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Abstract: The aim of this study is to improve the understanding of land changes in the 

Jiulong River watershed, a coastal watershed of Southeast China. We developed a stratified 

classification methodology for land mapping, which combines linear stretching, an 

Iterative Self-Organizing Data Analysis (ISODATA) clustering algorithm, and spatial 

reclassification. The stratified classification for 2002 generated less overall error than an 

unstratified classification. The stratified classifications were then used to examine temporal 

differences at 1986, 1996, 2002, 2007 and 2010. Intensity Analysis was applied to analyze 

land changes at three levels: time interval, category, and transition. Results showed that 

land use transformation has been accelerating. Woodland’s gains and losses were dormant 

while the gains and losses of Agriculture, Orchard, Built-up and Bare land were active 

during all time intervals. Water’s losses were active and stationary. The transitions from 

Agriculture, Orchard, and Water to Built-up were systematically targeting and stationary, 

while the transition from Woodland to Built-up was systematically avoiding and stationary. 

Keywords: land-use and land-cover; stratified classification; intensity analysis;  

coastal watershed 
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1. Introduction 

Coastal watersheds have become a particular concern due to escalating environmental pressures and 

their important roles in coastal ecosystem services such as fresh water provision and nutrient cycling 

supporting services [1,2]. The pollutants in coastal watersheds transported from rivers are blamed for 

contamination of downstream estuarine and coastal waters [3–5]. Watershed land use influences water 

quality through nonpoint sources, which are major contributors of pollution to the catchment-coast 

continuum under the context of human-accelerated landscape transformations [2,3,6,7]. As human 

activities determine land use and land cover (LULC) pattern, accurate mapping of LULC and thereby 

understanding how LULC might evolve is crucial for watershed assessment and land-based pollution 

management [8–10]. 

Satellite remote sensing has the potential to provide geospatial information describing changes in 

LULC [10–12]. A number of techniques on LULC classification and change detection have been 

reviewed [13–15]. LULC classification approaches mainly include supervised classification and 

unsupervised classification [16]. Classification performance depends on many factors [17,18]. For 

example, supervised classification relies on previous knowledge and accurately located training 

samples. Classifying satellite images and extracting meaningful information in an efficient way 

without compromising the accuracy has remained a challenge even though a variety of remotely 

sensed sources with various spatial, temporal and spectral scales are available [10,19]. 

Spectral confusion is a challenge in land cover mapping, especially when using a spectral-based 

classification method. Yang and Lo [20] identified spectral similarity between urban features and 

various vegetation types. The confused clusters were further split and recoded. Liu and Yang [21] 

tackled the spectral confusion problem by employing a stratified classification strategy. They 

partitioned the entire landscape into rural and urban subsets using the road network density. Then they 

processed those subsets independently to minimize the spectral confusion between some urban features 

and agricultural land covers. This stratified classification was used in an urban area and used the road 

buffer as a mask to clip the entire landscape into two subsets. The spectral feature itself should be 

taken into account when making the mask to partition satellite images.  

Post classification comparison is a commonly used method for change detection [22]. An obvious 

first step to quantifying the change among land categories between two points in time is to compute the 

transition matrix. Pontius et al. [23] created a method to examine the transitions relative to the sizes of 

the categories available for the transitions. Alo and Pontius [24] showed how to use the method to test 

whether the systematic transitions in one region are consistent with the systematic transitions in a 

different region for cases where the two regions have different proportions of the stocks of land 

categories. More recently, Aldwaik and Pontius [25] developed the method further into an approach 

called Intensity Analysis, which examines changes among categories at three levels: time interval, 

category and transition. Intensity Analysis quantifies at each level the deviation between observed 

change intensity and hypothesized uniform change intensity. Many researchers [26–29] have used the 

concepts introduced by Pontius et al. [23]. Huang et al. adopted Intensity Analysis to link patterns with 

process of LULC change in the Jiulong River Watershed (JRW) [30]. 

The JRW is a subtropical watershed located in the eastern coastal area of China that has 

experienced drastic LULC changes during the past 20 years and that plays an important role in the 
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region’s economic and ecological health. However, studies that use accurate and detailed mapping of 

LULC and its changes over time in this coastal watershed are needed. The objectives of our study are: 

(i) to develop a stratified classification methodology to create a time series of LULC maps in the JRW, 

and (ii) to analyze the spatiotemporal dynamics of LULC in the JRW. 

2. Study Area 

The JRW covers about 14,700 km
2
 in the eastern coastal area of China and consists mainly of eight 

counties/districts: Zhangzhou, Xinlou, Zhangping, Hua’an, Changtai, Pinghe, Longhai and Nangjing 

(Figure 1). The watershed’s gross domestic product accounts for a quarter of Fujian Province’s 

economic output. Approximately ten million residents from Xiamen, Zhangzhou and Longyan use the 

Jiulong River as their water source for residential, industrial and agricultural activities. 

Figure 1. Location of the Jiulong River Watershed. 

 

The watershed includes the North and West Rivers, which meet in Zhangzhou, and produce an 

annual flow of twelve billion cubic meters into the Jiulong River estuary and the Xiamen-Kinmen 

coast. The upstream region is mountainous and 68% of the watershed has a topographic slope in excess 

of 18% [31]. Fujian Province’s largest plain is the Zhangzhou plain, which is located at the 
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downstream end of the Jiulong River. The plain is intensively agricultural with orchards of banana, 

longan, litchi, pomelo, citrus and flowers. The Zhangzhou municipality, including the Zhangzhou 

district and its neighboring counties (Longhai, Changtai, Nanjing, and Pinghe), constitutes one of 

China’s most developed regions in terms of agricultural production due to its subtropical monsoon 

climate and agricultural policies, which are influenced by the closeness to Taiwan. 

3. Data and Methodology 

The rare availability of cloud free imagery influenced the selection of the dates of the images. 

Inconsistency in acquisition date within the same year can cause inconsistency in the classification for 

that year. After examining available satellite images, we realized that the problems that clouds would 

cause would be much larger than problems that inconsistent date acquisition would cause. Therefore, 

for each year, two images from different dates were chosen to obtain a complete and cloud free 

coverage of the study area (Table 1). The predominantly cloud-free Landsat images covering the 

inland and estuarine parts of the JRW included eight Thematic Mapper (TM) images acquired in 1986, 

1996, 2007, 2008, 2009 and 2010 and two Enhanced Thematic Mapper Plus (ETM+) images acquired 

in 2002. These Landsat images were acquired from the Center for Earth Observation and Digital Earth 

(CEODE), Chinese Academy of Sciences (http://cs.rsgs.ac.cn/cs_cn/) and the United States Geological 

Survey (USGS) (http://eros.usgs.gov/). In order to keep the same resolution, the panchromatic band of 

ETM+ image was not used and all the TM images were re-sampled to a 30 m resolution. The final 

LULC map for each year is a mosaic of classified maps of the inland and estuarine parts. Ancillary 

data included the high-resolution image from Google Earth and GIS data of roads and villages. These 

geospatial data were used mainly as reference data for image classification and accuracy assessment. 

Table 1. Characteristics of the satellite images used. 

Date Source Acquisition Date 
Spatial 

Resolution(m) 

No. of 

Bands 
Path/Row by Date Source 

Landsat 5TM 7/25/1986, 1/5/1986 25 7 119/43,120/43 CEODE 

Landsat 5TM 5/17/1996, 3/5/1996 25 7 119/43,120/43 CEODE 

Landsat 7ETM+ 1/2/2002, 7/4/2002 30/15 8 119/43,120/43 USGS 

Landsat 5TM 2/28/2008, 5/7/2007 25 7 119/43,120/43 CEODE 

Landsat 5TM 8/3/2010, 6/6/2009 25 7 119/43,120/43 CEODE 

Our methodology proceeded in seven steps (Figure 2): (i) image preprocessing; (ii) LULC 

classification scheme design; (iii) image stratification; (iv) ISODATA clustering; (v) spatial 

reclassification; (vi) accuracy assessment and (vii) change detection. LULC classes in the study area 

were summarized into six categories: Woodland, Agriculture, Orchard, Built-up, Bare land and Water 

(Table 2). In addition, we classified two ETM+ images in 2002 using the conventional unsupervised 

classification procedure without the image stratification procedure so we could compare it to the 

output of the stratified procedure, to measure the effect of the stratification. 
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Figure 2. Seven steps of methodology. 

 

Table 2. The LULC classification scheme used in this study. 

No. LULC Types Description 

1 Agriculture 

Land used for cultivation, including newly cultivated land, fallow land, swidden land, 

rotation plough land, land mainly used for planting and beach cultivated more than 

three years.  

2 Orchard 
Areas for planting perennial woody plants and perennial herb which were used for 

collecting their fruit, leaves and rhizome. Cover degree >50%, including Fruit nursery 

3 Woodland 
Including arbor, bamboo, shrub, Mangrove and pastureland. Residential land use for 

greening, plants used along railways, highways and rivers are not included.  

4 Built-up 
Residential area, including the surrounded enterprise area, entertainment area, all kinds 

of road and airport.  

5 Water Inland water area and water conservancy facilities. 

6 Bare land 
Unused land, including barren land, wild grass ground, alkaline land, wetland, sand, 

waste land.  

3.1. Image Preprocessing 

In this study, the geo-referencing approach was image-to-image registration. First, the 2002 ETM+ 

image was registered to topographic maps using distinctive features, such as road intersections and 

stream confluences that are clearly visible. The ETM+ image was georeferenced to the Krasovsky 

1940 map projection, Beijing 1954 coordinate system, Central Meridian 117 N. Then, this image was 

used as the reference to rectify other images. For the four cases, a first-order polynomial nearest 

neighbor algorithm with 32 ground control points re-sampled the images so that the root mean square 

errors were less than half a pixel. All the images were re-sampled to a 30 m resolution before the 

following steps. 
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3.2. LULC Classification Scheme  

The Technology Regulation of Land Use Survey (1984), regulated by the Ministry of Land and 

Resources of the People’s Republic of China, recommends that LULC be classified into Agriculture, 

Orchard, Woodland, Grassland, Residential area, Transportation, Water and Bare land. We created a 

modified version of six categories of LULC based on image spatial resolution and field surveys  

(Table 2). 

3.3. Image Stratification 

Spectral features based image stratification was developed in this study to suppress the spectral 

confusion. Electromagnetic radiation reflection from landmarks is the basis of remotely sensed images 

and the lightness of the pixels depends on the landmarks, by which specific landmarks can be 

identified [32–34]. It is well known that the red band locates in the main absorption band of 

chlorophyll, and contains most information on vegetation. Water body is distinguishable from 

background in the short-wave infrared band [32]. Therefore, the red band and short-wave infrared band 

are used in this study to extract the vegetation and water layer through the digital number (DN) value 

thresholds. The image stratification performed in this study consists of the following steps: 

(1) Linear stretching. Interactive stretching allows users to interactively control the contrast of the 

displayed image. Here, we used the linear stretching and adjusted the DN value of the red band 

to control the contrast of vegetation and other land cover. The optimal DN value here separated 

distinctly vegetation from other land cover types and was defined as the vegetation threshold in 

this work. Similarly, by adjusting the DN value of the short-wave infrared band and controlling 

the contrast of water and other land cover in the short-wave infrared band, we obtained a 

threshold for water.  

(2) Mask generating. If the DN value in the red band of a pixel was smaller than the vegetation 

threshold we obtained, then this pixel was recognized as part of the mask for vegetation. All the 

pixels under above-mentioned condition composed the mask for vegetation subset. Similarly, if 

the DN value in the short-wave infrared band of a pixel was smaller than the water threshold 

we obtained, then this pixel was recognized as part of the mask for water subset. All the pixels 

under above-mentioned condition composed the mask for water subset.  

(3) Subset extracting. The vegetation subset was partitioned from the processed image using the 

vegetation mask. Here we got a vegetation subset and remaining image. Then by clipping the 

remaining image using the water mask, we got a water subset and another subset, which 

consisted mainly of urban area. We named the third subset impervious surface areas (ISA).  

3.4. ISODATA Clustering 

Then the ISODATA classifier was used to identify spectral clusters. The number of classes is 

critical for ISODATA classifier to capture the land surface variability from images. Yang and Lo [20] 

empirically tried various numbers of classes to determine the optimum number. If the resultant clusters 

are better interpreted in relation to the classification scheme, then the corresponding number is 

recognized as the optimum. According to the above-mentioned method, water, ISA and vegetation 
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subsets were grouped into 40, 60 and 150 spectral clusters. The number of Maximum Iterations was 

specified as 60, and the Convergence Threshold was specified as 0.990.  

Each spectral cluster in all three subsets was assigned into one of the six LULC classes using visual 

interpretation of the subset images, and the ancillary data from Google Earth and GIS data were also 

used. A single LULC image for each year was generated by merging the three images. After 

generating the classified inland and estuarine maps, these two were mosaicked and clipped according 

to our study area boundary. 

3.5. Spatial Reclassification 

Manual on-screen editing was applied to further correct the classified image. The classification used 

ancillary data, including finer resolution satellite imagery data from Google Earth, the original images, 

the authors’ knowledge of the study area, and GIS data of roads and villages. Finally the LULC map 

was clipped by the mask of our study area boundary. 

3.6. Accuracy Assessment 

A stratified random sampling design was adopted in the accuracy assessment, where the sample size 

in each stratum was proportional to the size of the stratum, and each stratum is a category in the 

classified map. For each LULC map, a total of 256 pixels were selected. We checked each pixel by 

visual inspection of the Landsat images and fine resolution images from Google Earth to construct a 

confusion matrix.  

We summarized the confusion matrices by computing quantity disagreement and allocation 

disagreement [35]. Quantity disagreement is the amount of difference between the reference categories 

and the classified categories that is due to the less than perfect match in the proportions of the 

categories. Allocation disagreement is defined as the amount of difference between the reference 

categories and the classified categories that is due to the less than maximum match in the spatial 

allocation of the categories, given the proportions of the categories in the reference and comparison 

maps. The total disagreement is the sum of quantity disagreement and allocation disagreement.  

In terms of each category, agreement for a particular category is where both the reference 

information and the classified map indicate the particular category. Omission disagreement for a 

particular category is where the reference information indicates the particular category, but the 

classified map shows a different category. Commission disagreement for a particular category is where 

the classified map shows the particular category, but the reference information indicates a different 

category. If the commission disagreement is greater than omission disagreement for a particular 

category, then the map overestimates the quantity of that category. If the omission disagreement is 

greater than commission disagreement for a particular category, then the map underestimates the 

quantity of that category [36]. 

3.7. Change Detection 

Change detection was carried out by post-classification comparison, and creation of contingency 

tables for the time intervals 1986–1996, 1996–2002, 2002–2007 and 2007–2010. We performed three 
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levels of Intensity Analysis: time interval, category, and transition [25]. The time interval level 

examines how the size and rate of change varies across time intervals. For any particular time interval, 

the category level examines how the size and intensity of gross losses and gross gains in each category 

vary across categories. For any particular category, the transition level examines how the size and 

intensity of the category’s transitions vary across the other categories that are available for that 

transition. At each level, Intensity Analysis compares the observed changes to hypothetical uniform 

change, as a uniform line indicates. 

At each level, the method tests for the stationarity of patterns across time intervals. Stationary 

means that the pattern of change in one time interval is the same as the pattern of change in a different 

time interval. For the category level of the gains, stationary means that the intensity of a category’s 

gain is either greater than the uniform line for all intervals of less than the uniform line for all intervals. 

Similarly, if the intensity of a category’s loss is either greater than the uniform line for all intervals or 

less than the uniform line for all intervals, then that category is stationary in terms of losses. For the 

transition analysis, if the gain of category n either targets category m for all time intervals or avoids 

category m for all time intervals, then the transition from m to n is stationary, given the gain of n. 

Similarly, if the loss of category m is either avoided by category n for all time intervals or targeted by 

category n for all time intervals, then we define the transition from m to n as stationary, given the  

loss of m. 

According to the definition of Alo and Pontius [24], the transition from category m to category n is 

a systematically targeting transition when the gain of n targets m while n targets the loss of m. The 

transition from category m to category n is a systematically avoiding transition when the gain of n 

targets m while n targets the loss of m. 

4. Results 

4.1. Performance of Stratified Classification Methodology 

Figure 3 shows LULC classification maps in 2002 derived from two methods. Water and Built-up 

were distinctly classified when using the stratified classification, by which water and impervious 

surface area were stratified out of other LULC categories. 

Figure 4 summarizes the disagreement between the LULC map in 2002 and the reference 

information, for each of the two methods to produce the maps. Stratified classification produced higher 

quantity disagreement percent but distinctly smaller total disagreement. 

Figure 5 summarizes the agreement, omission disagreement and commission disagreement by 

category for each of the stratified and unstratified 2002 LULC maps. Vertical axis shows the 

categories while the horizontal axis shows the number of validation observations. The sum of omission 

and commission disagreement for the stratified classification is smaller than the sum for the 

unstratified classification for each category. Figure 5A shows that the commission disagreement is 

greater than omission disagreement for Woodland and Orchard, thus those two LULC types were 

overestimated by the stratified classification method. In contrast, Agriculture and Built-up were 

underestimated. Figure 5B shows that all LULC types except for Woodland and Built-up were 

overestimated when using the unstratified classification. 
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Figure 3. LULC maps of 2002 for the Jiulong River Watershed classified by (A) stratified 

and (B) unstratified classification. 

 

Figure 4. Components of disagreement between LULC maps of 2002 and the reference data. 

 

This method was further applied to classify TM imagery in 1986, 1996, 2007 and 2010. The overall 

agreement for 1986, 1996, 2007 and 2010 are 82%, 89%, 83% and 83%. 
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Figure 5. Category level analysis of agreement, omission disagreement and commission 

disagreement for LULC maps of 2002 classified by (A) stratified and (B) unstratified 

classification. 

 

4.2. Spatiotemporal Dynamics of LULC Changes Using Intensity Analysis at Three Levels 

Figure 6 shows maps from the stratified method for five time points. Built-up increased while 

Agriculture decreased during all time intervals. Orchard increased since 1996. Woodland increased 

except during 2002–2010. 

The interval level intensity analysis produced Figure 7. Each bar that extends to the left from the 

middle axis is the change area. Each bar that extends to the right from the middle axis is the observed 

change intensity. In terms of the right side of middle axis, if an interval’s bar ends before the uniform 

line, then the change is relatively slow for that interval; if an interval’s bar extends beyond the uniform 

line, then the change is relatively fast for that interval. Figure 7 shows that overall land change has 

been accelerating across the four time intervals. Annual change is fastest during 2007–2010 though 

interval change area was the smallest. 

The category level intensity analysis for each time interval produced Figure 8. Each category has a 

pair of bars, where one bar shows gross gain and the other shows gross loss. The vertical axis shows 

the intensity of annual change during the time interval as a percent of the category. A horizontal line 

shows a uniform intensity of annual change for the entire study area. If a bar ends below the uniform 

line, then the change is relatively dormant for that category. If a bar extends above the uniform line, 

then the change is relatively active for that category. 

Woodland’s gains and losses were dormant while the gains and losses of Agriculture, Orchard, 

Built-up and Bare land were active for all time intervals. This indicated that Woodland experienced 

less intensively gains and losses than if the overall change were to have been distributed uniformly 

across the landscape. Similarly, Agriculture, Orchard, Built-up and Bare land experienced more 

intensively gains and losses than if the overall change were to have been distributed uniformly across 
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the landscape. These results are consistent for all four time intervals, meaning that the pattern is 

stationary at the category level intensity analysis. Water experienced gains more intensively than the 

landscape in general except for 2007–2010 and experienced losses more intensively than landscape in 

general across four time intervals. This indicates that Water’s losses were stationary while its gains 

were not. 

Figure 6. LULC maps of the JRW in 1986, 1996, 2002, 2007 and 2010. 

 

Figure 7. Interval level intensity analysis across four time intervals. 
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Figure 8. Category level intensity analysis, given the observed change during four  

time intervals.  

 

In terms of transition level intensity analysis, we focused the transitions from Woodland, 

Agriculture, Orchard and Water to Built-up, as urbanization is a hotspot in the coastal regions 

throughout the world. Figure 9 shows the results for the transition level analysis in terms of transitions 

from Woodland, Agriculture, Orchard and Water to Built-up. The four graphs in Figure 9A show the 

analysis of the gain to Built-up. The horizontal axis shows the losing categories and the vertical axis 

shows the transition intensity to Built-up. The four lower rows in Figure 9 show the analysis of the loss 

of Woodland (B), Agriculture (C), Orchard (D) and Water (E). The horizontal axis shows the gaining 

categories and the vertical axis shows the transition intensity. Figure 9A shows that Built-up’s gains 

target Agriculture, Water and Orchard and avoid Woodland for all time intervals. Therefore the 

transition from Woodland, Agriculture, Orchard and Water to Built-up is stationary, given the gain of 

Built-up. Figure 9B shows that Built-up avoids Woodland’s loss for all time intervals. The three lower 

rows of Figure 9 show that Built-up targets the losses of Agriculture, Orchard and Water respectively 

for all time intervals. The transition from Woodland, Agriculture, Orchard and Water to Built-up is 

stationary, given the loss of Woodland, Agriculture, Orchard and Water respectively. In Figure 9E, 

Built-up generally targets Water’s loss more intensively than the loss of other categories. This may 

reflect extensive reclamation in the Jiulong River estuaries in recent years. Intensity Analysis shows 

that transitions from Agriculture to Built-up, from Orchard to Built-up and from Water to  

Built-up are systematically targeting transition while the transition from Woodland to Built-up is a 

systematically avoiding transition. 
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Figure 9. Transition intensities from Woodland, Agriculture, Orchard and Water to Built-up, where figures in row A represent gains to  

Built-up during the intervals 1986–1996, 1996–2002, 2002–2007 and 2007–2010, respectively, while row B, C, D and E represent losses from 

Woodland, Agriculture, Orchard and Water during the same intervals respectively. 
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Figure 9. Cont. 
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5. Discussion 

5.1. The Performance of the Stratified Classification 

The determinants of LULC classification performance include the classification algorithm, 

characteristics of the study area, the classification scheme, the pixel spatial resolution, and the quality 

of the reference data [37]. Stratified classification in this paper extracted subsets based on spectral 

features and then classified each subset in a same scheme. This is different with hierarchical 

classification, which classified images in hierarchical way [38,39]. Other studies have also used 

stratified classification and spatial reclassification procedures to suppress the confusion in spectral 

signals [21,40]. Liu and Yang [21] stratified the entire landscape into rural and urban subsets and then 

classified each subset independently by using multiple endmember spectral mixture analysis. The 

completeness and temporal accuracy of the road network data are critical for the success of landscape 

stratification in Liu and Yang’s study. Unfortunately, we were not able to obtain accurate road network 

data for the same year as the satellite images. Instead, we took the spectral features of vegetation in the 

red band and water in the short-wave infrared band to make two masks. The image was then 

partitioned into three subsets. Therefore, our image stratification doesn’t need ancillary data to clip the 

image. We adopted ISODAT clustering to process each subset, because we were not able to gather 

enough previous information about our study area.  

The stratified classification produced lower overall error than the unstratified classification. 

However, the stratified classification produced higher quantity disagreement (Figure 4). This was 

mainly caused by the overestimation of Woodland and underestimation of Agriculture (Figure 5). 

Specifically, the largest confusion in the stratified map is that the map shows Woodland where the 

reference information shows Agriculture. Most of the error in the stratified map is due to this single 

type of confusion. 

5.2. Spatialtemporal Dynamics of LULC Change in the JRW 

Intensity Analysis showed that land transformation has been accelerating across the four time 

intervals, which is consistent with accelerating economic development in this coastal watershed of 

Southeast China. This finding is similar to our prior study [41]. 

Woodland experienced dormant gains and losses, which exemplifies the large dormant category 

phenomenon [42]. Agriculture, Orchard, Built-up and Bare land experienced active gains and losses. 

These patterns are stationary at the category level intensity analysis. Our prior study had similar 

observation that Agriculture and Built were active whereas Natural was a large dormant category [41]. 

The systematically targeting transitions from Agriculture to Built-up, Orchard to Built-up and 

Water to Built-up might be attributable to the spatial proximity of those losing categories to 

urbanization in recent years in the JRW. Towns tend to be in the flat areas, and agricultural activities 

have historically also been located in these areas. Orchard is traditionally planted in the Zhangzhou 

plain within downstream of the JRW. Therefore, as the Built-up expands spatially, it is likely to take 

over Agriculture and Orchard. This explains why most gain of Built land surrounding the cities such as 

Zhangzhou, Longhai and Longyan comes from Agriculture and Orchard. Moreover, urban reclamation 

from Water, especially in the Jiulong River estuary, can explain the systematic transitions from Water 
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to Built-up land in the JRW. Spatially expanding urban growth was identified as one of the leading 

causes of regional arable land loss in Eastern Coastal China [43,44]. The systematically avoiding 

transition from Woodland to Built-up was perhaps due to some forest protection policies and laws in 

China, such as the Grain for Green policy implemented since 1999. But the more plausible explanation 

is that Forest is far away from expanding cities, and Forest is a large dormant category.  

The next steps in our research agenda is to check whether the LULC data derived from our 

methodology are sufficiently accurate to indicate landscape change and the conclusions of Intensity 

Analysis [45,46]. 

6. Conclusions 

This study developed a stratified classification methodology to create a time series of LULC maps 

in the JRW and analyzed the spatiotemporal dynamics of LULC with Intensity Analysis. The stratified 

classification produced lower overall error than the unstratified classification. However, the stratified 

classification produced higher quantity disagreement because the stratified map overestimated 

Woodland and underestimated Agriculture. The sequence of stratified maps for five time points 

showed that overall land change in the JRW has been accelerating, which is consistent with 

accelerating economic development. Woodland is dormant in both gains and losses, while most all 

other categories are active in both gains and losses, which might be because Woodland accounts most 

of the JRW, especially in places far from land change. Transitions from Agriculture, Orchard and 

Water to Built-up are systematically targeting and stationary. 
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