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Abstract: A real-time muscle fatigue monitoring system was developed to quantitatively 

detect the muscle fatigue of subjects during cycling movement, where a fatigue progression 

measure (FPM) was built-in. During the cycling movement, the electromyogram (EMG) 

signals of the vastus lateralis and gastrocnemius muscles in one leg as well as cycling 

speed are synchronously measured in a real-time fashion. In addition, the heart rate (HR) 

and the Borg rating of perceived exertion scale value are recorded per minute. Using the 

EMG signals, the electrical activity and median frequency (MF) are calculated per cycle. 

Moreover, the updated FPM, based on the percentage of reduced MF counts during cycling 

movement, is calculated to measure the onset time and the progressive process of muscle 

fatigue. To demonstrate the performance of our system, five young healthy subjects were 

recruited. Each subject was asked to maintain a fixed speed of 60 RPM, as best he/she 

could, under a constant load during the pedaling. When the speed reached 20 RPM or the 

HR reached the maximal training HR, the experiment was then terminated immediately. 

The experimental results show that the proposed system may provide an on-line fatigue 

monitoring and analysis for the lower extremity muscles during cycling movement. 
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1. Introduction 

Some research has indicated that fatigue and decrease in muscle strength may serve as important 

indicators in frailty [1]. In fact, both factors are also considered as typical symptoms associated with 

patients with central nervous system damage [2–6]. For example, a previous study in the literature 

indicated that 50% of patients with Parkinson’s disease (PD) showed symptoms of fatigue, even when 

a depressive mood disorder or cognitive impairment was excluded [7]. That is, fatigue has been proved 

to be a common and independent symptom in patients with PD without depression or dementia. On the 

other hand, it should be also noted that since fatigue is a negative symptom and not as obvious as other 

positive symptoms such as tremors, muscle stiffness or rigidity etc., it is often ignored until severe 

motor function abnormality defects occur, therefore, the development of effective methods or 

mechanisms for detecting and assessing fatigue before severe degradation in motor functionality as 

well as devising effective anti-fatigue training methods are both very important.  

In general, cycling based rhythmic contractions are similar to the control of walking since 

completion of these actions requires agonistic and antagonistic muscles to be alternately activated in 

coordination with a time sequence. For patients with poor coordination and balance control, a cycling 

ergometer bicycle can provide more adequate support for the trunk and help patients stretch their  

legs [8]. In addition, some researchers have also indicated that such movement is safe, effective and 

accessible to patients with a wide range of motor impairments [8–10]. Therefore, cycling-based 

movement is often used for walking training as well as the lower limb coordination training [11]. 

Previous research in literature even indicates that patients with stroke and cerebral palsy may improve 

their motor and balance abilities after an early short duration of cycling training [12,13]. 

Physical fatigue is normally accompanied by a progressive decline in motor function during motor 

tasks. In this aspect, a previous research report has proposed an experimental system to study physical 

fatigue during sustained and dynamic contractions [14]. On the other hand, it is indicated from another 

previous study that a prolonged cycling exercise would cause decrements in whole-body power, 

muscle-function, and jump-performance measures, implying that the exhaustion due to cycling 

exercise are related to fatigue in daily function [15]. Moreover, investigations into alternative measures 

for muscle fatigue as well as muscle activation during cycling were also conducted in previous 

research [16–18]. We may thus speculate that a system designed based on long-term repetitive 

exercise, such as the cycling-based movement, may be used as a tool for continuously, fully tracking 

and assessing fatigue or degeneration of motor functional activities. Therefore, the aim of this study is 

to develop a system for producing and quantitatively analyzing the kinesiological and kinematical data 

to assess the fatigue during cycling movement at a constant workload. 

In this paper, a new cycling training system for on-line continuous monitoring and analysis of 

fatigue-related parameters is introduced. In order to achieve the goal of real-time muscle fatigue 

assessment, the EMG activities of dominant muscle groups are first recorded for kinesiological 
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analysis during a cycling-based motor task. We also propose an innovative and new-defined indicator, 

dubbed fatigue progression measure (FPM), to quantitatively characterize the fatigue. It is worth 

noting that the onset time of the occurrence of fatigue can be explicitly determined from the FPM 

traces. This would represent one of the most significant benefits from our research. In the authors’ 

opinion, the proposed system can not only provide an on-line fatigue monitoring and analysis, but also 

represent a benefit to clinical practitioners for assessing the cycling exercise-based training progress. 

Also, the innovative system may further effectively applied as an anti-fatigue training device in a 

variety of physical therapy or rehabilitation-related fields. 

2. System Configuration 

2.1. System Features 

In general, the overall system is devised for detecting and assessing fatigue during cycling in a  

real-time fashion. The system consists of a physical bicycle equipped with a number of peripheral 

components/devices, a set of wireless EMG sensors with sensor interface device, and a computational 

unit in which software for providing visual feedback as well as processing the on-line measured EMG 

signals is implemented, as shown in Figure 1. The computational unit comprises a computer system 

(Core i7, Windows 7), a LabView-based software program for providing the on-line monitoring of the 

cycling speed as well as the EMG analyzing results during the cycling, a high-performance Graphic 

Processing Unit (GPU) for hardware acceleration (NVIDIA GeForce GTX 560 Ti), and an  

Analog-to-Digital Converter (ADC, 16 ch, 12 bit, PCI-1712). 

Figure 1. System setup for the proposed real-time fatigue monitoring and analysis for 

lower extremity muscle. The cycling-based system is consisting of a physical bicycle 

equipped with a resistor, crank angle detector and the wireless 2-channel EMG sensors 

with sensor interface device. 

 

The bicycle in our system allows subjects to perform cycling training exercise simply by stepping 

on the pedals. When cycling starts, the wearable wireless sensors with sensor interface device 

synchronously collect EMG data for real-time fatigue analysis during the test. In addition, other factors 
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such as the cycling speed and orientation angles may also be displayed in a real-time manner so a 

visual feedback can be provided for the subject during the cycling process. The computer monitor  

(28 inches) is used as a display device that shows the fatigue analysis results and visual feedback.  

2.2. Cycling Position and Velocity Detection 

As described previously, a physical bicycle equipped with an electromagnetic load was modified to 

fit in the proposed system and serve as a cycling platform. The cycling speed is determined at the time 

when the subject is stepping on the bicycle pedals. In order to estimate the position and velocity, an 

optical encoder (OMRON E6CP-AG5C-C) with a resolution of 256 pulses/cycle was employed to 

detect the absolute crank position in degree (from 0 to 360) for kinematical analysis. According to the 

schematic block diagram as shown in Figure 2, in order to detect the cycling or crank position, the 

digital output of the encoder is transmitted into the computer in the form of Gray code through the data 

acquisition board (PCI-1712) so the cycling position may be determined in the virtual environment 

provided by the computer. Moreover, since the value of cycling position is obtained, the cycling 

angular velocity can be computed, thus the rotation speed of the bicycle can be then determined.  

Figure 2. Schematic block diagram of overall system configuration. 

 

2.3. Load Control Device 

A load control device was utilized to provide an amount of workload imposed to the cycling-based 

exercise. The device is consisting of a load controller and workload generator, as illustrated in Figure 1. 

The load controller was used to control the size of electromagnetic load using a pulse width 

modulation (PWM) signal. The workload generator (i.e., a bicycle trainer), which has a similar 

function to a brake, was employed for providing the load to the bicycle. 

2.4. Electromyography (EMG) Sensing Device 

In our study, we adopted an EMG sensor designed and built by CGU BES lab. The sensor is 

consisting of 2 channels with 1 KHz sampling rate. The device collects and transmits the EMG data to 

PC using Bluetooth protocol without data loss. 
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2.5. Software Settings 

In software settings, most of the system software was developed and implemented in the LabView 

environment. These software programs were established to acquire data, assess and detect the fatigue 

in an integrated fashion using the LabView version 2010 for Microsoft Windows 7. In general, the 

software was devised to carry out the following functions/tasks in a real-time manner: (1) acquiring 

and displaying the EMG data and cycling speed transmitted from the sensors in the system,  

(2) preprocessing the collected raw EMG data, (3) performing fast Fourier transform (FFT) based 

power spectral calculations of the EMG signals per cycle, (4) integrating the EMG spectral analysis 

results into force- and fatigue-related parameters (i.e., EA and MF as indicated in Section 3.3) used for 

on-line fatigue detection. Figure 3 shows the display panels of the kinematical data and kinesiological 

analysis in our system implemented using LabView windows.  

Figure 3. Display of kinematical data and analysis using LabView windows. In these 

windows, cycling speed, EMG signals, MFs and EAs of both the VL and GAS muscles for 

each cycle are shown. 

 

3. Methods and Materials 

3.1. Subjects and Settings 

In our experiment, five healthy adults were recruited for performing the bipedal cycling training so 

both the kinesiological and kinematical data required for the subsequent investigations into fatigue 

detection can be produced. All the subjects were free of any muscular or neurological disorders. Their 
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mean age was 23 years old and they all had at least 10 years of cycling experience. Before proceeding, 

we explained to them the procedures of the experiment and the characteristics of the bicycle ergometer 

system. All subjects were asked to sit in an upright position and maintain a constant speed by referring 

to the visual feedback information of their current velocities as best as they could. During the pedaling 

process, EMG of VL and GAS muscles, crank position, instantaneous cycling velocity and cycling 

time were recorded. Also note that here we hypothesized that once fatigue occurs, the cycling speed 

would show larger deviations from the target speed, and thus a measure of deviation in velocity was 

also defined and used as a reference for judging the stability of cycling. The study protocol had been 

approved by Chang Gung Medical Foundation Institutional Review Board (IRB no.101-5141B) in 

accordance with the Helsinki Declaration. All participants have provided their written consent, 

approved by Chang Gung Medical Foundation Institutional Review Board (IRB no.101-5141B), to 

participate in this study. 

3.2. Experimental Procedure 

Prior to experiment, each subject was asked to do one-minute low intensity exercise to warm up 

body to prevent sports injuries. Then, the experiment began and each subject performed cycling 

exercise under a constant load throughout the course of experiment. During the cycling exercise, all the 

subjects were asked to pedal at a steady cadence and maintain a constant speed of 60 RPM. Note that 

the experiment was performed on the basis of the visual feedback in which the subject’s velocity is 

available in real time on the screen. In addition, since the Borg rating of perceived exertion (RPE) scale 

is known as a useful way to reflect how hard a subject feels the work is while he/she is exercising [19], in 

our study both the heart rate (HR) and Borg scale value were also simultaneously recorded and updated 

every minute during the test. 

Further note that here a method, referred to as the Karvonen method, was adopted for determining 

the training HR range in our study. In general, it is a mathematical formula that involves adding a 

given percentage of the maximal heart rate reserve (i.e., the maximal heart rate subtracting the resting 

heart rate) to the resting heart rate, as expressed by: 

restrestmaxtarget )( HREI-HRHRHR   (1) 

where HRtarget, HRmax, HRrest, represent the target, maximal, and resting heart rate, respectively; EI 

denotes the exercise intensity in percentage. In our study, we set EI to 60%－80%. Staying within this 

range of HR will help one work most effectively during the subject’s cardio workouts. Once the Borg 

RPE scale value of a subject reached the maximal value of 20 or the subject’s HR reached the maximal 

training HR, the experiment was then terminated immediately. 

3.3. Kinesiological Data Analysis 

In this study, surface EMG signals measured from various muscles were digitized and collected 

using a wirelessly telemetric procedure. As mentioned previously, the sampling rate was set to 1 KHz. 

The raw EMG segment derived from each cycle (i.e., from 0 to 360 degrees in cycling) was 

preprocessed by subtracting the mean, i.e., the DC term, as well as bandpass filtering. Then, both the 

electrical activity (EA) and the median frequency (MF) were evaluated on the raw EMG segment. For 
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this purpose, a moving Root-Mean-Squared (RMS) based envelope detection was performed over a 

time window of 100 ms by shifting the window by a step of 1 ms throughout the entire cycle. Then, the 

EA was evaluated by integrating the RMS curve (i.e., calculating the area under the envelope) over the 

cycle, as expressed in: 
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where RMS(i) denotes the discrete-time RMS value and N denotes the total number of RMS values 

within a cycle. It should be noted that EA can be viewed as a force-related measure. 

On the other hand, the EMG spectra were also simultaneously calculated from the raw EMG 

segment over a cycle by Fast Fourier Transforms (FFT), and the Median Frequency (MF) 

corresponding to the cycle was then determined by: 
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where SPEC(f) represents the power spectral density (PSD) of raw EMG segment measured from  

a cycle. 

In fact, the reason that we computed EA and MF is it is indicated by a previous research called Joint 

Analysis of EMG Spectrum and Amplitude (JASA) that the fatigue indication would be more reliable 

if both the changes in the amplitude and the spectrum were considered simultaneously [20,21]. The EMG 

amplitude is quantified by EA as given by Equation (2) while the spectral information is characterized 

by MF as given by Equation (3). In general, EA is a force-related parameter while MF is a  

fatigue-induced parameter.  

It should be noted that when applying the JASA methodology, knowledge about the temporal 

change in both the EMG amplitude and spectrum is needed. Therefore, in our system both the EA and 

MF estimates are evaluated and updated every minute as long as a subject’s HR stays within the target 

training range of HR as indicated in Equation (1). 

3.4. An Innovative New-Defined Indicator of Muscle Fatigue—FPM 

As indicated by previous researches [20,21], it is well known that a decrease in MF is an indication 

of muscle fatigue. In this study, we devised an innovative and novel parameter for quantitatively 

measuring the degree of fatigue in real time. The dubbed FPM is defined as: 

eventsofnumber Total

reference  thelower than MF with events ofNumber 
FPM  (4) 

Equation (4) is an accumulated fractional function, where the numerator is the number of the events 

of MF lower than the reference value and the denominator is the total number of the events counted. 
Denoting the first MF obtained from the cycling test as MF1, the reference value is simply set to  

(MF1 − fnm) Hz, where fnm represents a quantity referred to as the noise margin. In fact, in electrical 

engineering, noise margin is the minimum amount by which a signal exceeds the threshold for proper 

operation. In order to minimize the number of false alarms due to noise-corrupted MF values, we here 
incorporated the noise margin into the FPM algorithm for the first time. In our study, we set fnm = 0.5. 
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In fact, it should be noted that obtaining a new solution to dynamically and continuously monitoring 

the progression of muscle fatigue in a more practical situation is desired and crucial in our work. In 

this aspect, our FPM, by definition, can effectively convert the EMG-related fatigue measure MF into 

diagnostically useful time-domain parameter, thus being able to quantitatively describe the occurrence 

as well as the progression of muscle fatigue as time evolves. 

According to the descriptions of Section 3.3, each time there was an MF obtained from the 

spectrum of an EMG segment measured over one cycle (1 s) during pedaling. Denoting the MF 

sequence as x(n), the sequence was then passed into a moving average filter (MAF). In our study, the 

input-output relation of the MAF process is characterized as: 
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where y(n) represents the output data (n = 0,1,2,…), M is called the filter length or alternatively known 

as the averaging window length, and S is the shift of the moving window. In general, it is indicated 

from Equation (5) that the output y(n) is actually obtained by taking an average over an M-point 

windowed MF segment, then shifting the M-point window by step of S and redoing the same M-point 

averaging process throughout the entire input MF sequence. In fact, the overall system as indicated in 

Equation (5) is a linear lowpass filtering (LPF) process. Such a linear filtering process can make the 

MF sequence smoother so the subsequent analysis might be easier to be manipulated. Note that here 

we set M = 60 (i.e., one minute in real time) and S = 20 (i.e., 20 s in real time). As a result, the filtered 

MF value was produced every 20 s (i.e., 1/3 min) and thus, the total number of events counted 

increases by one per 1/3 min. Therefore, the FPM, as defined in Equation (4), is a time-varying 

parameter that can be used for on-line monitoring and updating the progressive fatigue in every 20 s. 

The real-time profile of a typical test, consisting of a raw EMG signal, the corresponding FFT-based 

spectrum, MF, FPM, EA, and HR, is demonstrated in Figure 4. 

Figure 4a shows a 1-minute EMG segment recorded during the cycling exercise. It is actually 

revealed from Figure 4a that the subject was cycling at a speed of about 60 RPM and the highest EMG 

amplitudes should occur during the pedaling periods. Then, FFT-based PSD of the raw EMG was 

calculated, as depicted in Figure 4b. After that, the MF can be found from the PSD. Repeating the 

above two steps by shifting a 1-minute analysis window by a step of 20 s on the input EMG data, we 

may then obtain the running estimate of MF signal in a real-time manner, as shown in Figure 4c. 

Observing Figure 4c, a decrease in MF can be actually regarded as the result of muscle fatigue (GAS). 

The FPM tracings corresponding to the MF signal was further evaluated in the following steps. First, 
as described previously, the threshold involved in FPM computation is set to (MF1 − 0.5) Hz. Since it 

is revealed from Figure 4c that MF1 ≈ 74.5 Hz, we set the threshold to 74 Hz. Next, the FPM was then 

evaluated by successively comparing the subsequent MF values with the reference value, 74, using 

Equation (4). As a result, the FPM tracings corresponding to the MF signal was finally obtained and 

plotted in Figure 4d. According to Figure 4d, we may see that FPM can not only provide a quantitative 

description of muscle fatigue progression, but also detect the onset of muscle fatigue. Moreover, 

Figures 4e and 4f show the real-time EA estimates and HR measurements, respectively, during the 

cycling process. 
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Figure 4. Real-time profiling of a typical test obtained from the proposed system:  

(a) raw EMG; (b) FFT-based spectrum of the raw EMG signal; (c) MF estimates derived 

from the EMG; (d) FPM tracings; (e) EA estimates derived from the EMG; and  

(f) HR measurements. 
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healthy subjects during the bipedal cycling movement. Kinesiological analysis such as FFT-based 

PSD, EA and MF calculations were all synchronously performed and displayed by the system 

software. In addition, FPM tracings were also generated. All these results were jointly applied for  

on-line fatigue assessment. It should be noted that among all these EMG-related factors, FPM method 

is an innovative and new technology. In fact, it can not only characterize the progression of fatigue, but 

also determine the explicit onset time of the fatigue occurrence, thus representing the most significant 

benefit from our research. Therefore, the subsequent outcome analysis and discussion will be more 

focused on the performance evaluation of FPM method. 

4.1. Outcome Analysis 

Note that in our study, different loads were applied for each individual subject, according to their 

muscular strength and endurance. Evaluation on FPM stopped at the time when the subject’s HR 

achieved the maximum (i.e., EI = 80%) of his/her training HR during the test or Borg RPE scale value 

reached 20 [22].  

Figure 5. FPMs of VL and GAS muscles versus time for (a) S1 and S2 under L2 load;  

(b) S3 and S4 under L3 load; and (c) S5 under L4 load. 
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Figure 5 shows typical FPM-versus-time plots of five subjects’ GAS and VL evaluated right after 

one-minute warm up. Figure 5a, b and c provides the results with different loads, where L2, L3 and L4 

denote the light, middle and heavy loads, respectively. For example, L2 was assigned for two females 

with light physical activity (subjects S1, S2), and L4 for an athletic male (subject S5). In addition, L3 

was for two males (subjects S3, S4), where S4 is with moderate physical activity and S3 with light 

activity. Figure 5 indicates that the FPMs of GAS and VL of these subjects are significantly different. 

Under light load (L2), the fatigue of GAS leads to that of VL for S1, whereas there is no sign of fatigue 

for S2’s GAS. For S3 under middle load, GAS exhibits completely fatigued at the beginning, and his 

VL gradually becomes fatigued. Finally, the test of S3 was terminated after 3 min due to his Borg RPE 

reached 20. Of interest is that the EI of HRs of S3 and S5 were only 60% when their Borg RPE 

reached 20. In contrast, the HRs of S1, S2 and S4 were the 80% of their training HRs when their RPE 

reached 20. It implies that Borg RPE is a combination of HR and muscle fatigue. For S4 with L3 and 

S5 with L4, their GAS got fatigued earlier than VL. Moreover, the fluctuations in the progressive 

developments of both GAS’s and VL’s fatigue for S2, S4 and S5 were also observed. This could be 

attributed to that these subjects adjusted and changed their postures and attitudes during the cycling 

motion in order to reduce muscular fatigue [23]. The coordination and compensation of muscle group 

may reduce the local muscle fatigue, and exert the same output force to perform the constant-speed 

cycling under a constant load.  

4.2. Discussion 

First, observing Figure 5, we may find that the FPM evolutions of these typical cases seem to 

increase exponentially with time at the beginning, and thus we modeled it simply using a  

continuous-time exponential function as: 
TttetFPM /)( on1)(   (6) 

where ton represents the onset time of the occurrence of muscle fatigue; T is referred to as the Time 

Constant (TC), a quantity used for estimating the time required for the FPM curve to reach 

approximately 63.2% of the maximum level (of fatigue). The onset times of GAS and VL of these five 

subjects under different loads are listed in Table 1. Note that Equation (6) is an approximation, where 

T can be actually regarded as a quantity presenting the time required for a subject to become 

completely fatigue after the onset of fatigue. Alternatively, FPM(t) can be further expressed as: 
)( on1)( ttketFPM   (7) 

where k = 1/T. In fact, k is a novel fatigue-induced parameter introduced by our study; we called it the 
“fatigue incremental rate” (FIR). Furthermore, we can derive and obtain T  ton, if a subject’s muscle 

continues to exhibit fatigue after the onset time ton. The detailed derivation is provided in Appendix A. 

We speculate that these model parameters ton, k, and T may show the subject’s performance of muscle 

endurance. Hence, our model of muscle fatigue assessment may allow effective and wide applicability 

in the physical therapy or rehabilitation-related fields involving cycling training. 

Further inspecting results presented in Figure 5b–c, one may see an exponential increase in FPM 

generally followed by a drop. As indicated previously in Section 4.1, this could be attributed to that 

these subjects (S4 and S5) started to adjust and change their postures and attitudes after fatigue 
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occurred, in order to reduce muscular fatigue during the cycling motion. Since they adaptively regulate 

muscle groups for reducing local muscular fatigue, a decrease in FPM following an exponential 

increase in FPM was then observed. Meanwhile, when reducing the local muscular fatigue by 

spontaneously coordinating and compensating muscle groups, the subject also exerted the same output 

force to perform the constant-speed cycling under a constant load. This might effectively defer the 

progressive fatigue of a specific muscle, thus resulting in a different relatively slower exponential 

increase profile (i.e., a smaller FIR value) after a drop in FPM. 

Moreover, as mentioned previously, since the Borg scale can be used to quantitatively monitor the 

intensity of exercise [19], each subject was also asked to rate the degree of perceived exertion he/her 

felt during pedaling. According to Borg scale, subjects may rate their perception of the exertion 13 on 

scale when they feel the exercise intensity is “somewhat hard”. We speculate that this scale value can 

reflect the physical fatigue and thus may be used to validate the FPM method. Therefore, we here also 

included the occurrence times of these five subjects’ rating 13 on Borg scale during the cycling 

exercise in Table 1. Inspecting and comparing all the numerical results of onset times as listed in Table 1, 

we may see that for each subject the onset time of muscle fatigue, either due to GAS or VL, and that of 

Borg = 13 were close to each other, suggesting that the results obtained from different ways of fatigue 

detection were actually consistent to each other. Also, it is revealed from Table 1 that the physical 

fatigue seemed to occur shortly prior to the perception of fatigue (within 1 min or less). 

Furthermore, it is revealed from Table 1 that muscle fatigue occurred at 2 min 40 s for S5, yet he 

still cycled for 23 min. The difference between these two times is explained as follows. First, it should 

be noted that here 2 min 40 s actually was just the onset time at which muscle fatigue occurred for the 

first time during the cycling motion test. Secondly, since different subjects should have different 

muscular strengths and endurances, subject S5, for sure, should have better muscular strength and 

endurance than the other subjects. That is why he was still able to continuously pedal for 23 min, even 

though his muscle started to fatigue at 2 min 40 s. In addition, another possible reason could be due to 

that different subjects might use different strategies in coordinating and compensating their muscle 

groups to reduce the local muscle fatigue so they may be able to have longer endurance times during 

the test. Therefore, we may speculate that subject S5 should not only have a better muscular strength 

and endurance, but also might have a better strategy to perform the task of the cycling motion test. 

Since the Borg scale value reflects the individual subjective sense, a mixing of the mental fatigue and 

peripheral one, the onset time of the muscle fatigue estimated from FPM is not necessarily in 

accordance with the outcome performance (the total time of pedaling) of each person. 

Finally, it could be useful to know how the FPM would recover when a subject is no longer in a 

fatigue state. According to the FPM model as indicated in Equation (4), one may see that the longer a 

subject is in fatigue, the larger the numerator of FPM is. This will cause more time for FPM to decay 

to zero once the subject is no longer in a fatigue state. That is, it would take more time to recover from 

fatigue. Therefore, we may conclude that when a subject is no longer in a fatigue state, the time 

required for the person to recover from fatigue basically depends on how long he/she was in fatigue. 
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Table 1. Onset times of muscle fatigue (both GAS and VL) and Borg = 13 (indicating that 

the exercise intensity is “somewhat hard”) of the subjects under different loads. Note that 

for each subject the Borg scale value was updated every minute during the test. 

Load Subject Gender 
Fatigue Onset 

(GAS) 

Fatigue Onset 

(VL) 
Onset of Borg = 13 Total Time of Pedaling 

L2 
S1 Female 20 s 1 min 2 min 3 min 

S2 Female 0 40 s 2 min 7 min 

L3 
S3 Male 0 20 s 1 min 2 min 40 s 

S4 Male 3 min 40 s 0 4 min 36 min 

L4 S5 Male 2 min 40 s 1 min 3 min 23 min 

5. Conclusions 

A cycling-based system for real-time muscle fatigue monitoring and assessment was developed in 

this study. In this integrated system, the kinesiological and kinematical data, including the EMG 

signals of the VL and GAS muscles in one leg, cycling speed and crank angle are synchronously 

measured. In addition, the EA and MF of EMG signals are calculated. Moreover, a novel FPM, which 

is the percentage of the reduced MF counts, was proposed and built in this system to on-line and 

continuously quantify the status of muscle fatigue as time evolves in pedaling exercise. Five young 

healthy subjects were recruited to participate in the cycling experiment. Our results demonstrate that 

this method can be successfully applied on a bicycle ergometer for the real-time characterization and 

monitoring of the onset and the progression of lower extremity muscles’ fatigue. Our study actually 

provides a paradigm that has guiding meaning of methodology for continuously tracking and 

quantitatively characterizing the fatigue progression during motor tasks. In summary, our study has 

demonstrated the feasibility of using this method for on-line monitoring, diagnosis or assessment of 

muscular fatigue to avoid an over-exercise. In the future, it could be further applied to the related 

studies regarding the muscle training, physical therapy or rehabilitation fields.  
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Appendix A 

If a subject’s muscle continues to exhibit fatigue after the onset time ton, according to Equation (4) a 

discrete-time version of FPM can be expressed as: 
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where non is the number of events before the onset, and i denotes the i-th event after the onset. At the 

beginning of fatigue onset, i is smaller than n, and then the fractional function, according to the 

binomial theorem, can be approximated as: 
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On the other hand, the exponential function as indicated in Equation (6) can be approximated by 

Taylor’s expansion as:  
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Where t  is the time interval of event, where t  = 20 s. From the comparison of the leading behavior 
of Equations (A2) and (A3), we can obtain the relation, T  nont = ton. 
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