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Abstract: In this paper, we propose a new haptic-assisted virtual cane system operated
by a simple finger pointing gesture. The system is developed by two stages: development
of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile
feedback interface with dual actuators for guidance and distance feedbacks. In the first stage,
user’s pointing finger is automatically detected using color and disparity data from stereo
images and then a 3D pointing direction of the finger is estimated with its geometric and
textural features. Finally, any object within the estimated pointing trajectory in 3D space is
detected and the distance is then estimated in real time. For the second stage, identifiable
tactile signals are designed through a series of identification experiments, and an identifiable
tactile feedback interface is developed and integrated into the VIDA system. Our approach
differs in that navigation guidance is provided by a simple finger pointing gesture and tactile
distance feedbacks are perfectly identifiable to the blind.

Keywords: finger pointing gestures; 3D pointing direction estimation; obstacle detection;
stereo camera system; human computer interaction; tactile feedback; virtual cane
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1. Introduction

The role of the white cane, a mechanical device, is an extended-hand like guidance for the better
mobility that guarantees safe and comfortable movements. It is helpful for the blind to avoid obstacles
and to negotiate his/her steps, and to follow the safest walking trajectory while in motion. Over decades,
the stick-look cane has been recognized as a commonly used tool for people who are blind or visually
impaired as compared to guide dogs that cost more. Despite the popularity of the white cane, it has
drawbacks such as a long training time, a limited sensible range (e.g., only usable within 1–2 m),
uncomfortable carrying and contact-based object detection.

From a technical point of view, the virtual cane system can be separated into two main parts: sensing
obstacles and providing feedbacks to avoid the detected obstacles. Literally, sensors play a crucial role
in sensing obstacles and these days high-tech sensors like ultrasound and lidar have been used as new
approaches [1–3]. Nonetheless, those sensors have tradeoffs in terms of accuracy, cost and portableness,
and so camera sensors have been considered as the best option due to the unique benefits such as low cost,
non-contact object detection, precise shape reconstruction, and computational efficiency. These benefits
have been also proved by researchers [4,5] who demonstrated that utilizing vision sensors benefit the
blind to explore visual environments efficiently under dynamic scenes in various applications.

Recently, stereo camera based approaches have been introduced by several researchers. Jose et al. [6]
developed a virtual cane system by using a stereo camera, and successfully showed the effectiveness as a
wearable system customized for assisting navigation under unknown environments. Fernandes et al. [7]
proposed a robust stereo vision algorithm extracting predefined landmarks like circles that provide cues
for safe walking. As a hybrid system, Brilhault et al. [8] combined stereo vision and a GPS system to
improve user’s positioning. An assistance system that can guide user’s orientation to locate objects has
been developed by Dramas et al. [5].

Denis et al. [9] developed a wearable virtual cane system that can detect objects coming close to
the user. Additionally, they designed distinct sound feedbacks for the estimated distance to the detected
objects. Although many interesting systems have been developed until now, most of the systems are
passive or workable only under some conditions like known environments and predefined landmarks.
These limitations could be barriers to design a natural user interface.

For a natural user interface, vision based hand gesture and finger pointing technologies have
been actively developed by many researchers [10–14] since those are non-intrusive, convenient, and
interactive. Especially, 3D range data based gesture recognition is highly reliable and robust to be a
practical use as demonstrated in many game applications with the Kinect. The effectiveness of using
3D depth images for finger gesture recognition has also been corroborated by Matikainen et al. and
Nickel et al. [13,15] who developed robust pointing gesture technologies for interactive visual scene
analyses. These pointing gesture technologies provide users with benefits in that the user’s hand can
become free from holding a sensing device and the user is interactively able to get accurate information
of a place where he/she wants to explore in advance.

In general, developing finger pointing recognition technologies is threefold: finger detection and
tracking, estimation of finger pointing directions, and obstacle’s detection. First, detecting and tracking
fingers with wearable cameras is not simple due to human motions and noisy backgrounds. As pioneering
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work, several researchers [16–18] introduced hand detection and tracking algorithms with simplified
conditions like uniform backgrounds or wearing color gloves. Afterward, many researchers put a lot
of effort into improving bare hand tracking technologies on cluttered backgrounds for sign language
applications [19,20] and for human computer interactions [21]. In our work, a dynamic update model
for moving backgrounds was proposed to compensate background changes caused by motions from body
worn cameras.

Second, with the detected pointing finger, estimating an accurate 3D finger pointing direction can be
achieved by using classic theories in stereo vision [22], multiple view geometry [23], and stereo camera
calibration [24,25]. In our study, we utilized the existing theory to estimate a 3D pointing direction with
disparity data obtained from a stereo camera. Compared with the previous steps, detecting obstacles is a
challenging problem since algorithms should be able to detect obstacles even in complex surroundings as
humans naturally do. To detect objects accurately, segmentations that intelligently extract target objects
under dynamic scenes are extremely important. As a new algorithm, we developed a robust segmentation
algorithm which is suitable for the virtual cane system.

In order to deliver the visual scene information to the blind user, providing feedbacks via sounds
and/or vibration is effective. However, audible feedback often becomes noise or even can mask important
information such as traffic sounds and other people’s talk on street. For this reason, tactile feedback is
preferably developed as a non-intrusive interface with vision systems. As the first work, Pressey [26]
developed a lightweight hand-held device called MOWAT SENSOR to be easily carried while walking.
The sensor itself detected an object within a beam of high frequency sounds and vibrated for tactile
feedback with predefined vibrations (e.g., the higher frequency is interpreted as a closer obstacle).
Etran et al. [27] invented a wearable navigation system based on a haptic directional display embedded
in the back of a vest. Directional cues were generated differently like lines, circles and blinking to inform
directional cues.

Velazquez et al. [28] introduced a concept of Intelligent Glasses with tactile feedback. A dynamic
edge shape extracted from a stereo camera was directly transmitted to a tactile display, a braille built
with push up/down mechanical sticks representing the edge shape. A shortcoming of the system was
that user’s hand had to be placed on the haptic display device all the time to feel tactile feedbacks. As
recent work, Hirose and Amemiya [29] developed a prototype with a PDA (Personal Digital Assistant)
device. For tactile feedback, three vibrating motors attached to the user’s arms (left and right) and
back. Direction cues were delivered to the user by vibrations on single or double motors, while the
number of pulses of the vibrations was used for distance cues. However, none of the existing tactile
feedback systems did design identifiable feedback signals based on human perceptions but instead
intuitively selected vibration signals. In our work, we designed perfectly identifiable tactile signals
by conducting a series of identification experiments and those signals were successfully integrated in our
virtual cane system.

In this paper, we focus on presenting a robust and advanced distance estimation system with
a stereo camera that is operated by a simple finger pointing gesture. Additionally, we propose a
complete virtual cane solution by integrating a tactile feedback interface that employs perceptually
identifiable frequencies, obtained from 1D frequency identification experiments for distance-matching
tactile feedbacks.
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The remainder of this paper is organized as follows. In Section 2, we describe the visual information
delivery system, and the experimental results are presented in Section 3. Section 4 explains how we
designed identifiable tactile feedback signals and integrated the tactile feedback system with the visual
information delivery system. Conclusions and future work are provided in Section 5.

2. Visual Information Delivery Assistant (VIDA)

The Visual Information Delivery Assistant (VIDA) consists of three steps: hand detection, estimation
of a 3D pointing direction, object detection and distance calculation. The flow chart of the algorithm is
shown in Figure 1.

Figure 1. The flow chart of algorithms used in Visual Information Delivery Assistant.

2.1. Hand Detection

As earlier mentioned, extracting hands or a finger in a complex scene is not easy. The problem
even becomes severe if images are taken from a fluctuated camera, which is the case of wearable
virtual cane systems. To tackle the challenging problem, we combine static and dynamic segmentation
methods to improve hand region detection. Hand and finger regions are then detected by using skin color
information. In the following, detailed algorithms are explained.

2.1.1. Background Subtraction under Dynamic Scenes

Background subtraction provides a fundamental framework for hand area detection in both static and
dynamic environments. In our algorithm, we made a fusion framework that adaptively utilizes static and
dynamic background subtraction methods. For this approach, we define a static background as an image
frame whose variations are relatively small, while a dynamic background is an image frame that has big
global variations (e.g., the entire scene is changed). To implement the static background subtraction,
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we adopted a learning average method, a well-known statistical method, to build a background model.
The method basically creates a background model based on the mean difference computed from a set of
accumulated image frames. Then, subsequent frames are subtracted from the created background model,
which results in segmentation. This simple approach enables the quick detection of a moving hand in a
static environment.

For taking advantage of the static background subtraction approach in dynamic scenes, we introduce
a strategy that makes our system intelligently works well under dynamic environments. The strategy
includes continuous dynamic model updates and detecting global scene changes to trigger building a
new background model. The former develops an extended version of static background subtraction by
replacing the static background model with the most up-to-date background model that is captured from
dynamic scenes. In other words, any dynamic scene captured at time t can be considered to be a new
static background model for hand segmentation under dynamic environments. This approach works well
for both static and dynamic background subtraction.

However, one issue here is how to let our system know the update timing for a new background
model when the stereo camera is in motion. In our observation, two typical types of global changes
were found in a dynamic environment: changes by the moving camera and local changes by moving
objects. The latter must be excluded for updating the model. This is why our strategy includes detecting
global scene changes. For this, we developed a decision maker algorithm that compares local variations
within predefined window blocks to determine whether the global scene was changed or not. A threshold
value was defined by our pilot study for the criterion. The sum of local variations is compared with the
threshold. For instance, the greater value is the case of global scene changes that result in creating a new
background model, while the opposite case updates the background model locally from the previous
model. During this process, the hand region is not updated. Figure 2 shows how the background model
is updated against camera motions and a moving object (the user’s arm).

Figure 2. Examples of hand detection with our background subtraction under dynamic
scenes: a pointing finger (red) and a moving arm (blue). Note that images were taken
sequentially from left to right.
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For efficient processing, the input image (320 × 240 pixels) was divided into 8 by 6 blocks
(40 × 40 pixels). For each block, our decision maker algorithm was run to determine whether a new
global background model should be created. If more than half pixels in each block show variations,
the block is categorized as a block to be updated. The background model is then updated with the eight
nearest neighbors of the block. In our approach, both a color background model and a depth background
model are updated except the foreground region of a skin-colored hand area for the next process.

2.1.2. Hand Detection Using Color Segmentation

With the detected region including the user’s arm, the hand region is identified by skin-color
information. Two color spaces, Y UV and Y IQ, are used together for creating a unique classifier for
color segmentation in our approach. Our classifier was designed to take two feature parameters from
the two color spaces (i.e., one from each). The reason why we have chosen the specific color models is
that both models are sensitive to low color depths (image bandwidth) like human visual perception. It is
also known that Y UV and Y IQ have the same luminance component but different coordinate systems
for chrominance components. For generating feature parameters with the Y UV model, luminance (Y )
and two chrominance components (U and V ) are computed from the RGB space by the transformation
matrix below:  Y

U

V

 =

 0.299 0.587 0.114

−0.147 −0.289 0.436

0.615 −0.515 −0.100


 R

G

B

 (1)

The computed U and V values are then used for computing two feature parameters, a displacement
vector (C) and the phase angle (θ), that can be used for color segmentation. Those features are computed
as follows:

C =

√
|U |2 + |V |2 and θ = tan−1(V/U) (2)

In the Y IQ color space, I and Q, representing chrominance values, can also be used as features.
Obtaining these values from RGB is achieved by the transformation matrix: Y

I

Q

 =

 0.299 0.587 0.114

0.596 −0.274 −0.322

−0.212 −0.523 0.311


 R

G

B

 (3)

A combination of the four feature values, C, θ, I and Q, can create a unique criterion that can
accurately segment human hands. Therefore those values can be tuned up to the aiming level of
segmentation. In our application, we used only two features, θ and I . The ranges of optimized values
used for hand segmentation are 105 to 150 and 15 to 100, respectively. After detecting the skin colored
area with these color features, noises were completely eliminated by using a connected component
analysis. The upper row of Figure 3 shows this segmentation procedure using the two feature values.
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Figure 3. Photographic representation of estimating a 2D pointing direction: (a) a detected
hand area; (b) the binary image of (a) but with noises; (c) a cleaned hand region after
removing noises by using a connected component analysis; (d) the hand contour; (e) a hand
shape estimated by an geometric analysis; and (f) an initial estimated direction vector (blue)
by a blue bounding box and a refined direction vector (red) by a hand shape geometry.

2.2. Estimation of 3D Pointing Direction

A pointing gesture with fingers generally forms a particular hand shape created by a combination of
convex and concave shapes. We utilize this phenomenon to estimate the finger pointing direction in 2D
space based on a shape analysis, and the estimated direction is then extended to three dimensions using
the existing camera geometry. We further present these two steps in the following.

A pointing direction in 2D space is estimated by taking three steps, as seen in the lower row of
Figure 3: extracting the hand contour, finding a convex polygon on the extracted contour, and estimating
an accurate pointing vector. In order to extract a precise hand contour, the polygonal approximation is
applied because of its robustness to illuminations. The extracted contour is then verified by a convex hull
algorithm that finds both convex vertex points and convex defects (concave). The process of examining
convexity is as follows:

Considering two points, A and B in a region Ω, the convexity can be evaluated by the
following measure:

V = αA+ βB (4)

for 0 ≤ α, β ≤ 1 and α + β = 1.
If all possible V are in the region Ω for arbitrary values of α and β, then the contour from A to B is

convex. This way, a convex polygon and convexity defects are generated as the output.
As the last step, an accurate 2D pointing direction is estimated by taking two steps, an initial estimate

and the refinement process, with the filtered hand contour (Figure 3d) and a hand shape polygon
(cyan colored lines in Figure 3e) formed from finger tips and convexity. An initial direction is roughly



Sensors 2014, 14 10419

determined from a bounding rectangle of the hand contour, a blue box in Figure 3e. That is, the longer
side of the rectangle becomes a unit vector, a blue arrow in Figure 3f, of the 2D pointing direction at the
geometric center of the hand. The initial pointing direction is then refined towards the index finger by
the principle vector of the hand shape polygon (see the longer red line inside the hand shape contour in
Figure 3e). The finally estimated 2D pointing direction is visualized as a red arrow superimposed on the
hand image in Figure 3f.

To estimate the corresponding 3D pointing vector, intrinsic parameters computed from the camera
calibration are used. In theory, 3D points on a 3D pointing vector from the corresponding 2D points are
obtained as follows:

Z =
f

d
B, X =

u

f
Z, Y =

v

f
Z (5)

where a 3D point is denoted by a vector (X, Y, Z) from the origin in the camera coordinates, f is the
focal length of the camera, B is the baseline distance of a stereo camera, d is the disparity value at
any location, and (u, v) is a location on the 2D image. Figure 4 graphically shows how a 3D pointing
direction is estimated from a 2D pointing direction.

Figure 4. Estimation of a 3D pointing direction: (a) a 2D pointing vector; (b) a hand area
projected onto the x-y plane; and (c) an estimated 3D vector from the corresponding 2D
pointing vector.

(a) (b) (c)

2.3. Object Detection

In the VIDA system, any object inside Region of Interest (ROI) extracted by user’s pointing gesture is
detected as an obstacle. The actual distance to the detected object is accurately computed with the stereo
camera geometry that provides transformation between 2D and 3D spaces. In the following, the specific
algorithms, classification of 3D points and ROI extraction, are presented.

2.3.1. Classification of 3D Points

Given a 3D pointing vector estimated in the previous step, a line passing through any two points in
3D space can be simply obtained in homogeneous coordinates [23]. For simplicity’s sake, we do classify
3D points of object candidates in 2D image planes (x-z and y-z projected planes) instead of 3D space.
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By doing so, the computational cost, required for distance computing between 3D points and a 3D line
(e.g., a finger pointing vector), has been greatly reduced. The classification algorithm therefore works as
follows. First, the line (l) between two 2D points (p1, p2) as projected to a 2D plane is computed by the
cross product of the two points,

l = p1 × p2 (6)

where l, p1, p2 ∈ R3 are represented in the homogeneous coordinates.
Second, using Equation (5), all pixels in a 2D image are mapped to the corresponding 3D points by the

stereo camera geometry (or called two view geometry). Each 3D point is then classified into two groups
(class of interest (CI) and class of non-interest (CNI)) by the measured distance in the x-z and y-z image
planes. The orthogonal distance from a point to a line is obtained by the dot product:

l · p = d (7)

where l, p ∈ R3 in the homogeneous coordinates and d is a scalar.
With a fixed value of d (orthogonal distance), a virtual cylinder is formed as shown in Figure 5 and

its boundary, defined by d, becomes the classifier of 3D points. Based on this configuration, any 3D
point inside the virtual cylinder falls into the class of interest (CI), and otherwise belongs to the class of
non-interest (CNI). Then, all points in CI are back-projected onto the corresponding 2D image plane,
and the region becomes a ROI candidate for object detection. This transformation between 2D image
coordinates and 3D camera coordinates is illustrated in Figure 5. Note that in the figure a smile face
pictogram represents the center of the camera coordinate system.

Figure 5. Relationship between the image coordinates and the camera coordinates.

2.3.2. ROI Extraction and Object Detection

As outcomes in the previous step, ROI candidates were generated on the image plane from 3D points.
However, it was observed that ROI candidates are not correctly generated in case of disparity errors
(noise or lack of data) as seen in Figure 6. These problems are mainly caused by illumination changes
and errors in computing disparity values. To fix the problems, 3D disparity noises are filtered first, and
then the way of classification of 3D points is slightly modified from the previous.
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Figure 6. Examples of (a) noisy disparity data and (b) lack of disparity values. Those areas
are highlighted by ellipsoids.

(a) (b)

As seen in Figure 7, 3D points are classified by using two virtual rectangles projected from the virtual
cylinder onto the x-z and y-z planes respectively. In last to extract the final ROI candidate, the classified
3D points in the ROI interest group are projected onto the image plane in which two perpendicular bars
are formed. The intersection of the two bars (yellow and pink) shown in Figure 8 is chosen as the final
ROI. The white region in Figure 8a is the ROI candidate determined by the virtual cylinder only.

Figure 7. Virtual rectangles used as a classifier on (a) the x-z plane and (b) the y-z plane.

(a) (b)

In our VIDA system, the final ROI can be visually magnified for the user to perceive the details
(texture information) of the detected objects. The magnification of the ROI is performed using the
bilinear interpolation method. The bilinear interpolation performs a linear interpolation in one direction
first and then repeats it for the other direction. The resulting images by the ROI extraction and
magnification are shown in Figure 8.
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Figure 8. ROI extraction and the magnified view: (a) the extracted ROI region highlighted
by a red rectangle; (b) Superimposed ROI; and (c) its magnified view.

3. Experimental Results of VIDA

The VIDA system shown in Figure 9 consists of a commercial stereo camera (Bumblebee 2
manufactured by PointGrey Inc., Richmond, BC, Canada), a personal computer (Intel Core2 2.2G Hz and
2G RAM) and a standard LCD (Liquid-Crystal Dispaly) monitor. The system runs at 6 frames per second
with an input QVGA (Quarter Video Graphics Array, 320 × 240 pixels) image. The spatial accuracy,
reported by the manufactured company as the system calibration error, was 5 mm at 1 m distance, which
is sufficiently accurate to detect hands and objects for the virtual cane system.

Figure 9. Our developed VIDA system: (a) the entire system look; (b) an example of the
head mounted VIDA system; and (c) the user scenario.

Our developed system, VIDA, was thoroughly verified in terms of accuracy and robustness against
illuminations and occlusions. The evaluation was done systematically, first with each algorithm and
then with the whole system. The results shown in Figure 10 show how our hand detection algorithm
works well with backgrounds that contain numerous objects. Figure 11 also demonstrates the precise 3D
pointing estimation under a dynamic environment. In the resulting images, the estimated pointing vector
colored in red was superimposed onto user’s hand to show the accuracy.
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Figure 10. Results of hand detection.

Figure 11. Results of finger pointing estimation (red arrow) with dynamic backgrounds.

For the system evaluation, we tested VIDA with various objects that are different in shape, color and
size under dynamic scenes. For this experiment, a user was asked to walk around and make a random
pointing gesture to objects. To evaluate the accuracy, what was pointed by the user has been recorded
and compared with the detected object from VIDA. The sequential images seen in Figure 12 demonstrate
the experiment procedure. As clearly seen in Figure 12, all objects pointed by the user were successfully
detected even at long distance (up to 3 m). The numerical results are summarized in Table 1. For a more
accurate evaluation with the ground truth, we used a laser pointer, attached to the top of the index finger,
as a tool that can generate the ground truth. Figure 13 shows the experimental setup and the image of
pointing target circles. During the experiment, points marked by laser points on the target image were
recorded and compared with pointing points estimated by our algorithm. Geometric errors between the
laser points (ground truth) and the estimated points were computed and averaged for 40 repetitions per
distance, 1, 2 and 3 m, respectively. The results were also summarized in Table 2.
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Figure 12. Results of object detection and magnification for (a) a calendar; (b) an
instrument; (c) a humidifier; (d) a small window; (e) a drawn shape on a blackboard. Each
row, from top to bottom, shows the sequential order for ROI extractions and the magnified
ROI display.

Table 1. The accuracy of object detection from Figure 12.

(a) (b) (c) (d) (e)

Object size 8 × 18 12 × 17 13 × 16 36 × 17 17 × 17
Distance error (pixels) 7.28 8.06 6.40 8.00 7.07

Table 2. Quantitative experiment results of our proposed pointing algorithm with using a
laser pointer.

Distance 1 m 2 m 3 m

Average error (pixels) 8.46 11.27 13.56
Average error (cm) 6.98 15.21 25.58
Standard dev. (cm) 3.43 3.25 6.39

Additionally, robustness against illuminations and occlusions has been tested. For the illumination
test, three different lighting conditions (bright, normal, dark) were used and compared with each other
in setting that these lighting conditions are distinguishable on the taken images. For the evaluation with
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occlusions, two user scenarios were developed: interferences by extra hands and faces since both cases
can significantly affect the performance of our system utilizing skin color information for hand detection.
The results in Figure 14 show the robustness of our system against illuminations and occlusions.

Figure 13. Quantitative experimental setup to evaluate our finger pointing algorithm with
a laser pointer (ground truth): (a) a laser pointer attached to the top of the index finger and
(b) the experiment with a target circle image at a distance (1 m).

Figure 14. Results with varying illumination conditions and occlusions: (a–c) three lighting
conditions (bright, normal, dark) and (d,e) occlusions by other people’s hand and face.
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4. Development of Tactile Feedback Interface for VIDA

In this section, we first describe a frequency identification experiment conducted to choose a set of
distinctive tactile signals. We then present a tactile feedback interface integrated into VIDA.

4.1. Finding Identifiable Frequencies for Tactile Feedback

We designed an identification experiment to find a set of identifiable signals for tactile feedback. In
the design of haptic feedback signal waves, we focused on frequency identification because our hardware
setup with a mini piezo driver (DRV8662, manufactured by Texas Instrument Inc., Dallas, TX, USA)
provides the wider range of responses in frequency than in amplitude. For the experimental setup, cycle
and amplitude were fixed to 3, 60 Vpp, and a square wave, based on user’s preference. Additionally,
a square waveform was selected because it delivers the stronger haptic effect than other wave forms
(sinusoidal or sawtooth) when the same voltage input is given. We were particularly interested in finding
identifiable frequencies on the index finger since the goal of the present study is to develop a virtual cane
system that can be operated by a simple pointing gesture. It is also well known that the index finger is
most sensitive to tactile sensation in our body [30].

For the identification experiment, a vibrator (see Figure 15a) for tactile feedback was built with a
piezoelectric actuator (20 mm diameter, Murata Manufacturing Co. Ltd., Nagaokakyo, Kyoto, Japan),
and was affixed to a transparent acrylic square cut (20 mm long and 2 mm thick). A programmable
piezo actuator driver (DRV 8662 EVM, Texas Instrument Inc.) was used to drive the vibrator. Tactile
signals were pregenerated with square waves at different frequencies and then sent to the piezo driver
automatically, whenever the participant press a key to feel the next test signal. Ten participants (4 females
and 6 males; age range 22–36; no previous haptic experience; neither visually impaired nor blind) took
part in the identification experiment.

Figure 15. Identification experiment setup to investigate identifiable frequencies for tactile
feedback: (a) Piezoelectric actuator and (b) the actuator attached to the index.

(a) (b)

In the experiment, all participants were instructed to put the vibrator on their index finger and took
five minute training to get familiar with tactile sensations at different frequencies to be tested. Vibrations
with the three frequencies were randomized and presented to each participant one by one at a time. The
participant then had to respond immediately the identification number of the presented frequency by
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using the keyboard. A PC (Personal Computer) monitor graphically displayed all necessary information
(questions, trials remained, the elapsed time) for the participant to follow the procedure until complete
the experiment. In order to obtain unbiased data, a minimum of 50 trials each frequency as suggested by
Miller [31], that makes a minimum of 150 trials in total, was tested for an identification experiment.

The experiment was repeated three times with different sets of frequencies as shown in Table 3 with
the same participants. The very first experiment tested whether an initial set of three frequencies (10 Hz,
100 Hz and 300 Hz) are identifiable, and the second experiment was then conducted with a new set
of frequencies (10 Hz, 100 Hz and 500 Hz ) that was formed by replacing 300 Hz with 500 Hz after
investigating the result of the first experiment. In the last experiment, a new frequency, 600 Hz, was
verified instead of 500 Hz because the frequency 500 Hz was not perfectly identified. In this way,
a final set of identifiable frequencies (10 Hz, 100 Hz and 600 Hz) was found. Table 3 shows the
three confusion matrices obtained through the three consecutive identification experiments. All of the
participants completed each experiment in 40 min, and so it took about two hours in total for each
participant to complete the entire experiment including a 10-min break.

Table 3. Stimulus-response confusion matrices obtained through three repetitions of an
frequency identification experiment with different sets of frequencies. Each cell shows
accumulated responses from ten participants. Note that the max number “500” indicates
perfect identification.

Response (Experiment 1)

Stimulus

Hz 10 100 300
10 500 0 0
100 0 431 69
300 0 60 440

Response (Experiment 2)

Hz 10 100 500
10 500 0 0
100 0 488 12
500 0 9 491

Response (Experiment 3)

Hz 10 100 600
10 500 0 0

100 0 500 0
600 0 0 500

4.2. Design of Tactile Feedback Interface with Identifiable Frequencies

With the result of the frequency identification experiment, we propose a novel tactile feedback
interface that can be integrated into the VIDA system. Our design takes into account both identifiable
distance feedback and hand guidance feedback keeping user’s hand to be in the camera’s view of VIDA.
For the tactile distance feedback, the distance estimated from the VIDA system is mapped to one of the
three identifiable frequencies (10 Hz, 100 Hz and 600 Hz) in Table 4. For instance, the higher frequency
is assigned to the closer distance since users have to take a quicker action to avoid detected obstacles.
On the contrary, the guidance feedback uses the highest frequency (600 Hz) since it is provided only
when user’s hand is out of the camera view and in general, people perceive signals at higher frequencies
as warning signals. The two signals are delivered to two separate haptic actuators, attached to the
index finger for the distance feedback and the wrist for the guidance feedback as an example. The
interpretations are summarized in Table 5. Figure 16 shows how the designed tactile feedback interface
can be successfully integrated into the VIDA system. The developed tactile feedback interface can also
be used for other navigation systems as long as distinctive distance values are provided.
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Table 4. A proposed set of identifiable tactile signals with dual actuators used for distinctive
distance ranges.

Actuator I (Distance Feedback) Actuator II (Guidance Feedback)

Distance (m) Frequency (Hz) Frequency (Hz)

D < 1 600
6001 5 D <2 100

2 5 D < 3 10

Table 5. A configuration of dual actuators with its interpretations.

Interpretation Actuator I Actuator II

Display distance information ON OFF
Alert to align watching and pointing OFF ON

Figure 16. A flow chart of a complete solution of our proposed virtual cane system including
a tactile feedback interface.

5. Conclusions

We developed a complete solution of a virtual cane system by combining finger pointing gesture and
tactile feedback. For the development of finger pointing estimation, a novel algorithm that can precisely
estimate a 3D finger pointing direction with a stereo camera was proposed. The proposed algorithm
was thoroughly tested under various conditions (dynamic scenes, different objects, illumination changes
and occlusions). The evaluation results show that our developed system (VIDA) is sufficiently robust
and provides accurate object detection. In addition, we designed identifiable tactile signals that can
be mapped to distance information estimated by VIDA. Those signals (10 Hz, 100 Hz, 600 Hz)
were selected through identification experiments and were then used for developing a tactile feedback
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interface. As the last step, we have demonstrated that the tactile feedback interface can be successfully
integrated into VIDA as a virtual cane system.

Our developed visual system provides accurate finger tracking and finger pointing estimation in
real-time. The accuracy and real time performance enable blind people to navigate on street only with a
simple finger pointing gesture. This technology is not only a cost effective solution, but is also extendable
for other applications such as finger or hand gesture controls for mobile devices, computer games and VR
(virtual reality) applications. Towards a complete navigation solution for the blind, we adopted haptic
feedback that is an effective way to deliver obstacle’s information under dynamic and noisy environments
on street. Unlike other prior work [26–28], we adopted identifiable tactile signals that were designed
by identification experiments. This approach can benefit researchers or designer who develop human
computer interfaces concerning haptic perception. In last, our system differs in that navigation guidance
is given upon user’s simple gesture action (i.e., both way interactions) and our approach is robust under
unknown dynamic scenes.

Our future work will continue to improve the frame update rate (6 Hz) for faster walkers and
will also evaluate the proposed virtual cane system by conducting user studies with visually impaired
people. We are also interested in learning more about the possibility of designing tactile signals
with other parameters (amplitudes and complex wave forms) by conducting more identification and
psychophysical experiments.
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