance to the alert than if the state is standing). 

The movement states are Stationary and Moving. It is important to keep in mind that while one or 

more sensor nodes may detect movement changes, it may not mean the user is moving. For example, 

the user might be sitting down and still be shaking his leg nervously. In order to test if the system is 

able to discern if the user is moving or he is stationary different test scenarios (showed in Table 9) 

were created. 
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Table 9. Description of movement state experiments. 

Experiment Description State 

Walking 
The test subject walks in a natural in an L shaped route back and forth for one 

minute. 
MM  

Still 
The test subject remains stationary standing up, sitting down and laying down 

for one minute. 
SM  

Walking–Still–

Walking 

(WSW) 

The test subject does the same route, but this time before turning around in the 

end of the route, he should remain still for 10 seconds. After the pause, he 

resumes walking, each complete route is done 5 times. 

,M SM M  

Standing not 

still (SNS) 

While standing upright, the user is requested to make the following movements 

without walking: 

(i) Catch an object from the floor; 

(ii) Place that object in a high place; 

(iii) At a normal pace, flex the leg raising it from the ground; 

(iv) Rotate his upper body from one side to another. 

SM  

6.3. Orientation State Experiments 

The objective of the tests presented in Table 10 is to verify (i) if the system is able to correctly 

recognize normal human positions, (ii) identify the transition between these positions and (iii) the 

precision at which each body parts’ orientation is being calculated. 

Table 10. Description of orientation state experiments. 

Experiment Description State 

Standing 
(i) Control, standing in the user’ normal position; 

(ii) While standing, rise the sensor leg. 
StO  

Seated 

(i) Control, sitting with straight back in the chair. 

(ii) Slowly slide in a chaise longue, into an almost horizontal 

position. 

SiO  

Lying down 

(i) Lying on the back; 

(ii) Lying with the chest down; 

(iii) Lying on the side, straight and curled. 

LO  

6.4. Alerts 

The tests described in Table 11 were designed to verify if the system is able to detect alert in the 

user’s states. Like in body orientation scenarios, it is not only important to detect that there is a 

problem, but also to know what the accuracy of the values being measured is. 
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Table 11. Description of alert experiments. 

Experiment Description Alert 

Incorrect 

walking 

(i) Using the walking scenario, the user is requested to walk the same L shaped route 

this time simulating a small hump. 

(ii) Same as above but this time changing the gait by using an incorrect step width. 

(iii) Again, this time using an excessive force with the right foot and on the way 

back from the L shaped route with the left foot. 

4Al  

Incorrect sitting 

(i) Using the sitting scenario, but this time sitting while making a positive angle with 

the chair; 

(ii) Same as before, but this time making a negative angle with the chair.  

3Al  

Incorrect 

activity 

The user is requested to pick up an object from the ground, first in a correct manner, 

by bending the knees and not the back, then in an incorrect manner. 
5Al  

Normal fall 
The type of fall being tested is the one where the accident consists on the accident of 

falling directly to the ground without any type of intermediate deceleration.  
1Al  

Hampered fall 
This type of fall is harder to simulate has the user has to hit an intermediate obstacle 

that reduces its fall, without harming itself and yet produce valid data.  
2Al  

6.5. Discussion  

The experiments have shown that the filters applied enabled the system to correctly detect the 

movement changes in all the test cases, being able to distinguish between individual node activity and 

full body movement. Nevertheless, it was also evident that there was a lag between the change in 

movement and the system actually detecting it. This is caused by the noise filtering toning down 

movement changes slightly. This fact did not affect the current tests, but if the necessity arises for a 

more precise detection of activity transitions, we are pondering whether to adding a node (or second 

microcontroller in an existing node) reserved for movement processing so that a more advanced 

algorithm may be used. Figure 7 depicts data from a WSW experiment showing how inconstant the 

acceleration readings are, even when the user is stationary. 

In the orientation state experiments, the only cases that caused misclassifications were the ones 

specially designed to be ambiguous. The test that required the user to be standing with the sensor leg 

raised perpendicular to the torso caused the system to misclassify the orientation as sitting. This 

similarity can be confirmed by observing both Figures 8 and 9.  

After pondering both the impact of such misclassification against the increase in cost of the 

immediate solution (i.e., using a wireless node in each leg and require both nodes to confirm a 

horizontal state in order to classify the full body orientation as seated) and the fact that such ADLs are 

extremely rare in the target age demographics, it was decided that the minor impact to the system 

brought by this type of misclassification did not justify the increase in the system cost and energy 

consumption required by the extra communication. 
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Figure 7. Forward acceleration. Movement sequence is: still, walking, still, walking  

and still. 

 

Figure 8. Processed pitches from the Leg and Torso nodes while standing with the  

leg raised. 

 

Figure 9. Processed pitches from the Leg and Torso nodes while sitting down. 
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In the experiments where the user was asked to slowly slide in the chair there were also 

misclassifications this time as laying down. It is important to notice that in between the changes of 

state the abnormalities for incorrect torso orientation were fired, so while there were misclassifications 

in terms of body orientation the system was still able to fulfill its objective of detecting incorrect postures. 

In regard to the precision of incorrect activity detection tests, it varied between test’s repetitions but 

was always higher than 70%. As this type of alert is to be used during long-term analyses a precision 

of 100% is not necessary, so the precision attained during the tests is enough to guarantee that the 

movement deterioration would be detected in an early stage. Figure 10 shows data comparing the 

torso’s pitch, first while walking normally and then (after 16 s) with a forward rotation of the torso 

simulating a small hump. 

Figure 10. Processed pitch from the Torso node while walking normally and simulating a 

small hump. 

 

This type of tolerance does not apply to fall detection, which requires a very high precision as what 

is being analyzed is the isolated event. In regard to the normal fall tests, the precision obtained was 

99.5%. These tests were done not to validate the algorithm itself, as this was already done in previous 

works, but to warrant that the different hardware do not affect its precision. 

On the other hand, the hampered fall tests revealed a low precision of approximately 59%. This was 

the highest viable precision, as if the sensibility of the algorithm was lowered, some of the normal 

ADLs (specially sitting down) started to trigger hampered falls alerts. None of the testers’ attributes 

(age, genre or physical characteristics) were demonstrated as having any statistically meaningful 

impact on the misclassifications. 

Finally, Table 12 shows the results for each individual experiment carried out. The average passing 

percentage of these tests was of 85.6% with a standard deviation of 0.3. However, if the outlier test 

(corresponding to the rare ADLs) is not taken into consideration, then the passing average increases to 

94.3% with a standard deviation of 0.1. 
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Table 12. Summary of results for each individual test. 

Group Test Pass Percentage 

Movement state 

Walking 100.00% 

Stopped 100.00% 

WSW 99.00% 

SNS (i) 100.00% 

SNS (ii) 100.00% 

SNS (iii) 98.50% 

SNS (iv) 99.00% 

Orientation state 

Standing (i) 100.00% 

Standing (ii) 6.50% 

Seated (i) 100.00% 

Seated (ii) 0.00% 

Lying down (i) 100.00% 

Lying down (ii) 100.00% 

Alert 

Incorrect walking (i) 100.00% 

Incorrect walking (ii) 81.50% 

Incorrect walking (iii) 74.00% 

Incorrect sitting (i) 95.50% 

Incorrect sitting (ii) 97.50% 

Incorrect activity 88.50% 

Normal fall 99.50% 

Hampered fall 59.00% 

7. Conclusions and Future Work 

This study excels not only by surpassing the precision of the previously cited WSN projects in 

monitoring users’ movements, but on providing the necessary tools to help with long-term 

rehabilitation and long-term problem identification. By restricting the focus of the system, it was also 

possible to reduce the number of wireless nodes, therefore minimizing the deployment cost of this 

solution compared with other WSN projects, and to make it almost as ubiquitous as the solutions that 

use image processing, without their high cost, privacy concerns and space restrictions. 

Regarding the detection of accidents, this solution presents the same high precision as the more 

prominent studies of the area, but also suffers from the same limitations concerning the detection of 

hampered falls. In this aspect, one of the few projects with a good performance uses a hybrid solution, 

requiring both MEMS sensors and computer vision tag and with that also having the limitations 

inherent to both systems [35]. 

Additional techniques and sensor types are being evaluated to further advance on the field of remote 

monitoring, without compromising the system’s usability or substantially increasing the deployment 

costs. The new techniques include the use of custom Beliefs-Desires-Intentions (BDI) agents. A  

multi-agent system will be designed using the JADE [36] agent framework and we will use both 

deliberative agents and CBR techniques in order to improve the agents learning capabilities [37]. With 

them, it is expected to automatically identify new variables and enable even more individualized 

profiles and rules, making the solution capable of adapting to each user’s special necessities. By 
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relying on a JADE-based multi-agent system, it will be possible to migrate from the remote server to a 

distributed system paradigm, allowing the execution of agents in different machines spread over 

different networks. 

In regards to the sensors being equated for generic health monitoring, the one which stands out for 

the benefits it brings to movement monitoring (especially accident detection) is the heart rate monitor. 

With both the multi-agent system and the new health monitoring sensors it is expected to be able to 

discern any normal ADLs from accidents and obtain high precision scores in hampered fall detection. 
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