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Abstract: In this paper, a 120 frames per second (fps) low noise CMOS Image Sensor 

(CIS) based on a Two-Step Single Slope ADC (TS SS ADC) and column self-calibration 

technique is proposed. The TS SS ADC is suitable for high speed video systems because its 

conversion speed is much faster (by more than 10 times) than that of the Single Slope ADC 

(SS ADC). However, there exist some mismatching errors between the coarse block and 

the fine block due to the 2-step operation of the TS SS ADC. In general, this makes it 

difficult to implement the TS SS ADC beyond a 10-bit resolution. In order to improve such 

errors, a new 4-input comparator is discussed and a high resolution TS SS ADC is 

proposed. Further, a feedback circuit that enables column self-calibration to reduce the 

Fixed Pattern Noise (FPN) is also described. The proposed chip has been fabricated with 

0.13 μm Samsung CIS technology and the chip satisfies the VGA resolution. The pixel is 

based on the 4-TR Active Pixel Sensor (APS). The high frame rate of 120 fps is achieved 

at the VGA resolution. The measured FPN is 0.38 LSB, and measured dynamic range is 

about 64.6 dB. 

Keywords: CMOS Image Sensor (CIS); Two-Step Single-Slope ADC; column  

self-calibration; low noise 
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1. Introduction 

Currently, the CMOS Image Sensor (CIS) is widely used in digital cameras, digital camcorders, 

CCTVs, medical equipment, etc. Among many kinds of CIS studies, R&D to improve the frame rates 

has been considered important. The frame rates are determined by the conversion speed of the Analog 

to Digital Converter (ADC) that exists in every column. These days, most CIS systems in a variety of 

applications use a Single-Slope ADC (SS ADC) because of a simple structure and excellent linearity [1]. 

However, such a system has a disadvantage in that the conversion speed of the SS ADC slows down at 

a rate of 2
n
 times in proportion to an increase in the resolution (n). Furthermore, this makes it difficult 

to adopt the SS ADC in high resolution systems including digital camcorders, HDTVs, UDTVs, or in 

other applications that require the image sensor to have frame rates faster than 30 fps. Many papers 

have reported attempts to improve the disadvantages of SS ADC [2–15]. Among them, cyclic ADC or 

Successive Approximation Register (SAR) ADC are well-known techniques for the high frame rate 

CIS. However, those methods require large chip areas and huge power consumption compared to SS 

ADC, thus it is difficult to apply them for portable devices such as mobile phones, digital cameras, etc. 

By the way, a Two-Step Single-Slope ADC (TS SS ADC) with a conversion speed faster by more  

than ten times faster than the SS ADC with the similar area and power consumption has been  

developed [2,3]. However, due to errors between the coarse ADC and the fine ADC, the fixed pattern 

noise (FPN) is a serious issue. Further, the error in the slope ratio between the coarse ramp and the fine 

ramp is one of the main causes of image quality degradation. Therefore, in order to eliminate the FPN, 

this study proposes a low noise CMOS image sensor with a Two-Step Single-Slope ADC and column  

self-calibration technique. The contents of this paper are as follows: In Section 2, the architecture and 

the circuit technique for Two-Step Single-Slope ADC are discussed. In Section 3, the circuit 

implementation for the proposed CIS is described. Measured results are described in Section 4. Finally, 

the conclusions are summarized in Section 5. 

2. Two-Step Single-Slope ADC 

2.1. Conventional Two-Step Single-Slope ADC (TS SS ADC) 

Figure 1 shows the basic principle of SS ADC and TS SS ADC. The SS ADC shown in Figure 1a 

maximally requires 2
14

 (16,384) clock cycles in the worst case to satisfy the 14-bit resolution. Thus the 

operating speed is too slow to obtain a desired digital code in a high resolution ADC beyond 14-bit.  

On the contrary, the TS SS ADC is composed of both a coarse block which performs the conversion of 

the upper bit and a fine block which performs the conversion of the lower bit. For example, a 14-bit TS 

SS ADC shown in Figure 1b is separated by a coarse A/D conversion for the upper 7-bit and  

a fine A/D conversion for the lower 7-bit, respectively. Only 256 clock cycles is enough to obtain  

a 14-bit resolution, because there are 128 clock cycles at the coarse ADC and 128 clock cycles at the 

fine ADC. Hence, the operating speed of TS SS ADC is much faster (by 64 times) than that of  

SS ADC. 
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Figure 1. Principle of Single-Slope ADC and Two-Step Single-Slope ADC: (a) 14-bit 

single-slope ADC (SS ADC); (b) 14-bit two-step single-slope ADC (TS SS ADC). 

 

 

(a) (b) 

Figure 2. Circuit diagram and ramp slope change of TS SS ADC: (a) circuit diagram for a 

conventional TS SS ADC; (b) ramp slope change by parasitic capacitances. 
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Figure 2a shows the circuit diagram for an analog correlated double sampling (CDS) block with a 

conventional TS SS ADC [4]. It is composed of a comparator to compare the pixel signal with the 

ramp signal, four capacitors to perform the coarse A/D conversion and fine A/D conversion, a few 

switches, and a digital control block. From Figure 2a, the holding capacitor (CH) which stores the final 

coarse analog voltage is connected to the external ramp signals in a series. When the next fine ramp 

signal drives the comparator through the holding capacitor, the fine ramp slope is distorted by parasitic 

capacitances. Parasitic capacitances (CP) are inevitably formed by the switching MOS transistors, 

metal routing, and other side effects. Thus the real ramp slope is changed as follows: 

                  
 

  
                     

 

     
  (1) 

Figure 2b shows the conceptual diagram of ramp slope change by the parasitic capacitances. It 

generates the difference of slope ratio between the coarse ramp and the fine ramp. Such difference in 

the slope ratio degrades the linearity of the ADC which is the most important part in the CMOS image 

sensor. Further, the column fixed pattern noise (CFPN) becomes serious because the parasitic 
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capacitance is differently formed in every column. Normally, since the metal routing, device 

mismatching, and other side effects of each column are different, the value of parasitic capacitances of 

each column is also different. Thus the gain and linearity of each column ADC are also different. For 

those reasons, in case of the conventional TS SS ADC, it is very difficult to obtain a high resolution 

beyond 10-bit, and additionally, the linearity is much worse than that of SS ADC. 

2.2. Proposed Two-Step Single-Slope ADC (TS SS ADC) 

Figure 3 shows the circuit diagram of the proposed TS SS ADC. From Figure 3a, the analog CDS 

block performs the A/D conversion with a new 4-input comparator, where the input nodes for the 

coarse ramp and the fine ramp are separated. It is different from that of the conventional TS SS ADC 

shown in Figure 2. Figure 3b shows the circuit diagram of the 4-input comparator based on the Gilbert 

cell structure. Normally, the ideal transfer function of Figure 3b is as follows:  

                                 ) +                 )] (2) 

where    is the input transconductance, and      is the output impedance. From Equation (2), the 

most important consideration of the Gilbert cell is the device mismatching of the input MOS 

transistors. Assuming that there is a device mismatching, the current flows are different at the input 

MOS transistors. In this case, the gain mismatching occurs between the coarse block and the fine 

block. Further, the Equation (2) has some errors. In order to solve the problems, a column  

self-calibration technique is proposed. It will be discussed later.  

Figure 3. Circuit diagram for analog CDS with the proposed TS SS ADC: (a) analog CDS 

structure; (b) 4-input comparator. 
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Figure 4 shows the timing diagram of the TS SS ADC. It is a simple design example for 4-bit TS SS 

ADC with the 2-bit coarse ADC and the 2-bit fine ADC. In order to easily understand the principle of 

TS SS ADC, we use a very simple 4-bit design example. Even though this procedure is almost equal to 

that of the conventional TS SS ADC, the proposed TS SS ADC has some advantages. First of all, the 

input stage of the proposed TS SS ADC is very simple because of the 4-input comparator. Since the 

switches of SADC1 and SADC2 at the conventional TS SS ADC are eliminated, the switching noises 

are reduced by about 30%. This is because the total number of switches at Figure 3 is four, while that 

of Figure 2 is six. Based on the smaller number of switches for the proposed TS SS ADC shown in 
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Figure 3, some errors such as clock feedthrough, charge injection, and other temporal noises at the 

switching MOS’s are reduced by about 30%, compared to the conventional TS SS ADC shown in 

Figure 2. Further, in order or reduce the errors, we use a large holding capacitance where the value of 

CH is about 850 fF. From simulation results, the error at the large holding capacitance is very low to 

satisfy the 14-bit resolution, and the operating speed is enough to satisfy 120 fps. Secondly, very low 

offset errors generate because the voltage of Vref is directly connected to the input node of the 

comparator. Finally, the best advantage of the proposed TS SS ADC is an elimination of the serial 

holding capacitor shown in Figure 2. Since the holding capacitor is only used to hold the final voltage 

of the coarse ramp, the fine ramp slope is not affected by the parasitic capacitance. For this reason, the 

variation of fine ramp slope can be almost reduced.  

Figure 4. Timing diagram of the TS SS ADC (design example for 4-bit TS SS ADC: 2-bit 

coarse ADC and 2-bit fine ADC). 
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3. Circuit Implementation 

3.1. The Structure of CMOS Image Sensor 

Generally, a CIS with a column parallel ADC structure consists of a pixel array, a Correlated 

Double Sampling (CDS) block with a column parallel ADC, and a digital control block. The pixel 

array converts the light to the voltage, and the voltage is converted into a digital code through the CDS 

block. The digital control block plays a role in controlling the pixel, column, and output interface. 

Figure 5 shows the block diagram of the CIS with the 14-bit TS SS ADC. The CIS is based on the 

column-parallel structure with the VGA resolution of 640 × 480, and the pixel uses the 4-TR APS with 

a size of 5.6 µm × 5.6 µm. The column TS SS ADC consists of both one counter with the parallel load 

corresponding to the lower bit and two memories which store the digital values of the upper and lower 

bit. Additionally, it is designed with the memory for the self-calibration. 
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Figure 5. Structure of the CMOS image sensor with the 14-bit TS SS ADC. 
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3.2. Design of a Digital CDS 

The digital CDS performs a normal CDS processing by using a digital method, which means that 

the method of noise reduction is employed in a digital domain by converting the reset voltage and the 

signal voltage into a digital code. Figure 6a shows the block diagram for the conventional digital CDS. 

To implement a digital CDS, two up-down counters for the 7-bit coarse ADC and the 8-bit fine ADC 

are required as well as an analog CDS. The extra 1-bit of fine ADC is used for the digital correction 

logic (DCL) [8,14]. Such an up-down counter has an advantage in that it reduces unnecessary circuits, 

because the counter plays a role as the subtractor and memory itself. However, it is difficult to apply 

the up-down counter within a limited column pitch because the layout area of the counter is large. To 

compensate for this phenomenon, a digital CDS structure for the proposed 14-bit TS SS ADC is shown 

in Figure 6b. The structure is comprised of both an 8-bit up-down counter (including the DCL bit) with 

a parallel load which designates the initial value of the counter and two SRAMs. The SRAMs are 

designed with 7-bit and 8-bit. Since the layout area to implement the 1-bit is significantly smaller for 

the SRAM than for the counter, we can have a smaller size than that of the conventional structure by 

more than 10%.  
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Figure 6. Block diagram of digital CDS: (a) conventional digital CDS; (b) proposed  

digital CDS. 
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Figure 7 shows the timing diagram which illustrates the proposed digital CDS operation. First, the 

A/D conversion of the reset signal is performed at both the coarse block and the fine block, and the 

converted data values are stored to each SRAM. After that, the digital values stored in the memory are 

set to the initial values of the counter. Then, from the initial values, the counting starts in reverse order 

of the reset signal, in order to perform the same action with the conventional up-down counter. Finally, 

the A/D conversion of the signal voltage is performed at both the coarse block and the fine block. 

Figure 7. Timing diagram of the proposed digital CDS. 
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3.3. Column Self-Calibration Technique 

As was previously mentioned, the difference in the slope ratio between the coarse ramp and the fine 

ramp generates large amounts of CFPN that degrades the image quality. Figure 8 shows the errors of 

the digital output data that depend on the slope ratio of the two ramps. To compensate such a problem, 

this paper proposes a new 4-input comparator. However, the error of ramp slope in the comparator 

may not be perfectly compensated by the 4-input comparator. Generally, the ramp slope ratio of TS SS 

ADC is determined by the resolution of coarse ADC and fine ADC. It is given by: 

           
  

   
  

  

      
 (3) 
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where SC and SF are the ramp slope of coarse ADC and fine ADC, TC and TF are the conversion time 

of coarse ADC and fine ADC, NC and NF are the resolution of coarse ADC and fine ADC, 

respectively. If the ramp slope ratio in Equation (3) differs from the ideal value, as shown in Figure 8, 

the TS SS-ADC has a non-linearity performance because of the over codes or missing codes. 

Therefore, a self-calibration circuit to correct the ramp slope error in the comparator must be designed.  

Figure 8. The error of output digital code depending on the slope change of fine ramp:  

(a) decrease of fine ramp slope; (b) increase of fine ramp slope. 
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Figure 9a shows the circuit diagram of the 4-input comparator with a self-calibration. Here, the 

currents at Mcoarse and Mfine are not the same due to the mismatching of the two MOSs, causing an 

uneven analog gain and a difference in the slope ratio between the coarse ramp and the fine ramp. The 

study is focused on the analog calibration of Mfine that we change the gm value by adjusting the current 

amount on Mfine, in order to make the same analog gain at Mcoarse and Mfine.  

Figure 9. Circuit diagram of the self-calibration technique: (a) circuit diagram of 4-input 

comparator; (b) magnified circuit diagram for Mfine. 
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Figure 9b shows the magnified circuit diagram for Mfine. The gm value at Mfine can be adjusted by 

trim SRAM signal in the digital calibration block. The size of trimming transistors Mfine and the bit 

resolution of feedback circuit are the most important factors to decide the effective range and accuracy 

of the self-calibration. In order to solve the problems, we have analyzed the error range of each column 



Sensors 2014, 14 11833 

 

 

ADC with Monte-Carlo simulation. From the analysis results including device mismatching errors, we 

found that the maximum error code was 63LSB, namely 6-bit resolution. Thus a self-calibration circuit 

with a 7-bit resolution and a control circuit with 0.5LSB step are designed to compensate the 6-bit 

code errors.  

Figure 10 shows the flow chart of the proposed self-calibration technique. The slope correction 

between the coarse ramp and the fine ramp is performed based on the flow chart. In the proposed TS 

SS ADC, the total codes of fine ADC are 256, because we use a DCL technique with the extra 1-bit of 

coarse ADC shown in Section 3.2. Thus the fine ramp covers the 2-bit LSB of coarse ADC. It means 

that the maximum range of fine ramp is 256, which is larger than 1LSB of coarse ADC. Therefore, it is 

possible that C = A − B can be smaller or larger than 127, as shown in Figure 10.  

Figure 10. Flow chart of proposed self-calibration technique. 

 

Figure 11 shows the block diagram for digital calibration. First, the initial values configured as 

default in the trim SRAM are entered into the analog calibration block to start the self-calibration. 

Then, the analog CDS switch is controlled to convert the lowest fine value of the coarse 1 LSB into the 

digital code and it is stored to the first memory. Then, the highest fine value of the coarse 1 LSB 

undergoes the A/D conversion and is saved to the second memory. The two data are subtracted by the 

subtractor. Here, the difference between the two data causes a change of the initial value configured in 

the trim SRAM, depending on whether the value is smaller or larger than the ideal 7-bit fine code 
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value (127). The digital code transition in the trim SRAM changes the total amount of the current 

flowing in the analog calibration circuit and changes the gm value of Mfine. Repeating such methods 

finally makes the analog gain between Mcoarse and Mfine the same. As a result, we reduce drastically the 

CFPN caused by the difference in the analog gain between the coarse ramp and the fine ramp with the 

device mismatching error. The calibration technique used in this work is one of a foreground method. 

The foreground calibration is that all the column calibration has been done before the beginning of CIS 

operations. Thus there is no lowering of frame rate because of the foreground calibration. However, it 

takes a time for the calibration. Based on the measured results in this paper, it takes 1.25 ms for VGA 

pixels. Of course, the more the number of pixels is increased, the more the foreground calibration time 

is also increased. Nevertheless, most of the recent foreground calibrations are sufficiently finished 

during the CIS ready time, even in a huge pixel system.  

Figure 11. Block diagram for the self-calibration at the digital block. 

7bit 

Trim.SRAM

7bit 

Trim.SRAM

7bit 

Trim.SRAM

7bit 

Trim.SRAM

Coarse

7bit SRAM

Coarse

7bit SRAM

Coarse

7bit SRAM

Coarse

7bit SRAM

Fine

8bit SRAM

Fine

8bit SRAM

Fine

8bit SRAM

Fine

8bit SRAM

Precharge

Sense Amp

Subtractor
Digital 

Comperator

Up/Down

Counter

Precharge

Sense Amp

Column 1

Column 2

Column 3

Column N

Digital calibration block

7b

 

Figure 12 shows the simulated output values of the CIS with or without the self-calibration 

technique. We assume that the same input voltages are applied for each of the three columns with 

arbitrary mismatching error. For example, we assume that the pixel voltage is 2.095 V at the left 

figure, and it is 2.075 V at the right figure. From the simulation results, the code outputs of the image 

sensor without the self-calibration show different outputs for the three columns, even though the same 

input voltages are applied. It is said that the CFPN generates if the outputs for each column are different. 

However, we found that the three columns have the same output values, when the self-calibration 

technique is used. Therefore, the column self-calibration technique drastically reduces the CFPN. 
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Figure 12. Simulation results for the self-calibration technique. 
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4. Experimental Result 

4.1. Chip Microphotograph and Measurement Systems 

Figure 13 shows the chip microphotograph of the fabricated CIS with Samsung 0.13 μm 1P4M CIS 

technology. The chip size is 6.5 mm × 6.5 mm and the pixel array conforms to the VGA resolution 

(640 × 480). The CIS in this paper is configured to provide most of the control signals through an 

external FPGA. Using such a configuration allows us to establish various test environments for the 

image sensor, to verify the performance of the CIS, and to check its various features.  

Figure 13. Microphotograph of the fabricated CIS with Samsung 0.13 μm CIS technology. 
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Figure 14 shows the configuration of measurement systems, and it is comprised of the board which 

contains the Xilinx-XEM 3050 FPGA and the board with the CIS of the Chip On Board (COB). The 

FPGA plays a role in generating the control signal for measurement, receiving the output data from the 
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image sensor, and delivering the result to the PC through the USB interface. The transmitted data are 

handled in the PC to apply the processing of a real image. Here, unfortunately, the resolution of normal 

display is limited to 8-bit. Since the normal display systems such as LCD, LED display, and other ones 

are set to always 8-bit resolution, the testing for the 14-bit CIS has a problem. With a normal display, 

the 14-bit full-resolution of CIS cannot be tested. In order to overcome the problems, we divide and 

select the digital output codes of TS SS ADC from the FPGA one by one. For example, if we choose 

7-bit coarse and 1-bit fine, the testing resolution is 8-bit. If we choose 3-bit coarse and 5-bit fine, the 

testing resolution is 12-bit. Assuming x-bit coarse ADC and y-bit fine ADC, we can obtain the testing 

resolution as follows: 

                                       (4) 

Therefore, (7 + y)-bit is the final testing resolution. From Equation (4), for example, the testing 

resolution is 14-bit, when we choose 1-bit coarse and 7-bit fine.  

Figure 14. Configuration of measurement systems. 

 

4.2. Measured Results and Images 

Figure 15 shows the measured VGA sample image with the condition of 7-bit coarse and 1-bit fine, 

namely 8-bit resolution. It achieves the frame rates of 120 fps at a main clock speed of 40 MHz. It 

shows a high image quality. Figure 16 shows the measured sample images with the condition of 1-bit 

coarse and 7-bit fine, namely 14-bit resolution. Figure 16a shows the sample image without the  

self-calibration technique. It shows very poor image quality due to the presence of high levels of 

random noise and of the CFPN caused by the degraded ADC linearity error from the analog gain 

difference between the two ramps. On the contrary, Figure 16b shows the sample images with the  

self-calibration technique. The ADC linearity is drastically improved as a result of the self-calibration 

of the analog gain difference between the two ramps. Therefore, the CFPN and the random noise in the 

image sensor were significantly reduced and an improved image quality was achieved.  
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Figure 15. Measured VGA sample image with the 7-bit coarse and 1-bit fine (8-bit resolution). 

 

Figure 16. Measured sample image with the 1-bit coarse and 7-bit fine (14-bit resolution): 

(a) without the self-calibration; (b) with the self-calibration. 

  

(a) (b) 

Figure 17 shows the measured SNR dependent on the amount of exposure with/without the  

self-calibration. The measurement uses the TE241-OECF noise test chart and the analysis is performed 

by using the IMATEST software program. If the image data is achieved with the condition of 7-bit 

coarse and 1-bit fine (namely, 8-bit ADC), the fine bit data is included into the only 1-bit. Thus there is 

not a large difference in the SNR before and after the self-calibration despite the analog gain difference 

between the two ramps. If the fine bit data increases to a 4-bit or 5-bit level, the difference of the 

analog gain between the two ramps degrades the ADC linearity more, and the SNR without the  

self-calibration becomes very low. If we use the self-calibration technique, however, it improves the 

SNR about by more than 10dB. Specially, the effect is more excellent at the low exposure region.  
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Figure 17. Measured SNR with/without the self-calibration. 

 

 

Figure 18. Measured CFPN with/without the self-calibration (10-bit resolution). 

 

Figure 18 shows the measured CFPN dependent on the light intensity before and after the  

self-calibration at the 10-bit resolution. The average CFPN is reduced by about 0.4 LSB after the  

self-calibration. Figure 19 shows the measured results of the CFPN with the condition of the n-bit 

coarse and m-bit fine. Since the normal display system like a LED display is set to the 8-bit resolution, 

the addition of n-bit and m-bit is always 8. For example, the measured condition of the 7-bit coarse and 

1-bit fine is 8-bit resolution, and the measured condition of the 3-bit coarse and 5-bit fine is 12-bit 

resolution. The measured CFPN of 8-bit ADC is 0.38 LSB, and the measured CFPN of 12-bit ADC is 
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5.5 LSB, respectively, at the dark region for the 10-bit resolution scale. Even in 13-bit or 14-bit, the 

measured results of CFPN cannot be obtained. Therefore, the measured performance of this work is 

about 10.5-bit, even though a 14-bit CIS was designed. The reasons why the measured result of 10.5-bit is 

obtained will be discussed in the conclusions. Figure 20 shows the measured results for the variation of 

the pixel level with/without the digital CDS shown in Figure 6. The pixel output level without the 

digital CDS becomes uneven and results in a high CFPN. However, the overall pixel output level 

becomes even when the digital CDS is used, and the CFPN is decreased. 

Figure 19. Measured CFPN with the self-calibration for various resolutions (scale of  

y-axis: 10-bit resolution). 
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Figure 20. Measured results for the variation of pixel level: (a) without the digital CDS; 

(b) with the digital CDS. 

  

(a) (b) 

5. Conclusion 

This paper described a CMOS image sensor with a Two-Step Single-Slope ADC, a high speed 

frame rate of 120 fps, a low fixed pattern noise (FPN), and a column self-calibration technique. In 

order to satisfy the required specifications, therefore, new techniques have been proposed in this paper. 
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The TS SS ADC performed the A/D conversion by separating the coarse ADC and fine ADC, and it 

was suitable to implement the high speed CIS. However, the difference of ramp slope ratio between 

the coarse ADC and the fine ADC due to the device mismatching error degraded the ADC linearity 

and generates high levels of noise. To overcome such problems, this paper used a new 4-input 

comparator to prevent the changes in the ramp slope ratio and to remove the serial capacitor. Further, a 

feedback circuit of the self-calibration was designed to correct the difference of slope ratio between the 

coarse ramp and the fine ramp for each column, to improve ADC linearity, and to reduce CFPN 

generation. As a result, the SNR was improved by about 10 dB and the CFPN was reduced by more 

than 0.4 LSB relative to those of the TS SS ADC without self-calibration. The chip has been fabricated 

with the Samsung 0.13 μm 1P4M CIS technology. The resolution of the CMOS image sensor 

conformed to the VGA specifications of 640 × 480, and the pixel size was 5.6 μm with the 4-TR APS. 

The conversion time of the designed TS SS ADC satisfied 12.5 μs at the main clock speed of 40 MHz. 

Thus the frame rate was faster by about 48 times than that of the conventional one based on SS ADC. 

Table 1 shows the summary of measured CIS performance. Even though a 14-bit TS SS ADC was 

designed, the measured Effective Number of Bits (ENOB) in this CIS was about 10.5-bit from Figure 19 

and Table 1. There were a few reasons why a low ENOB was obtained. First of all, a high performance 

ramp generator beyond 14-bit was not supported. Although a 14-bit ramp generator with a current 

steering DAC was designed, the measured ENOB was just 12-bit. In order to obtain a 14-bit TS SS 

ADC, the ENOB of ramp generator should have been the level of 16-bit. Secondly, kT/C noise, charge 

injection noise, and clock feethrough noise from switching MOS transistors were not carefully 

analyzed. They were the dominant noises to degrade the performance of ADC. Further, the pixel noise 

was also a problem to degrade the performance of CIS.  

Table 1. Summary of the measured CIS performance. 

Process technology 0.13 μm 1P4M CIS process 

Chip size 6.5 mm × 6.5 mm 

Core size 6 mm × 6 mm 

Number of effective pixel 640 × 480 pixels 

Pixel type Non-shared 4T (pinned-photodiode) 

Operating voltage 2.8 V(pixel)/2.8 V(analog)/1.5 V (digital) 

Frame rate 120 fps (@40MHz) 

ADC resolution 14-bit (measured ENOB: 10.5-bit) 

P-FPN/C-FPN 0.43 LSB/0.38 LSB (@dark) 

Dynamic range 64.6 dB 

Power consumption 98 μW/column 

Full well capacity 23,000   

Conversion gain 43uV/   

Total RN 13.5    
  

Figure of Merit 43.9   nJ 

Table 2 shows the comparison results of the proposed ADC with the published works. In terms of 

FOM, while it is larger than that of SAR ADC [8], Delta-Sigma ADC [9], cyclic ADC [10], and 

Single-slope ADC [11], it is smaller than that of SAR/SS ADC [13], TS SS ADC [14], and TS SS 
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ADC [15]. Even though the measured ENOB is 10.5-bit, the FOM performance of this work is 

remarkable in the area of TS SS ADC. Based on those conclusions, further works will be discussed. 

Firstly, a novel calibration technique based on a background method will be studied. In this work a 

foreground calibration technique has been proposed and verified, but a more efficient background 

calibration technique will be needed for the market products. Secondly, a high performance ramp 

generator beyond the 16-bit resolution will be proposed for the 14-bit TS SS ADC. As mentioned 

above, the performance of a ramp generator is the most critical point to obtain the desired results of  

14-bit CIS. Thus the design of a 16-bit ramp generator will be focused on. Thirdly, the noise analysis 

must be researched in the area of pixels, analog circuits, and digital circuits, respectively. Further we 

have to analyze kT/C noise, charge injection noise, clock feethrough noise, and so on. Based on the 

results of noise analysis, in order to implement a 14-bit CIS, a few kinds of noise reduction techniques 

will be discussed. 

Table 2. ADC performance comparison. 

Reference [8] [9] [10] [11] [13] [14] [15] This work 

Technology 
0.13 μm 

CIS 

0.13 μm 

CIS 

0.18 μm 

CIS 

90 nm 

CIS 

0.18 μm 

CIS 

0.35 μm 

CIS 

0.25 μm 

CIS 

0.13 μm 

CIS 

ADC [Type] ΔΣ SAR Cyclic 
Single-

slope 
SS / SAR TS SS TS SS TS SS 

A/D Digitizing 

Phases 
N/A N/A N/A N/A 

3b-SS 

8b-SAR 

5b-coarse 

6b-fine 

6b-coarse 

5b-fine 

7b-coarse 

8b-fine 

Reported  

Resolution [bit] 
>12 14 13 14 11 10 11 

10.5 

(measured 

ENOB) 

Conversion  

Time [us] 
2.3 1.7 2.3 7.4 12 4 2 3.2 

1-H Time [us] 6.85 9.2 6 7.716 35 5.95 4 12.5 

Power [uW] 55 41 300 300 32 150 170 68 

ADC Figure  

of Merit 

(FOM)*[fJ] 

15 4.2 84 135 187 292 166 150 

*        
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