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Abstract: In this study, we propose a solution to the simultaneous localization and mapping
(SLAM) problem in low dynamic environments by using a pose graph and an RGB-D
(red-green-blue depth) sensor. The low dynamic environments refer to situations in which the
positions of objects change over long intervals. Therefore, in the low dynamic environments,
robots have difficulty recognizing the repositioning of objects unlike in highly dynamic
environments in which relatively fast-moving objects can be detected using a variety of
moving object detection algorithms. The changes in the environments then cause groups
of false loop closing when the same moved objects are observed for a while, which means
that conventional SLAM algorithms produce incorrect results. To address this problem, we
propose a novel SLAM method that handles low dynamic environments. The proposed
method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely
grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped
according to the grouping rules with noise covariances. Next, false constraints of the pose
graph are pruned according to an error metric based on the grouped nodes. The pose graph
structure is reoptimized after eliminating the false information, and the corrected localization
and mapping results are obtained. The performance of the method was validated in real
experiments using a mobile robot system.

Keywords: simultaneous localization and mapping (SLAM); low dynamic environment;
pose graph; RGB-D (red-green-blue depth)
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1. Introduction

Simultaneous localization and mapping (SLAM) is a key problem for the robotics community [1–11].
Originally, it was assumed that the SLAM technique can only be performed in static environments.
This assumption remains valid for the verification and comparison of a variety of SLAM algorithms
but the real world is a dynamic environment. In recent years, SLAM has been developed for use in
dynamic environments [7–11], but many of these methods rely on expensive laser range finder (LRF)
sensors. Nevertheless, in highly dynamic environments, since vision sensors can readily detect the
moving object, visual SLAM delivers good performance [11]. However, if the object positions change
over long intervals, it is difficult to recognize these movements using vision sensors alone. This problem
was defined in [8] (where they used an LRF sensor) and referred to as a low dynamic environment.

In the present study, we propose a novel SLAM method for low dynamic environments, which is
based on an RGB-D (red-green-blue depth) sensor. RGB-D sensors generate a colored two-dimensional
(2D) image and depth data concurrently [12], which allows the constraints between other places to be
obtained easily. These sensors are also relatively cheap (less than $300) compared with LRF sensors.
The proposed method is optimized by using a pose graph structure [4–6], which stores the full trajectory
information and sensor measurements as constraints. In the pose graph, the dynamic objects cause
false constraints. Furthermore, the false constraints form a group when the moved objects are observed
for a while. Therefore, to remove falsely grouped constraints efficiently, the proposed method first
groups nodes that represent robot poses of the trajectory according to the grouping rules with noise
covariances. Next, the false constraints generated by the dynamic objects are pruned according to an
error metric that is based on the grouped nodes. The pose graph structure is reoptimized after eliminating
the false information, and the corrected robot trajectory and a three-dimensional (3D) point cloud map
are obtained.

Recently, max-mixture, vertigo, and dynamic covariance scaling (DCS)-based graph SLAM
algorithms have been introduced to remove false constraints from the graph SLAM [13–15]. However,
these constraints are focused on false constraints generated by coincidence, whereas our situation is an
inevitable consequence of dynamic environments. Therefore, these types of algorithms are not suitable
for eliminating the grouped false constraints generated by moving objects. More details of the algorithms
and results of applying the algorithms in a low dynamic environment will be provided in Section 3.2.

The main contribution of this paper is in using a relatively cheap sensor and providing an effective
error metric with the pose graph to overcome the low dynamic environments. Unlike earlier studies that
use expensive sensors, the proposed method uses a relatively cheap RGB-D vision sensor. Then, using
only the pose graph information, false constraints from the low dynamic situations can be detected
effectively with an error metric and node grouping rules. After that, the false informations can be
removed easily, and then the corrected robot trajectory and 3D map are finally obtained.

The remainder of this paper is organized as follows. The second section provides a review of pose
graph SLAM and the RGB-D SLAM system. The third section describes the proposed SLAM method
for low dynamic environments. The results of the actual experiments are presented in the fourth section.
The final section offers some concluding remarks.
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2. Pose Graph-Based RGB-D SLAM

2.1. Pose Graph SLAM

Our proposed method is based on pose graph SLAM [4–6]. Graph SLAM basically comprises nodes
and edges. The nodes represent robot poses or landmark positions in the map, while the edges constrain
the nodes based on the relative measurements between pairs of nodes. In pose graph-based SLAM, the
robot poses are used only as the nodes and a pair of nodes connected to the same landmark acquire a
new edge after removing the landmark node. Figure 1 shows a graphical model of pose graph SLAM.
The pose graph SLAM structure is useful in situations where it is difficult to define an exact landmark
such as LRF-based SLAM. There are also some advantages in terms of the computational speed or
the transformation of the graph structure because pose graph SLAM has a more compact information
structure than general graph SLAM.

Figure 1. Graphical model of pose graph SLAM.
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The pose graph SLAM algorithm optimizes the full trajectory of a robot using the
maximum-likelihood estimation (MLE) method, as follows:

x∗ = arg min
x

1

2

∑
〈i,j〉∈S

rTi,j (x) Λi,jri,j (x) (1)

where x is the robot pose vector with a full trajectory, ri,j is the residual of the predicted and observed
relative poses between the i-th and j-th nodes, Λi,j denotes the measurement information matrix, and S
represents the set of edges that connects the nodes. The residual ri,j is represented as

ri,j (x) = hi,j (x)− zi,j (2)

where hi,j (x) represents the prediction model for two nodes and zi,j is the measurement value
obtained from sensors. Therefore, the optimization of the robot trajectory denotes the minimization
of Mahalanobis distance [16] of the residuals. Since the residual ri,j is generally a nonlinear function,
the pose graph SLAM is a nonlinear least square problem and the solution is obtained iteratively by

x← x + ∆x (3)
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where ∆x is the solution of the following problem:

H∆x = −g (4)

where H and g are represented by Equations (5) and (6), respectively, and Ji,j is Jacobian of the residual
ri,j with respect to x, which is obtained using Equation (7).

H =
∑
〈i,j〉∈S

JTi,jΛi,jJi,j (5)

g =
∑
〈i,j〉∈S

JTi,jΛi,jri,j (x) (6)

Ji,j =
∂ri,j (x̆)

∂x̆

∣∣∣∣
x̆=x

(7)

Recently, a variety of graph SLAM algorithms, such as TORO, g2o, and iSAM [4–6], has been
developed to improve the computational efficiency of this process. In the present study, the iSAM
algorithm is used to optimize the robot’s full trajectory. iSAM reduces the computational time
considerably based on sparse linear algebra [6].

2.2. RGB-D SLAM System

In the present study, the proposed SLAM method is implemented and validated using an RGB-D
SLAM system. RGB-D sensors such as Microsoft Kinect provide depth information as well as color
information [12]. Figure 2a and b shows a color image and the per-pixel depth data obtained from an
RGB-D sensor. The RGB-D SLAM system utilizes the RGB 2D image and depth data from an RGB-D
sensor and robot’s dead-reckoning data. The processing steps required by the system are illustrated
in Figure 3. First, the 2D image features are extracted using feature extraction algorithms such as
the scale-invariant feature transform (SIFT) [17] and speeded-up robust features (SURF) [18]. Each
feature can be located at a point in the 3D coordinate space using the depth data and the focal length
information from the camera sensor. These features are used for visual odometry estimation based
on comparisons between the current and preceding frames using feature matching and a RANSAC
(RANdom SAmple Consensus) algorithm [19]. Next, the robot’s dead-reckoning data is fused with
the visual odometry estimate to predict the current robot pose. This prediction constrains the previous
and current nodes. A feature manager gathers the overall features from the image frames and, based on
comparison between the current and previous features, the current node is matched to the past nodes of
the graph. This matching procedure is called loop closure detection. The robot pose prediction and loop
closure measurement set the constraints between the graph nodes and the full trajectory of the robot is
formed as a pose graph structure. After optimizing the pose graph using the pose graph SLAM algorithm
mentioned in the previous section, the corrected robot trajectory and 3D map can be obtained. The steps
are all performed in real-time. A detailed explanation of this system is given in [20,21].
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Figure 2. RGB-D sensor data. (a) RGB 2D image; (b) Per-pixel depth data.

(a) (b)

Figure 3. Processing steps required by the RGB-D SLAM system.
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3. Proposed SLAM method

3.1. SLAM in Low Dynamic Environments

Until recently, it was assumed that most SLAM algorithms can only be performed in static
environments. Figure 4 shows an example of 2D pose graph SLAM in these environments. This example
is based on the RGB-D SLAM system discussed in the previous section. It is assumed that the robot is
equipped with the RGB-D sensor that points ahead to gather vision and depth data as it moves. The robot
starts at the first node x0 and moves along double-rectangular paths. The nodes are connected by edges,
which are generated using dead-reckoning estimation and by an image feature-matching technique. In
this case, the image features are extracted from four surrounding objects and the nodes that observe



Sensors 2014, 14 12472

the same object are connected to each other based on common image features. The black bold edges
connecting two nodes in Figure 4, which are located immediately next to each other, represent the pose
prediction results. The pose prediction is obtained from the visual odometry estimation based on a
comparison with the previous RGB-D data and the dead-reckoning of the robot. We refer to these edges
as prediction edges. The gray thin edges are produced by loop closure detection using the gathered
features. These edges are referred to as measurement edges.

Figure 4. Example of pose-graph SLAM in a static environment.
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Every edge has prediction and measurement uncertainties, which are represented by Gaussian noise
with information matrices Λi,j . Figure 5a shows the full trajectory of the robot estimated using prediction
edges only. The path of the robot is distorted by the noise of the edges. In Figure 5b, the robot trajectory
is optimized by the graph SLAM algorithm using all the prediction and measurement edges of the graph,
and a corrected rectangular path is obtained.

Figure 5. Full trajectory estimation; (a) Using only the prediction results. (b) Optimized
using the graph SLAM algorithm.
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In contrast to the static situation, objects can move or be moved in dynamic environments. Examples
of this type of object movement include people, vehicles, and furniture. The moving objects create false
constraints between the nodes and general SLAM algorithms might fail to optimize graphs. However,
relatively fast-moving objects such as people and cars can be detected frame by frame using a variety
of moving object detection algorithms. By contrast, very low dynamic objects, such as chairs, tables,
sofas, and doors are difficult to detect because the movement occurs over relatively long intervals. These
situations are referred to as low dynamic environments in [8]. In other words, in this study, the dynamic
environments are classified into highly dynamic and low dynamic environments. The low dynamic
environments are defined as situations where the movements occur between different visitations. Thus,
the typical sensors cannot detect the movements frame by frame using a variety of conventional moving
object detection algorithms. Therefore, every environment that meets the above conditions can be
referred to as the low dynamic environment regardless of the time scale. The environments that are
not included to the low dynamic environments are defined as the highly dynamic environments.

Figure 6 shows an example of a low dynamic environment.
During the first visit to the object in the top left corner (x6 to x12), the objects are placed in the same

position as that shown in Figure 4.
Before the second visit (x30 to x36), the object moves according to the transformation matrix TDE .

The relocation of the object affects the constraints (red and dotted edges) between the two visits and the
result of the pose graph optimization is distorted, as shown in Figure 7. Large errors are induced in the
overall trajectory because of the severe distortion in the right part of the graph. Thus, the false constraints
need to be removed to avoid incorrect SLAM results. Furthermore, the false constraints form a group
because they see the moved object for a while. Therefore, before removing the constraints, a grouping
constraints procedure will increase efficiency of a constraint pruning algorithm in these situations.

In the next section, we will apply previous constraints pruning algorithms to the low dynamic
environments. After that, to solve this problem in an efficient manner, we will propose a grouping
method and a constraint pruning algorithm in the following sections.

Figure 6. Example of pose graph SLAM in a low dynamic environment.
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Figure 7. Distorted trajectory by the conventional graph SLAM algorithm due to a low
dynamic object.
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3.2. Previous Constraints Pruning Approaches

To remove false constraint edges of the graph SLAM, several algorithms, such as max-mixture,
vertigo, and dynamic covariance scaling (DCS)-based graph SLAM algorithms, have been
suggested [13–15]. These algorithms select false constraints using multiple-hypothesis methods or
switchable selection factors during a least square optimization process. For proper working of these
algorithms, the false constraints should have been generated by coincidence, so that each of them has a
non-causal relationship to the others. Figure 8 shows an example of the graph optimization with false
constraint edges for the synthetic Manhattan world dataset [22]. Figure 8a represents raw data without
any false constraints, and their optimization result using a conventional graph SLAM algorithm is shown
in Figure 8b. Next, randomly generated 30 false constraints are added to the dataset (Figure 8c), and the
optimization result using conventional graph SLAM is shown in Figure 8d. Due to the false constraints,
the conventional graph SLAM gives a severely distorted map. Figure 8e shows the result of applying
the DCS-based graph SLAM algorithm [15]. The algorithm detects false constraints and optimizes the
graph correctly, which shows the same result with Figure 8b. The other pruning methods also give the
same results using the DCS-based algorithm.

To find out the usefulness of the previous methods in our situation, we apply the three algorithms to
the low dynamic environment, and their results are shown in Figure 9. The algorithms do not prune any
false constraints in this environment, and the maps are still distorted. The false constraints generated by
moving objects are inevitable consequence of the low dynamic environment. Furthermore, they appear
for a while during their observation of the same moved object, resulting in the formation of a group of
false constraints. These grouped constraints are hard to be removed by the previous algorithms because
they are effective when the constraints are formed by coincidence. Therefore, to solve this problem, we
propose an efficient algorithm in the following sections.
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Figure 8. Example of the graph optimization with false constraint edges for the synthetic
Manhattan world dataset [22]. 30 false constraints are added to the graph for evaluating
different SLAM algorithms. (a) Before optimizing the graph with no false constraints;
(b) Optimizing the graph with false constraints using the conventional graph SLAM;
(c) Before optimizing the graph with false constraints; (d) Optimizing the graph with
false constraints using the conventional graph SLAM; (e) Optimizing the graph with false
constraints using the dynamic covariance scaling (DCS)-based graph SLAM [15].

(a) (b)

(c) (d)

(e)
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Figure 9. Results of applying different SLAM algorithms for a low dynamic environment.
(a) Max-mixture algorithm [13]; (b) Vertigo algorithm [14]; (c) Dynamic covariance scaling
(DCS)-based algorithm [15].

(a) (b)

(c)

3.3. Grouping Nodes

In this part, we propose a method for grouping nodes to facilitate the efficient pruning of constraints.
The method employs a covariance merging scheme and two rules for selecting a sequence of nodes.
Figure 6 shows the necessity of the node grouping method. Several false constraints emerge from the
object movement because the robot has a vision sensor that points ahead and it observes the same object
for a period. In this case, if two groups related to the moving object (the first and the second visiting
groups to the low dynamic object) can be formed, the false constraints are established between the two
visiting groups. After that, if it is revealed that the relationship between the two groups is incorrect, all
of the constraints that connect the groups can be pruned concurrently.

The covariance merging process for grouping is described in the followings. The uncertainty score of
each prediction edge is calculated to group the nodes. All of the edges have information matrices Λi,j

between the i-th and j-th nodes. The information matrix is the inverse of the measurement covariance
matrix Ci,j . The probabilistic distribution of the measurement edges can be merged to the prediction
edges using the parallel summation rules of Gaussian distributions [23]. Figure 10 shows an example of
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merging the covariances of edges. The covariance C0,2 is merged to the prediction edges C0,1 and C1,2,
and the updated covariances C′0,1 and C′1,2 are obtained as

C′0,2 =
[
(C0,1 + C1,2)−1 + C−1

0,2

]−1
(8)

C′0,1 = C′0,2
C0,1

C0,1 + C1,2

(9)

C′1,2 = C′0,2
C1,2

C0,1 + C1,2

(10)

Figure 10. Example showing the merging of the covariances of edges. (a) Before merging
C0,2 to C0,1 and C1,2; (b) After merging, C′0,1 and C′1,2 are updated.
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In the present study, we assume that the robot moves on a 2D plane, so the node x and the covariance
matrix C are represented as

x = [ x y θ ]
T

(11)

C =

 σ2
x σ2

xy σ2
xθ

σ2
xy σ2

y σ2
yθ

σ2
xθ σ2

yθ σ2
θ

 (12)

To apply the covariance merging scheme to our SLAM system, two rules are defined as follows:

1. The measurement edges subject to a certain condition are merged to the prediction edges. The
condition is that all nodes between two nodes connected by the measurement edge have to be
within a certain angle bound. In other words, the bearing differences between all nodes cannot
exceed a certain angle. For example, as shown in Figure 6, the nodes between x34 and x36 are
within an angle bound of 20◦, thus the measurement edge that connects x34 to x36 is subject to the
condition. However, the edge that connects x12 to x36 does not meet this requirement because the
bearing differences of some nodes between x12 and x36 exceed 20◦.

2. Given the condition described above, the prediction edges are merged with the measurement
edges within the angle bound described above. In this situation, it is assumed that the robot
heading is the x axis of the robot-fixed coordinate system, which means that the covariances of the
prediction edges are affected mostly by σx. Therefore, the covariance matrix can be approximated



Sensors 2014, 14 12478

to a single variable as C ≈ σ2
x, and the parallel summation of the covariance matrices becomes

simple algebra.

Figure 11a represents the covariance values of the prediction edges merged according to the two
rules, which have been normalized by the maximum value. The parallel summation of the Gaussian
distributions reduces the covariance value, which also means that the uncertainty of the prediction edge
to which several measurement edges belong is decreased. The nodes with uncertainty values less than 0.3

are grouped and eight groups, G1 to G8, are formed as shown in Figure 11b (red and bold lines), where
Gk represents the k-th node group and k is numbered sequentially according to the time. A number of
edges exist in the same group nodes that see the common object, thus the results obtained after grouping
the nodes facilitate the effective removal of the false constraints.

Figure 11. (a) Normalized covariance values of the prediction edges; (b) Result obtained
after grouping the nodes. The red and bold lines represent the grouped nodes. In this case,
eight groups are formed, G1 to G8.
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3.4. Pruning Constraints

Next, we propose an error metric that uses the grouped nodes to find the false constraints in an
efficient manner. The error value Ek,l is defined as the average Mahalanobis distance [16] of the edges
that connect the k-th and l-th node groups as

Ek,l =
1

Nk,l

∑
〈i,j〉∈Sk,l

rTi,j (x) Λi,jri,j (x) (13)

where k and l denote the indices of the node group and Nk,l is the number of the edges in Sk,l which
represents a set of edges that meets the following conditions.

1. if k = l: Sk,l includes all of the edges that belong to the k-th node group, Gk.

2. if |k − l| = 1: Sk,l includes all of the prediction edges between Gk and Gl. The measurement
edges that connect Gk and Gl are also included.
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3. if |k − l| > 1: Sk,l includes the measurement edges that connect Gk and Gl.

After applying the error metric to the example distorted pose graph, the error values between the
grouped nodes are obtained as shown in Figure 12, in which case the result is represented as symmetric.
The information related to the object in G2 is no longer valid because the object has been moved.
Therefore, the false constraints between G2 and G6 produce large errors, as indicated by E2,6. Moreover,
the error values E1,2, E2,3, E5,6, and E6,7 related to the neighbor groups of G2 and G6 also produce large
values because G2 and G6 experience distortion. Finally, considering the error metric results, the error
values Ek,l when |k− l| > 1 are suitable for finding the false edges. Therefore, in this case, according to
E2,6, G2 that has useless information of the past becomes an object of attention so that the measurement
edges related to G2 are removed. Next, the pose graph is reoptimized and the corrected trajectory of the
robot is obtained, as shown in Figure 13. Moreover, G2 will be excluded from the further process when
generating new edges.

This method assumes that inter-group edges are not expected to be large unless landmarks move.
However, if there are constraints that were generated by erroneous results of sensors, the edges between
inter-group edges would make large error values. Therefore, in this study, we suppose that all erroneous
constraints were removed in advance by a variety of robust sensing techniques.

Figure 12. Error metric based on the grouped nodes.
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Figure 13. Optimized trajectory after pruning the false constraints.
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4. Experiments

4.1. Experimental Setup

To validate the proposed method, experiments were performed with a mobile robot. Figure 14 shows
the robot system equipped with an RGB-D sensor and a color marker for the ground truth position. The
Pioneer 3-AT [24] model was used as the mobile robot where the dead-reckoning data were based only
on wheel odometry that was obtained from 100 tick encoders. The RGB-D sensor used in this experiment
was Microsoft Kinect [12]. Kinect uses a structured light to estimate depth and its valid range is about
0.5 m to 5 m. The sensor produces a 2D RGB image and per-pixel depth data at 30 Hz, both with
640× 480 resolution. To measure the ground truth position of the robot, a global vision system was built
as shown in Figure 15. A camera was installed on the ceiling and a 3-DOF (degree-of-freedom) robot
pose (x, y, θ) was obtained using a marker detection algorithm. The camera covered 4.4 × 3.3 m area,
and therefore the resolution of the global vision system was about 0.7 cm per pixel. The experiments
were performed in a laboratory environment, as shown in Figure 16. In this setup, we moved tool carts
to produce low dynamic environments. Three experiments were conducted using different movements,
as shown in Figures 17 and 18. In experiments 1 and 2, the robot moved along rectangular paths, of
which the length of one side is 1.8 m, three times. After the first trip, the tool cart was moved to another
place. During the second and the third trips, the robot encountered the moved object. In experiment 1,
the object was simply moved forward. In experiment 2, the object was relocated to the left-hand side of
the experimental setup. Contrary to the experiments 1 and 2 that employed the simple rectangular paths,
in experiment 3, a more complex path was built with two moving objects. The left side of Figure 18
shows the first trip. After that, two tool carts were moved to other places, where the robot met during the
second trip (the right side of Figure 18). In these settings, the proposed SLAM as well as the conventional
RGB-D SLAM were applied.

Figure 14. Mobile robot system with an RGB-D sensor and a marker for measuring the
ground truth position.

RGB-D sensor
(Microsoft Kinect) Marker for

ground truth

Mobile robot
(Pioneer 3-AT)
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Figure 15. Global vision system for obtaining the ground truth position. (a) Camera installed
on the ceiling; (b) Global positioning result is displayed. A 3-DOF robot pose (x, y, θ)

is obtained.

(a) (b)

Figure 16. Experimental site used for low dynamic environments.
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Figure 17. Relocations of the tool cart during two experiments that produce low dynamic
environments. (a) Experiment 1; (b) Experiment 2.
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Figure 18. Relocations of the two tool carts during experiment 3 that produces a low
dynamic environment.
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4.2. Experimental Results

In the two experiments, the conventional SLAM produced distorted graph structures because of the
low dynamic objects, as shown in Figure 19. However, the proposed method detected the dynamic
environments using the error metric, as shown in Figures 20–22. At this time, the nodes were grouped
based on the covariance values which were normalized by the maximum value, as shown in Figure 23.
The nodes with uncertainty values less than 0.3 are grouped. In Figures 20 the left column shows the
moment of detection at the second turn in experiments 1 and 2. At these times, the false constraints were
excluded based on the error metrics of the node groups in experiments 1 and 2 (Figure 22a,b).

Figure 19. Graph structures obtained from the conventional graph SLAM. The trajectories
were distorted due to the low dynamic objects. (a) Experiment 1; (b) Experiment 2;
(c) Experiment 3.

(a) (b)

(c)

In experiment 1, the error value E2,6 had a high score and G2 was excluded. In the same manner,
E2,7 had a large error value in experiment 2 and the edges connected to G2 were removed. In
Figures 21, the left column shows the moment of movement detection by object 1 and 2 at the second
turn in experiments 3. The false constraints related to G3 and G6 also were excluded based on the error
metrics (Figures 22c,d). After pruning the false constraints, the modified graph structures were optimized
by the graph SLAM algorithm from the beginning. Although the reoptimization started through the
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process all over again, the iSAM algorithm provided sufficient performance for real-time operation. The
reoptimized graph structures are shown in the right column of Figures 20 and 21.

Figure 20. Left: At the moment of movement detection in low dynamic environments.
Right: Reoptimized graph structures after excluding false constraints. (a) Experiment 1;
(b) Experiment 2.
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Figure 21. Left: At the moment of movement detection in low dynamic environments.
Right: Reoptimized graph structures after excluding false constraints. (a) By object 1 in
experiment 3; (b) By object 2 in experiment 3.
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Figure 22. Error metrics for the node groups at the moment of movement detection in low
dynamic environments. (a) Experiment 1; (b) Experiment 2; (c) By object 1 in experiment
3; (d) By object 2 in experiment 3.
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Figure 22. Cont.
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Figure 23. Normalized covariance values of the prediction edges. The nodes in each
experiment were grouped based on the covariance values normalized by the maximum
value. The nodes with uncertainty values less than 0.3 are grouped. (a) Experiment 1;
(b) Experiment 2; (c) Experiment 3.
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The final results for the overall trajectories are shown in Figures 24 and 25. The graph structures
obtained from SLAM are shown in Figure 24. The node group G2 is excluded from experiment 1 and 2.
In experiment 3, two node groups G3 and G6 are excluded due to the movements of the two objects. In
Figure 25, three types of trajectories are compared with the ground truth result for each experiment. The
results obtained using odometry deviate increasingly from the ground truth because of wheel odometry
errors. The conventional graph SLAM results show distorted trajectories due to low dynamic objects.
However, the results obtained using the proposed method agree well with the ground truth.

Figure 24. Reoptimized graph structures obtained using the proposed method.
(a) Experiment 1; (b) Experiment 2; (c) Experiment 3.
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Figure 25. Four types of robot trajectories obtained in low dynamic experiments.
(a) Experiment 1; (b) Experiment 2; (c) Experiment 3.

(a) (b)

(c)

The Euclidean distance errors of the three results were calculated relative to the ground truth data and
they are shown as boxplots in Figure 26. The median values of the odometry only results were 0.415 m,
0.429 m, and 0.424 m in experiments 1, 2, and 3, respectively. The median values with the conventional
SLAM results were 0.112 m, 0.041 m, and 0.246 m in experiments 1, 2, and 3, respectively. With the
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proposed method, the median values were 0.037 m, 0.038 m, and 0.026 m in experiments 1, 2, and
3, respectively. Thus, in experiment 2, the median values obtained with conventional SLAM and the
proposed method did not differ greatly. However, the conventional SLAM had a large variance (the third
quartile was 0.289 m).

Figure 26. Euclidean distance errors relative to the ground truth data. (a) Experiment 1;
(b) Experiment 2; (c) Experiment 3.
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Figures 27–29 show the 3D maps obtained from the experiments. The 3D map was constructed by
merging the point cloud data from all the nodes in the graph structures. In Figures 27a, 28a, and 29a,
it is difficult to recognize the experimental site because of the odometry errors. The results obtained
with conventional graph SLAM (Figures 27b, 28b, and 29b) show that the tool cart appears in several
positions. In experiment 2, the tool cart traveled further than in experiment 1 and the error in the 3D
map was more significant. In Figures 27c, 28c, and 29c, however, the proposed method produced the
correct 3D maps using the reoptimized graph and by removing the point cloud data for the excluded
nodes. Therefore, the traces of the object before moving could be removed completely.
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Figure 27. The 3D maps obtained from experiment 1. Left and right columns are views from
different angles. (a) Odometry only; (b) Conventional graph SLAM; (c) Proposed method.
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Figure 28. The 3D maps obtained from experiment 2. Left and right columns are views from
different angles. (a) Odometry only; (b) Conventional graph SLAM; (c) Proposed method.
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Figure 29. The 3D maps obtained from experiment 3. (a) Odometry only; (b) Conventional
graph SLAM; (c) Proposed method.

(a)

(b)

(c)

5. Conclusions

In this study, we proposed an RGB-D SLAM method that handles low dynamic situations using a
pose-graph structure. Nodes that observe the same object using a sensor are grouped based on their
covariance values. Any false constraints are pruned based on an error metric related to the node
groups. The validity of the proposed method was demonstrated by real experiments in low dynamic
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environments. The corrected trajectories of a robot and 3D maps that contained the final appearance of
the dynamic object were obtained successfully.

It is expected that this method will help to improve the performance of graph SLAM in various
dynamic environments. In the present study, the robot pose movements were limited to the 2D plane.
Therefore, further studies should be conducted using 6-DOF movements in 3D spaces.
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