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Abstract: Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic 

sensor designs and sensing principles constantly open doors for new opportunities. In this 

paper, we review a fiber-optic sensing technique developed in our research group called 

frequency-shifted interferometry (FSI). This technique uses a continuous-wave light 

source, an optical frequency shifter, and a slow detector. We discuss the operation 

principles of several FSI implementations and show their applications in fiber length and 

dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor 

multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI 

system parameters is also presented. 

Keywords: fiber optics; interferometry; Sagnac interferometer; fiber-optic sensors; sensor 

multiplexing; cavity ring-down; polarization; Jones calculus 

 

1. Introduction 

As an offshoot of the fiber-optic communications industry, fiber-optic sensing has attracted 

considerable attention over the years [1–4]. Fiber-optic sensors have many inherent advantages 

compared to electrical sensors. Made of dielectric materials, fiber-optic sensors are immune to 
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electromagnetic interference (EMI). They can be employed in electric power distribution systems 

where traditional electrical sensors require laborious insulation due to the high voltage involved [5]. As 

optical fibers are non-conducting, stable, and chemically inert, they are durable in many harsh 

environments (e.g., corrosive, high-temperature). Furthermore, fiber-optic sensors can be spark-free, 

enabling them to be used in monitoring applications for the oil and mining industry where fire hazards 

are catastrophic. Optical fiber’s low loss also allows us to place a sensor head kilometers away from 

the analyzer without amplifications, which is particularly beneficial for in situ measurement over a 

large area. Fiber-optic sensors are usually more compact, because optical fibers are flexible and 

lightweight [6,7]. An important feature of fiber-optic sensors is that they have the multiplexing 

capability—a single system can be used to interrogate multiple sensors linked by off-the-shelf  

fiber-optic components [1–4,8–14]. To separate signals from different sensors in the sensor network, 

sensor multiplexing techniques are needed [8–14]. High sensitivity is another advantage of fiber-optic 

sensors, especially when a sensor is combined with special measurement methods such as the cavity 

ring-down (CRD) technique [15–29]. Last but not least, driven by the large telecommunication market, 

the cost of the components used for fiber-optic sensing is decreasing [4]. We have many reasons to 

believe that the fiber-optic sensing industry shall have a bright future. 

Generally speaking, fiber-optic sensing research can be subsumed under two broad categories. One 

area of research is the design of new sensor types or structures for specific applications. The other area 

is the development of sensing systems that are intended to effectively detect sensor signals, analyze 

and interpret them. Frequency-shifted interferometry (FSI) is a fiber-optic sensing technique developed 

in our group [30–37]. It belongs to the latter category. The setup of FSI is simple—its key components 

only include a continuous-wave (CW) light source, an optical frequency shifter, and a slow detector. It 

has been shown to be valuable in many sensing applications such as fiber length and dispersion 

measurement [30], locating weak reflections along a single fiber link [31,37], fiber-optic sensor 

multiplexing [32–34], and cavity ring-down measurement [35,36]. FSI can solve some of the issues 

raised by conventional fiber-optic sensing schemes. 

Fiber-optic sensor multiplexing is an important application of FSI. Conventional fiber-optic sensor 

multiplexing techniques include spatial-division multiplexing (SDM) [10], time-division multiplexing 

(TDM) [8,9,11], wavelength-division multiplexing (WDM) [8,9], and frequency-division multiplexing 

(FDM) [13,14]. In SDM, sensing light from a single source is shared by various sensors, and the signal 

from each sensor is detected by a designated detector. TDM measures the sensor signals by launching 

optical pulses into an array of sensors with different time delays. The signals from different sensors 

can be distinguished from their arrival times. In WDM, each sensor must operate within a  

distinct wavelength window so that sensor signals can be separated from their wavelengths. The  

frequency-modulated continuous-wave (FMCW) technique, a popular FDM scheme, applies radio 

frequency (RF) modulation on the source and mixes the signals reflected by the sensors with a local 

reference. The sensors’ signals are differentiated from the beat frequencies. FSI is able to locate sensors 

from their spatial locations and measure their reflection spectra. This overcomes many limitations 

faced by conventional fiber-optic sensor multiplexing schemes. Unlike SDM, in which each sensor 

requires its own detection unit [10], FSI uses one shared detector. An FSI system uses only a low-cost 

CW light source and a slow detector, instead of the pulsed sources and fast detectors required by TDM. 

Furthermore, FSI allows the sensors to overlap spectrally. This is not possible for WDM, and FSI can 
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potentially accommodate a larger number of sensors with loosened sensor requirements. Compared to 

the FMCW technique [13,14], in addition to the avoidance of fast detection electronics, an FSI system 

does not need any reference signal, and its sensing range is not limited by the coherence length of the 

light source [14]. 

FSI provides an alternative way of carrying out cavity ring-down (CRD) measurement [35,36]. In 

conventional CRD experiments [15–29], an optical cavity is excited by an optical pulse, and the decay 

rate of the pulse is measured by fast detection electronics. One is able to deduce the loss information of 

some sample in the cavity from the pulse 1/e decay time , or the so-called CRD time. CRD techniques 

are frequently used for the spectroscopic analysis of gaseous samples in free-space optical  

cavities [15–17]. Now there are many demonstrations of fiber-based CRD systems [16,18–27,29]. An 

advantage of fiber-based CRD techniques is that various kinds of fiber-optic sensors can be 

incorporated into the system so it may perform very different tasks. Besides spectroscopic analysis, 

such CRD systems can be used to measure pressure, temperature, strain, refractive index and so on [27]. To 

perform CRD measurement, FSI does not rely on any optical pulses or fast electronics, since FSI is able to 

determine the traveled distance as well as the intensity of CW light in a fiber cavity. A CW source and a 

slow detector may potentially reduce the cost of the system. 

In this paper, we provide a review on the development of the FSI technique. We show various ways 

of implementing FSI and discuss their applications. We also analyze the parameters that affect the 

performance of FSI systems. 

2. Principle of Frequency-Shifted Interferometry and Its Implementations 

In frequency-shifted interferometry (FSI), a continuous lightwave at frequency 0 and a  

frequency-shifted copy of it at f0 , where f is the frequency change, are launched into a common 

optical path. After the two lightwaves exit the optical path, the frequency of the original lightwave is 

also shifted to f0 so that it interferes with its frequency-shifted copy, leading to an interference 

signal I that is a sinusoidal function of f. By sweeping f and recording I, one can deduce the optical 

path length and the interfering light intensity from the sinusoid oscillation frequency F and amplitude, 

respectively. If we send lightwaves (original lightwave and its frequency-shifted copy) through 

multiple optical paths of different lengths and allow them to interfere in the same fashion as mentioned 

before (by shifting the original lightwave at 0  to f0  after it exits an optical path), the interference 

signal I becomes a summation of sinusoids with distinct oscillation frequencies Fi, with the ith 

sinusoidal component produced by lightwaves passing through the ith optical path. A Fourier 

transform on I can separate the interference signal contributed by light from each path, and in the 

Fourier spectrum, we can learn the length and optical loss associated with an individual path from the 

location and amplitude of a Fourier component, respectively. Above idea proves to be very useful for 

fiber-optic sensing [30–37]. In this section, we shall explain the operation of several FSI 

implementations and show their applications. 

2.1. Frequency-Shifted Sagnac Interferometer  

The earliest FSI developed is an asymmetric frequency-shifted Sagnac interferometer [30,38–40] as 

shown in Figure 1. The interferometer is constructed by connecting two output ports of a 50/50 fiber 
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directional coupler with an optical frequency shifter (e.g., an acousto-optic modulator, or AOM). The 

asymmetry arises due to unequal fiber section lengths between the frequency shifter and the fiber 

coupler. Suppose an input electric field  00 2exp   tEEin  is launched into the interferometer 

from port 1, where E0 is the field amplitude,   is the optical frequency, and 0  is some initial phase. 

The two counter-propagating fields at port 1 are: 
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and the fields at port 2 are: 
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where 5.0  is the fiber coupler split ratio, f is the frequency shift induced by the frequency shifter, n 

is the effective refractive index of the fiber mode, c is the speed of light in vacuum, and li and l1 are the 

fiber section lengths as shown in the figure. Here  2  is used in above equations to emphasize that 

each field component passes the fiber coupler twice before the interference. The term /2 in (1) and  

in (2.b) account for the phase shift acquired when the light crosses the coupler ports. It can be shown 

that the differential intensity between port 1 and port 2 is a sinusoidal function of f [30,33]: 
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where   cllnF /01  , and fF   2  is the phase difference between the two interfering fields. 

The amplitude of I is proportional to the interfering light intensity. Although F has the unit of time, if 

one considers I as a function of f, F becomes the oscillation frequency of the sinusoid and it is 

proportional to  01 lln  . This relation can be used to measure fiber length and dispersion [30]. 

Figure 1. A frequency-shifted Sagnac interferometer formed by connecting the output of a 

50/50 fiber directional coupler with an optical frequency shifter asymmetrically. 
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Figure 2. Experimental setup of a frequency-shifted Sagnac interferometer for fiber length 

and dispersion measurement [30]. TLS: CW tunable laser source; ISO: fiber-optic isolator; 

PD: photodetector; C1: 50/50 fiber direction coupler; AOM: acousto-optic modulator. 

 

 

In [30], a CW laser is used as the light source, and an acousto-optic modulator (AOM) is used as the 

optical frequency shifter as shown in Figure 2. A single photodetector is used to record the sinusoidal 

interference signal from one output port of the interferometer as the frequency shift f is swept between 

50 and 56 MHz. The interference signal is thus a sinusoidal with a DC offset, from whose period fiber 

length can be deduced. Spools of single-mode fibers with lengths ranging from 5 m to 60 km were 

tested. The measurement results were in good agreement with those obtained from tape measurement 

or an Agilent 86037C chromatic dispersion test system. As group delay can be determined by scanning 

the input wavelength and recording the optical lengths, chromatic dispersion of the test fiber can also 

be calculated [30]. The setup of a frequency-shifted Sagnac interferometer is simpler than common 

fiber optical length measurement techniques such as the optical time-domain reflectometry  

(OTDR) [41], optical coherence-domain reflectometry (OCDR) [42,43], or optical frequency-domain 

reflectometry (OFDR) [44,45]. The wide measurement range demonstrated by FSI is superior to that of 

OCDR (~10 cm) [42,43] and OFDR (~km) [44,45].  

2.2. Linear Frequency-Shifted Sagnac Interferometer with Multiple Reflections 

Alternatively, an FSI can adopt a configuration akin to a Mach-Zehnder (MZ) interferometer as 

shown in Figure 3, where C1 and C2 are 50/50 fiber couplers, and Ri are reflectors (i = 1,2,3,…N). 

Despite its MZ-like appearance, we would refer to this configuration as the linear frequency-shifted 

Sagnac interferometer, because its operation principle is still based on that of a frequency-shifted 

Sagnac interferometer. 

Figure 3. A linear frequency-shifted Sagnac interferometer with multiple reflectors. C1 and 

C2: 50/50 fiber directional couplers, Ri: the ith reflector. 

 



Sensors 2014, 14 10982 

 

 

Suppose CW input light at  is launched into the interferometer from port 1 of C1. It is divided 

equally into two parts, and the two lightwaves continue to propagate towards the reflectors. Each 

reflector Ri shall introduce four reflected components at frequencies , f, f, and + 2f. The 

frequencies of the reflected components are determined by the number of times light goes through the 

frequency shifter. Note the two reflected components at f are contributed by the lightwaves that 

pass the frequency shifter exactly once. They are equivalent to the two counter-propagating lightwaves 

in a frequency-shifted Sagnac interferometer discussed in the previous section. Therefore, a reflector 

Ri in Figure 3 essentially offers us a frequency-shifted Sagnac interferometer in which the two fiber 

sections connecting the frequency shifter have lengths l0 and l1 + 2Li + l2, where li are the fiber lengths 

labeled in the figure, and Li is the fiber length between C2 and the reflector. The differential 

interference signal from all the reflectors is a summation of sinusoids [33]: 
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where Ai is some amplitude proportional to the reflectivity of the ith reflector Ri, and Fi = 2nLi/c. In the 

second line of equation, we make the assumption 2Li >> l1 + l2 − l0 so that (l1 + 2Li + l2 − l0) ≈ 2Li. As 

Li is unique for each reflector, Fi are also different from one another. If one records I as a function of 

f, and process the data with Fourier transform, the sinusoidal components can be separated in the 

frequency domain F. Frequency F can be easily converted into distance by applying L = cF/ 2n. 

Therefore, we can essentially separate the signals from different reflectors in the spatial domain. The 

amplitude of the peak at frequency Fi is proportional to the interfering light intensity from the ith 

reflector. By recording the Fourier peak amplitudes at various Fi’s over a range of input wavelengths, 

we are able to construct the reflection spectra of all the reflectors. 

The remaining reflected components at  and  + 2f produce DC signals at C1 output ports, which 

are effectively eliminated by the differential measurement. The intermixing of the fields at ,  + f, and 

 + 2f generates beat frequencies at f and 2f, but they average out to zero when a slow detector is used 

to measure I (e.g., if f ~ 100 MHz, and the detector has a bandwidth of 10 MHz). 

Figure 4. Typical setup of a linear frequency-shifted Sagnac interferometer for fiber-optic 

sensor multiplexing. LS: light source; CIR: circulator; BD: balanced detector; AOM: 

acousto-optic modulator; PC: polarization controller; C1 and C2: 50/50 fiber directional 

couplers; Si: ith sensor (of reflection type). 
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A linear frequency-shifted Sagnac interferometer is a useful tool for multiplexing reflection-type 

fiber-optic sensors, since it can separate the sensor signals from the spatial domain and measure 

sensors’ reflection spectra. As mentioned in the Introduction, FSI offers many advantages  

over conventional fiber-optic sensor multiplexing schemes. Figure 4 shows a typical linear  

frequency-shifted Sagnac interferometer. The sensing light from a light source (LS) is launched into 

the interferometer through a fiber-optic circulator (CIR). An AOM is used as a frequency shifter. The 

differential interference signal is measured by a balanced detector (BD). A polarization controller (PC) 

may be added to adjust the interference fringe visibility. This system can be applied to many 

applications depending on the types of sensors employed. 

Reflection-type sensors such as the ones based on fiber Bragg gratings (FBGs) are particularly 

suitable for FSI measurement [32,34]. In [32], an array of 10 FBG sensors was interrogated by a linear 

frequency-shifted Sagnac interferometric system. Despite gratings’ overlapping Bragg wavelengths, 

FSI can resolve the reflection spectrum for each and every sensor in the array. A signal-to-noise ratio 

(SNR) as high as 48 dB was attained. As FBG sensors are strain/temperature sensors, this FSI system 

may potentially be used in areas such as civil structural health monitoring or fire prevention [9,12]. 

With specially designed FBG sensors, this type of FSI configuration can be applied to liquid level 

sensing [34]. The aluminum-coated high attenuation FBGs (HAFBGs) used in [34] may be heated by 

in-fiber light, and they show significantly larger spectral change when heated in the air compared to 

that in liquid. FSI can measure the reflection spectra of such sensors in an array to unambiguously 

determine whether a sensor is immersed in liquid. 

Transmission-type sensors can also be interrogated by FSI systems if each sensor is used in 

conjunction with a reflector. For example, when the sensor array consists of gas cells with partial 

reflective mirrors, FSI is capable of identifying and quantifying chemical gases at different locations. 

In [33], an array of 3 gas cells was successfully measured by FSI. Spectral lines of carbon monoxide 

and acetylene at different concentrations were clearly identified from the measured gas cell absorption 

spectra. A minimum detectable acetylene concentration of 230 ppm with a 3-cm gas cell was  

achieved [33]. It is comparable to the detection limit of a TDM system with wavelength modulation  

(150 ppm with a 2.5-cm gas cell) [46]. 

Figure 5. Overlapping FBG spectra measured by an FSI system that uses a light source 

consisting of a broadband ASE source and a tunable filter. 
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In most FSI fiber-optic sensor multiplexing demonstrations [32–34], a tunable laser was used. 

However, it is not mandatory. An incoherent amplified spontaneous emission (ASE) source paired 

with a tunable filter may be incorporated into an FSI system as the light source. Figure 5 shows the 

spectra of an array of FBGs measured by an FSI system using such a light source. The full width at 

half maximum of the filter is 0.05 nm. As we can see, FSI can still provide individual grating spectra 

to high accuracy although the sensor Bragg wavelengths are similar to one another. As a tunable filter 

can be tuned at a high scan frequency (~ kHz), using an ASE source and a tunable filter may increase 

the measurement speed and reduce the system cost. However, it sacrifices the SNR and spectral 

resolution, since a tunable laser offers higher spectral power and a narrow line width. 

2.3. Single-Arm Frequency-Shifted Interferometer with Multiple Reflections 

Based on sideband interference, an FSI system with only one interferometer arm can also be built [37]. 

This single-arm FSI (SA-FSI) configuration (see Figure 6) is simple and more compact compared with 

a linear frequency-shifted Sagnac interferometer. Let the input field be E0 e
i2t

. The modulator (an 

intensity modulator or phase modulator) in SA-FSI introduces sideband signals. When a phase 

modulator is employed, the output field of the modulator can be expressed as: 
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where M is the modulation index, and Jm(M) is the Bessel function of the first kind. With properly 

chosen modulation parameters, higher order sidebands can be suppressed. Now let us focus on the 

interference of the first order sideband at  + f at port 3 of the circulator. The central band light at  

passes the modulator twice (on one occasion before it enters and reflector array, and on another 

occasion when it returns to the modulator after reflection at Ri) and produces two components at  + f 

for Ri. These two components are equivalent to the two interfering lightwaves at  + f in a linear 

frequency-shifted Sagnac interferometer. The output intensity of the SA-FSI system SAI  is: 
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where the DC component DCI  is the result of the central band signal, and Li is the distance between Ri 

and the modulator. Again, a Fourier transform can separate the interference signals from different 

reflectors. A bandpass filter can be used to select the interference signal at  + f. 

Figure 6. A single-arm frequency-shifted interferometer. Ri is the ith reflector. 
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In [37], a 10-GHz LiNbO3 phase modulator (PM) was used as the modulator, and a few weak FBGs 

were introduced as reflectors in the single fiber link. As a PM can be driven at a much higher RF 

frequency than a AOM, we were able to sweep the frequency shift f between 4.5 and 5.5 GHz, in steps 

of 1 MHz. This corresponds to a frequency sweep range f of 1 GHz, which is much larger than that of 

a typical AOM (20 MHz). As shall be explained in part 3 of this paper, spatial resolution is inversely 

proportional to f. A spatial resolution of 0.3 m can be achieved with this SA-FSI, and this is a 

significant improvement compared to the resolution of an FSI system using an AOM (~5 m).  

2.4. FSI-Based Cavity Ring-Down Technique 

The principle of FSI can be applied to CRD measurement [35,36]. Instead of monitoring the decay 

rate of an optical pulse in a cavity, FSI-based CRD (FSI-CRD) technique measures the decay rate of 

CW light in the cavity without the need of any fast electronics. 

Figure 7. An FSI-CRD system with a fiber loop cavity. C0: 50/50 fiber directional coupler; 

C1 and C2: highly unbalanced fiber directional couplers. 

 

Figure 7 shows the basic setup of an FSI-CRD system with a fiber loop cavity. It is essentially a 

frequency-shifted Sagnac interferometer that incorporates a fiber loop ring-down cavity (RDC). The 

RDC is constructed by two highly unbalanced fiber directional couplers C1 and C2 (e.g., 99.5/0.5 

couplers). When CW light is sent into the interferometer from port 1 of C0, lightwaves start to circulate 

in the RDC in opposite directions. A small fraction of the light exits the RDC each time when the light 

completes a round trip. If the cavity length d = l2 + l3 is longer than the coherence length of the light 

source, interference takes place at C0 between counter-propagating lightwaves that exit the RDC after 

the same number of round trips. As the differential interference signal contains a sinusoidal component 

for each round trip number m (m = 0,1,2,3,…), I is [35]: 
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where the length constant 0421 llllLS  , Im is the amplitude of the sinusoid component, and 

  cmdLnF Sm / . Clearly, Fm increases by nd/c as m increases. Due to RDC loss, Im undergoes an 

exponential decay. Let us assume that there is some sensing element in fiber section l2 with attenuation 

coefficient  and an interaction length l. It can be shown that Im can be expressed as [35]: 
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where I is some initial amplitude, c is the transmittance of an empty RDC (an RDC without any 

sensing element), and Lt = md is the distance traveled by light in the RDC. Similar to conventional 

CRD measurement in which an exponential decay is obtained, the Fourier transform of I also shows a 

series of exponentially decaying peaks, but in our case, the peaks decay as a function of distance 

instead of as a function of time. Analogous to the CRD time, we may define a CRD distance for  

FSI-CRD as: 

l

d

c  


ln
 (9) 

By finding , we can deduce the loss introduced by the sensing element in the RDC. 

Figure 8. A typical FSI-CRD sensing system [35,36]. LS: light source; CIR: circulator; 

BD: balanced detector; AOM: acousto-optic modulator; C0: 50/50 fiber directional coupler; 

C1 and C2: highly unbalanced fiber directional couplers. 

 

 

Figure 8 shows the setup for a typical FSI-CRD sensing experiment. The light source (LS) could be 

either a tunable laser [35] or a broadband source [36]. The frequency shifter employed is again an 

AOM. We have demonstrated that this system can accurately measure fiber bend loss introduced in the 

RDC [35]. To compare the performance of FSI-CRD with that of conventional ones, we conducted 

FSI-CRD evanescent-field sensing experiments [36]. 

Some reviews on fiber-based CRD techniques can be found in references [27,29]. Two research 

groups have used conventional CRD techniques to measure the absorption of 1-octyne [23,25]. In [23], 

optical pulses were injected into a 2.2-km RDC formed by a pair of 99/1 fiber directional couplers. A 

fiber taper with a diameter of 10 µm was used in the RDC as the sensing element. The cavity loss 

change was induced by the evanescent-field absorption caused by 1-octyne at the fiber taper section. 

An estimated minimum detecTable 1-octyne concentration of 1.05% was reported. In another 

demonstration [25], instead of a taper, a long-period grating (LPG) pair was employed in a similar but 

shorter RDC (~28 m), where the evanescent field absorption occurred between the two LPGs. A range 

of 1-octyne concentrations (dissolved in decane) between 0 and 40% was tested, and a minimum 

detectable concentration of 0.62% was reported [25]. To evaluate the performance of our technique, 
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we measured the absorption of 1-octyne solutions between 0% to 5% (1-octyne dissolved in decane) 

with our FSI-CRD system. The CW sensing light was produced by a low-coherent C-band amplified 

spontaneous emission (ASE) source. A 5-cm-long fiber taper (10 µm in diameter) was spliced into a 

fiber loop cavity formed by two 99.5/0.5 fiber directional couplers. The cavity loss was measured as a 

function of 1-octyne concentration. It was found that a minimum detectable 1-octyne concentration of 

0.29% could be achieved. To the best of our knowledge, this is the lowest 1-octyne detection limit in 

literature for fiber-based CRD systems [23,25]. Compared with the result in [23], the improvement in 

the detection limit could be due to a longer light-sample interaction length (provided by a longer taper) 

and a shorter but more stable RDC (~47 m). Although the interaction length (~16 cm) in [25] is longer, 

our taper may produce a larger evanescent field compared with that offered by the fiber cladding 

modes excited by the LPGs in [25]. As our RDC is less lossy, it may also contribute to the superior 

performance. We used the same FSI-CRD setup for refractive index sensing [36]. A minimum 

detectable refractive index change of 1  10
−4

 was achieved for sodium chloride solutions, which is 

comparable to the result (3.2  10
−5

) attained by a conventional fiber-based CRD system using a much 

longer taper [26]. Note that in our experiments, the data sampling rate was only 100 kS/s, whereas in 

conventional CRD experiments, fast detection electronics (>20 MS/s) are needed to capture the change 

of optical pulses with durations of ~10 ns [15]. 

3. FSI System Parameters 

3.1. Spatial Resolution and Spatial Sensing Range  

In an FSI system, the spatial resolution is the minimum resolvable separation between two 

reflectors (minimum resolvable optical path length difference). In fiber-optic sensor multiplexing, this 

parameter dictates how closely sensors (such as FBGs) can be distributed along a fiber. In a linear 

frequency-shifted Sagnac interferometer or a SA-FSI system, the spatial resolution L is proportional 

to the resolution of sinusoidal components’ oscillation frequency F after the FT: L = c/(2n)∙F. By the 

theory of discrete Fourier transform, F = 1/f, where f is the frequency sweep range of the 

frequency shifter, so that [33]: 

fn

c
L




2
  (10) 

As fiber is flexible and can be wound, L is not necessarily the minimum sensor  

physical separation.  

The spatial sensing range is the maximum distance between the furthest sensor and the system at 

which reliable measurement can be made (maximum measurable optical path length). Since Fi is 

proportional to Li by Equation (4), the further the reflector, the higher the frequency Fi. Nyquist 

theorem suggests that we need to sample Ii at a sampling rate at least twice as high as Fi. That is, the 

maximum F we can measure Fmax = 1/(2fstep), where fstep is the frequency shifter sweep step. The 

spatial sensing range is thus [33]: 

stepnf

c
L

4
max   (11) 
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In practice, system loss must also be considered when one estimates the maximum sensing distance, 

if certain signal-to-noise ratio (SNR) is required. 

As we have seen, both spatial resolution and spatial sensing range are determined by the sweep 

parameters of the optical frequency shifter. The following relation holds: 

stepf

f

L

L 



max  (12) 

Depending on the requirements of a specific application, the spatial resolution and spatial sensing 

range can be optimized by choosing appropriate frequency shifter sweep range and sweep step, 

respectively. For example, if we have f = 20 MHz and fstep = 0.04 MHz, the spatial resolution and 

spatial sensing range are ~5 m and ~1293 m, respectively [33]. 

3.2. Dispersion Effects 

Up to now, the analysis of FSI has been under the assumption of monochromatic input light. To see 

the effects of dispersion in FSI, let us suppose that the input light is broadband and that it has a 

uniform spectrum centered at 0 with a bandwidth of . The differential interference signal I then 

becomes an integral over all the wavelength components. In the case of a linear frequency-shifted 

Sagnac interferometer, the differential interference signal Ii contributed by a single reflector Ri can be 

expressed as: 
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where Ii is the interference signal intensity, and the optical path length (OPL) for a spectral component 

at  has been written as cLDLnLn iii  )(22)(2 00  , and D is the group velocity dispersion 

parameter. It can be seen that the integral is essentially a summation over a continuous range of 

frequency components cLnF i /)(2)(   . After Fourier transform, these frequency components form 

a broadened peak around the central wavelength component F(0). Also note that the cosine term 

  fcLnI ii /22cos 0  in Equation (13) is the usual interference signal contributed by the component at 

0, and the dispersion effect due to bandwidth  is included in the sinc function. The oscillation of 

this sinc function is much slower than the cosine term. The Fourier transform of Ii is the convolution 

between the Fourier transforms of a cosine and a sinc function. 

As a numerical example, let us consider the dispersion effect in a linear frequency-shifted Sagnac 

interferometer built with standard SMF-28 fibers. At 0 = 1550 nm, the fiber group velocity dispersion 

parameter D = 16.2 ps/(nm∙km). Suppose the source bandwidth  = 35 nm, Li = 1 km, and the 

frequency shift is swept from 90 to 110 MHz in steps of 0.04 MHz by an AOM. The Fourier peak 

computed with the dispersion effect is almost identical to that computed without dispersion, as can be 

seen in Figure 9. This can be easily understood when we compare the OPL difference between light 
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traveling at 0 and at other wavelengths—the OPL difference is on the order of only 0.17 m, which is 

well below the width of the Fourier peak (~10 m). 

Figure 9. Comparison between the normalized Fourier peaks with and without dispersion 

effects. The thick black dashed curve is the Fourier peak contributed by light at 0 without 

dispersion, while the red curve is the Fourier peak computed from Equation (13). The 

Fourier transform was calculated with a Hann window and a fast Fourier transform  

size of 2
20

. 

 

3.3. System Crosstalk 

Three types of crosstalk may influence the performance of an FSI system, including spectral 

shadowing effect, discrete Fourier transform resolution, and unwanted reflections among reflectors. 

3.3.1. Spectral Shadowing Effect 

When multiple sensors in a serial array have overlapping spectral features, spectral shadowing 

effects take place. To reach a specific sensor, sensing light needs to pass all upstream sensors. 

Therefore, the input light of the ith sensor carries the spectral characteristics of previous (i − 1) 

sensors, and is thus ―shadowed‖ by them (see Figure 10).  

Figure 10. Spectral shadowing effect. The (i − 1)th sensor has a spectral feature at a, and 

it casts a shadow on the ith sensor. As a result, the reflection from Ri contains the spectral 

information of Ri−1. 
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As a form of crosstalk, spectral shadowing effects are not unique to FSI, but are common in 

conventional fiber-optic sensing systems [9]. In an FSI sensing system, spectral shadowing effects can 

be effectively removed [33]. 

In FSI, the system can resolve the reflection spectrum for every individual sensor. The spectral 

shadow experienced by the ith sensor can be removed by using the spectrum of the (i − 1)th sensor. 

The interference signal amplitude Ai of the ith sensor (i ≥ 2) can be written as:  
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 (14) 

where Tj = 1 – Rj is the transmittance of the jth sensor and Ri is the reflectivity of the ith sensor. The 

multiplications in the braces represent the shadow caused by the previous (i – 1) sensors. It can be 

shown that the reflectivity Ri is: 
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As there is no spectral shadow for the first sensor, R1 can be obtained directly from the reflection 

spectrum measured for the first sensor. The actual reflection spectra of subsequent sensors can be 

calculated sequentially by using Equation (15). 

Figure 11. The effects of windowing in DFT. Given the same interference signal I, a 

Hann window can effectively suppress the side lobes of a Fourier peak. (a) DFT spectrum 

of I with a rectangular window. (b) DFT spectrum of I with a Hann window. 

  

(a) (b) 

3.3.2. Discrete Fourier Transform Crosstalk 

The interference signal I acquired in an FSI system is a set of finite data. After the data set is 

processed by discrete Fourier transform (DFT), the Fourier peaks in the Fourier spectrum have finite 

widths [47,48]. DFT crosstalk occurs when two Fourier peaks become overlapped in the spectrum, that 

is, when the frequencies of two sinusoidal components are very close to each other. It is undesirable as 

one Fourier peak may distort the shape of the other, and vice versa. DFT crosstalk can be remedied if 
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the sweep range f is increased or an appropriate window function (e.g., a Hann window) is applied in 

the DFT calculation [47,48]. Figure 11 compares the DFT spectra of a given I computed with and 

without a special window function. As can be seen from Figure 11a, if DFT is calculated directly (i.e., 

with a rectangular window), large side lobes appear about the Fourier peak, and their amplitude 

decreases slowly as one moves away from the peak center. On the other hand, when a Hann window is 

employed in DFT (see Figure 11b), the side lobes are effectively suppressed. Less DFT crosstalk is 

expected if we apply a proper window, such as the Hann window, in the calculation of DFT. 

3.3.3. Unwanted Reflections Among Reflection Sites 

If the sensing system contains multiple sensors in series, multiple reflections or inter-sensor 

interference may occur, which presents another potential source of crosstalk in FSI systems. Sensing 

light may make multiple trips between a pair or more sensors. If the two interfering sensing lightwaves 

follow the same routes and are bounced back and forth between sensors as shown in Figure 12a, 

secondary peaks may appear in the Fourier spectrum after I is processed with DFT. These peaks may 

overlap and distort the primary Fourier peaks contributed by light interference without multiple 

reflections. Choosing low-reflectivity sensors may reduce the crosstalk caused by this effect [9]. 

Light reflected by two different sensors Ri and Rj may also interfere, if the coherence length of the 

light source is longer than twice the sensor separation (see Figure 12b). The interference signal can be 

shown to have the form of cosji AA , where Ai and Aj are the amplitudes of the interfering fields, 

and  is the phase difference between them. Table 1 summarizes the contributions given by such 

undesirable interference for a linear frequency-shifted Sagnac interferometer system. The left column 

of the table shows the paths interfering field components follow, while the right column lists the 

corresponding phase difference between the field components. The interference signals in the first two 

rows of the table introduce Fourier peaks at Fj and Fi which are indistinguishable from the actual 

sensor signals. The interference signal in the 3rd row of the table is a DC component, and the 4th row 

contribution is of low frequency near DC for small separation between Rj and Ri. The crosstalk 

presented by the first two rows of the table can be minimized by employing a low-coherent light 

source (e.g., a broadband source) or by increasing sensor separations. The contributions of the DC and 

slow frequency interference signal from table’s last two rows can be minimized by choosing 

sufficiently long fiber length between the first sensor and the system. 

Figure 12. The effects of unwanted reflections. (a) Multiple reflections between a pair of 

sensors. (b) Interference between lightwaves reflected by different sensors. 

  

(a) (b) 
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Table 1. Contributions of interference caused by undesirable reflections for a linear 

frequency-shifted Sagnac interferometer system [33]. With reference to Figure 3, path A is 

the fiber section between the two couplers that does not have the frequency shifter, 

whereas path B is the other fiber section that contains the frequency shifter. 

Path of the Interfering Field 

Components 


path A  Rj  path B 

and 

path B  Ri  path A 

    cLLncflllLn jii /222/22 0021    

path A  Ri  path B 

and 

path B  Rj  path A 

    cLLncflllLn ijj /222/22 0021    

path A  Rj  path B 

and 

path A  Ri  path B 

  cLLn ji /222 0   

path B  Rj  path A 

and 

path B  Ri  path A 

    cLLncfLLn jiji /222/222 0   

3.4. Polarization Effects 

Many interferometric fiber-optic sensing systems are susceptible to polarization effects [49–51]. 

Polarization fading occurs when the interfering fields’ polarization states are misaligned. As an 

interferometric technique, FSI’s performance is also influenced by light polarization. We developed a 

model based on Jones calculus [52–54] to study the polarization effects in FSI systems. In our 

experiments, the FSI systems are built with single-mode fibers (SMFs), which have very low 

polarization-dependent loss. Nonlinear effects are also negligible as a result of the low optical power 

admitted into the system (<10 mW). Therefore, it is reasonable to assume that the Jones matrices of the 

components in the FSI system are elements of SU(2), the special unitary group [54–57]. That is, we 

assume there is no fiber nonlinearity, no polarization-dependent loss, and the loss term has been 

factored out so that the Jones matrices are unitary. We also assume that there are no Faraday effects 

and that the fiber directional couplers do not alter light polarization. We seek conditions under which 

the interference fringe visibility can be maximized. 

Under our assumptions above, the Jones matrix for an optical component in an FSI system can be 

generally written as [55]: 
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 (16) 

where a = e
i

 cos and b = e
i

 sin are complex numbers (a,bC) satisfying 1
22
 ba . The matrix 

can be characterized by , , and  , which are three real continuous parameters ,,R The 

matrix U can alternatively be written as: 
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(17) 

where  and  are two real parameters such that   and   . We can recognize 

immediately that U is in fact constructed by a polarization rotator with a rotation angle  sandwiched 

between two phase shifters with phase shifts 2 and 2, respectively [53]. 

The Jones matrix of a cascaded system is the product of its constituents’ Jones matrices [52,53]. As 

matrix multiplications are closed for elements of SU(2), the Jones matrix of a cascaded system whose 

constituents’ matrices belong to SU(2) is also an element of SU(2), and it can be characterized by 3 

real parameters. Mathematically, the matrix product U1U2U3U4U5…UN = USU(2), given UiSU(2). 

A FSI system is bidirectional, since light propagates through the same optical elements from both 

directions. Given the Jones matrix U of an optical element for forward light propagation, we also need 

to find the corresponding Jones matrix U  for backward propagation. The entries ofU  is related to 

those of U by the relation ji

ji
ij UU  )1( [58,59]. With U as in Equation (16), the backward 

propagation Jones matrix is therefore: 
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It can also be shown that the backward propagation Jones matrix for a cascaded system has the 

property [58]: 

NNNN UUUUUUUU  321121   (19) 

where Ui are the forward Jones matrices of components in the system. With (16)-(19), we can start to 

model the polarization effects in FSI systems. 

3.4.1. Polarization Model for a Frequency-Shifted Sagnac Interferometer 

For a frequency-shifted Sagnac interferometer, suppose the Jones matrices for clockwise 

propagation and counterclockwise propagation are Mc and Ma, respectively. They can be expressed as: 
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For an arbitrary input Jones vector ][ yx sss 
T
, the output polarization of clockwise propagation 

is sMt cc  , and that of counterclockwise propagation is sMt aa  . To optimize the interference 

fringe visibility, we require ac tt  , where the two polarization states are defined in their 

corresponding local coordinates x-y-z as shown in Figure 13. This condition is satisfied for an 
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arbitrary s  when Mc = Ma, which implies that e
i

 sin = e
−i

 sin, that is,  = k, where k is an integer 

(kZ). 

Figure 13. Input and output polarization of a frequency-shifted Sagnac interferometer. The 

coordinate system for the input polarization state s  is x-y-z, and the coordinate system for 

the output states ct  and at  is x-y-z. 

 

3.4.2. Polarization Model for a Linear Frequency-Shifted Sagnac Interferometer 

The system for a linear frequency-shifted Sagnac interferometer is more complicated. As shown in 

Figure 14, the fiber section between any two adjacent sensors may possess a random Jones matrix Ui 

(assumed to belong to SU(2) in our analysis), and given the same input s , the output polarization 

states for different sensors are in general different. We may write the clockwise and counterclockwise 

Jones matrices for the system, Mci and Mai, for the ith sensor as: 

AarrayiBci UUUM   (21a) 

BarrayiAai UUUM   (21b) 

where UA and UB are the Jones matrices for the fiber sections shown in Figure 14, 

and   12211321 UUUUUUUUUUU iiiiiarrayi   . But as BarrayiAciai UUUMM  , by  

Equation (21b), we can conclude that arrayiarrayi UU  . This means that the (1,2) entry of Uarrayi must be 

a real number, namely, 12][ arrayiU R. Without loss of generality, we may assume that: 
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and that: 
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To optimize the interference fringe visibility for an arbitrary input polarization state s , we require 

that sMttsM aiaicici  , where cit  and ait are the output polarization states for clockwise 

propagation and counterclockwise propagation, respectively. Again, this implies 12][ ciM R, the (1,2) 

entry of the Jones matrix Mci is a real number. By substituting Equations (22) and (23) into  
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Equation (21), we may find the expressions for Mci and Mai. The system is now characterized by 8 

parameters ( 0 , 0 , A , A , A , B , B , and B ). 

It was found that if we can control UA and UB (i.e., if we can adjust A , A , A , B , B ,and B ), it is 

possible to simultaneously maximize the interference fringe visibility for all the sensors, as long as we 

can satisfy either of the two sets of conditions: 
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This suggests that in a practical FSI sensor interrogation system, we may keep the setup to the left 

of coupler C2 in the control center, and we can optimize the interference fringe visibility for all the 

sensors, although we do not have access to the sensor array. 

Figure 14. Input and output polarization of a linear frequency-shifted Sagnac 

interferometer. The coordinate system for the input polarization state s  is x-y-z, and that 

for the output polarization states cit  and ait  from the ith sensor Ri is the local coordinate 

system x-y-z. 

 

3.4.3. Polarization Model for an FSI-CRD System 

In an FSI-CRD system, the polarization state evolves as light makes multiple passes through the 

ring-down cavity. We can denote the Jones matrices of the system components as shown in Figure 15. 

For a given round trip number m (m = 0,1,2,…), the clockwise propagation Jones matrix Mcm and the 

counterclockwise propagation Jones matrix Mam can be written as: 

  ARDCmBAL

m

SLBcm UUUUUUUUM   (25) 

 

 

BRDCmA

ARDCmBcm

BL

m

SLAam

UUU

UUUM

UUUUUM







 (26) 

where URDCm = (ULUS)
m
UL accounts for the multiple passes of light through the RDC. 
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We wish to optimize the interference fringe visibility for every m. Following similar arguments as 

in the previous section, we can show that having polarization control over UA and UB alone does not 

guarantee optimal fringe visibility for all the interference signals (for every m), unlike the case of a 

linear frequency-shifted Sagnac interferometer. We also need to control the polarization inside the 

RDC. The simplest way to achieve fringe visibility optimization is to use two polarization controllers, 

one for UA (or UB) and the other for US. As UA, UB, UL, and US are assumed to be elements of SU(2) in 

our model, they are all invertible. One can first adjust UA (or UB) so that UBULUA = I, where I is the 

identity Jones matrix, and then adjust US to make ULUS = I. Once this is achieved, we 

have IUU RDCmRDCm  and Mcm = Mam = I, so that the output polarization states cmt  and amt  will be 

identical to the input polarization state s . 

Figure 15. Input and output polarization of an FSI-CRD system. The coordinate system for 

the input polarization state s  is x-y-z, and the coordinate system for the output states after 

m round trips cmt  and amt  is x-y-z. 

 

4. Conclusions 

In summary, fiber-optic sensing has become an important frontier of the sensing industry. 

Frequency-shifted interferometry is a versatile addition to the tool box. With the help of a CW light 

source, a frequency shifter, and a slow detector, FSI is able to undertake very different tasks. An FSI 

system can be used to measure fiber length and dispersion [30], and to locate faults or weak reflections 

along a fiber link [31,37]. An important application of FSI is in fiber-optic sensor multiplexing [32–34]. 

Fiber-optic sensors of both transmission- and reflection- types can be employed in the system. FSI can 

separate sensor signals in the spatial domain, and measure their spectra. The spectra of reflection-type 

sensors such as FBGs can be measured directly by FSI [32,34]. For transmission-type sensors, the 

transmission spectra can be obtained by placing a reflector after each sensor [33]. In general, a  

fiber-optic sensor that produces spectral or transmission/reflection loss change in response to the 

measurand change can be interrogated by an FSI system. These sensors can operate at similar 

wavelengths, which relaxes the requirements on the sensors and enables the system to accommodate a 

larger number of sensors. If a fiber-loop ring-down cavity is embedded into the system, FSI is capable 

of performing high-sensitivity cavity ring-down analysis [35,36]. FSI-CRD measures the decay rate of 
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CW light in the RDC, and therefore, it does not require any optical pulse or fast electronics. In this 

paper, we have presented different configurations of FSI, explained the operation principles, and 

analyzed the system parameters that affect the performance of FSI systems. The information can serve 

as a guide for the design and optimization of FSI systems targeting various applications. We believe 

that with the continual expansion of the fiber-optic sensing market, FSI shall make greater 

contributions to the community. 
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