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Abstract: The occurrence of epileptiform discharges (ED) in electroencephalographic 

(EEG) recordings of patients with epilepsy signifies a change in brain dynamics and 

particularly brain connectivity. Transcranial magnetic stimulation (TMS) has been recently 

acknowledged as a non-invasive brain stimulation technique that can be used in focal 

epilepsy for therapeutic purposes. In this case study, it is investigated whether simple  

time-domain connectivity measures, namely cross-correlation and partial cross-correlation, 

can detect alterations in the connectivity structure estimated from selected EEG channels 

before and during ED, as well as how this changes with the application of TMS. The 

correlation for each channel pair is computed on non-overlapping windows of 1 s duration 

forming weighted networks. Further, binary networks are derived by thresholding or 

statistical significance tests (parametric and randomization tests). The information for the 

binary networks is summarized by statistical network measures, such as the average degree 

and the average path length. Alterations of brain connectivity before, during and after ED 

with or without TMS are identified by statistical analysis of the network measures at  

each state. 

Keywords: transcranial magnetic stimulation (TMS); electroencephalograms; epileptic 

discharges; cross-correlation; partial cross-correlation; causality networks 
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1. Introduction 

In multivariate time series analysis the interaction of the observed variables can simply be assessed 

on the basis of the linear correlation between two variables X and Y, namely cross-correlation and 

partial cross-correlation conditioning on the other observed variables. The correlation may involve a 

time lag τ, i.e., correlation of Χ(t) and Y(t + τ), and in conjunction with pre-whitening of the time series 

of Χ and Υ (elimination of autocorrelation or drifts), it can estimate time directed interactions and serve 

as a simple Granger causality measure [1]. Further, correlation networks can be formed having as 

nodes the observed variables and connections determined by the estimated cross-correlation or partial 

cross-correlation. In particular, the connections can be undirected when τ = 0 or directed when τ ≠ 0, 

and they can be weighted given directly by the correlation or binary given by the decision for 

significant (one) or non-significant (zero) correlation [2]. The analysis of multivariate time series by 

means of correlation networks is a rather new approach with applications in many fields ranging from 

economics [3] to neurophysiology [4,5]. 

In this work we apply the aforementioned approach to investigate the impact of transcranial 

magnetic stimulation (TMS) on the brain connectivity structure when applied during epileptiform 

discharges (ED). In recent years, TMS has emerged as a promising non-invasive brain stimulation 

technique with therapeutic potential in focal epilepsy [6–9]. Recent studies have shown that EDs are 

connected with changes in the dynamics of the brain and possible alterations in connectivity between 

inter-connected areas of the brain [10]. In this study, we investigate whether correlation networks 

derived from multi-channel scalp EEG can detect changes in brain connectivity before and during the 

ED, as well as after the ED when it terminates naturally or due to the TMS administration. 

The structure of the paper is as follows: in Section 2, the methodology is presented giving a brief 

account of correlation networks, discussing in particular the derivation of binary networks from 

statistical significance test, and presenting the TMS-EEG protocol. In Section 3, the application of the 

framework of correlation networks to the TMS-EEG is presented and conclusions are given in  

Section 4. 

2. Methodology 

We assume an observed multi-variate time series 1 1, 2, , 1{ } { , , , }N N
t t t t n t ty y y  y , such as an EEG 

segment of n channels and duration of T s, where N = Tfs, and fs is the sampling frequency. Each 
component time series , 1{ }N

i t ty   is processed to remove autocorrelation. This is achieved by fitting to 

, 1{ }N
i t ty   an autoregressive model of an order p, AR(p), and taking the residual time series , 1{ }N

i t tx  , a 

procedure commonly known as pre-whitening [11]. The order p can be fixed or adapted by some 

model order estimation criterion, such as the Akaike information criterion or AIC. Pre-whitening is 

equally effective in removing non-stationary effects, such as drifts, provided an appropriate order p is 

selected. The correlation analysis is thus performed on the pre-whitened multi-variate time series

1 1, 2, , 1{ } { , , , }N N
t t t t n t tx x x  x . Let also the observed vector variable and its components at a time t be 

denoted as 1, 2, ,{ , , , }t t t n tX X X X  or simply 1 2{ , , , }nX X X X . 
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The cross-covariance matrix is: 

T

1
( ) 1/ ( ) ( )( )

N

t tt
C N


  


    x x x x  (1) 

for lag τ, where x  is the mean vector. The element ( )jic   of C(τ) denotes the covariance of Xi,t and 

Xj,t+τ, i.e., the cross-covariance of Xi and Xj at lag τ, and the cross-correlation at lag τ is: 

( ) ( ) ( ) / ( ) ( )
j iji X X ji ii jjr r c c c      . (2) 

The ( )jir   for 0   indicates the linear correlation of iX  and jX  at a future time τ, and this can be 

interpreted as Granger causality from iX  to jX , and vice versa for 0   [1]. 

Cross-correlation does not distinguish direct correlation between iX  and jX  from indirect 

correlation, i.e., because of each one’s correlation with another variable kX . To exclude indirect 

correlation of iX  and jX  with respect to all other components of X, stacked in the variable set 2nZ   of 

cardinality n−2, the partial cross-correlation can be used, denoted 
2|( ) ( )

j i nji X X Zr  


 , which estimates 

the correlation of iX  and jX  that is not already contained in the correlation of iX  or jX  with any of 

the variables in 2nZ  . To derive ( )ji  , firstly, the residuals of the linear regression of ,i tX  on all the 

variables of 2nZ   at the same time t, and the residuals of the linear regression of ,j tX   on all the 

variables of 2nZ   at time t are obtained, and then ( )ji   is the correlation coefficient of the residuals of 

,i tX  and ,j tX  [12]. 

2.1. Statistical Significance Test of Correlation 

To draw a binary network from the correlation matrix or the partial correlation matrix one needs to 
decide whether the estimated cross-correlation ( )jir   or partial cross-correlation ( )ji   for a pair of 

variables iX  and jX  is significant or not. Denoting here r any of ( )jir   or ( )ji   for simplifying the 

notation, the parametric test for the null hypothesis of zero correlation uses the test statistic (e.g., see 

Chapter 10.3 in [2]): 

2( 2) / (1 )t r N r    (3) 

which follows the Student distribution with N−2 degrees of freedom, assuming that the pair (Xi, Xj) 

follows bivariate Gaussian distribution. A binary network is derived using the significance test, i.e., 

when the p-value of the test is less than the significance level a, a connection is assigned to the pair  

(Xi, Xj) (the component of the adjacency matrix gets the value one), otherwise there is no connection 

(zero value), and this method of deriving binary networks is called P-VALUE. To correct for multiple 

testing, as the same test applies for any i and j in {1, ..., n}, we use the correction of the false  

discovery rate (FDR) [13]. The p-values of m tests, where m = n(n−1)/2, are set in ascending order  

p(1) ≤ p(2) ...≤ p(m). The rejection of the null hypothesis of zero correlation at the significance level α is 

decided for all variable pairs for which the p-value of the corresponding test is less than p(k), where p(k) 

is the largest p-value for which p(k) ≤ k·α/m holds. This method for constructing binary networks is 

called FDR. 
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Since the assumption of Gaussian distribution cannot always be fulfilled, we also consider a 

randomization significance test. The test relies on the generation of time series resampled from the 

original time series and being consistent with the null hypothesis. We apply here the resampling 
method of time-shifted surrogates [14]. Each time series , 1{ }N

j t tx   is temporally displaced by a random 

time step jw , so that the new resampled time series is *
, , 1 , 2 , ,1 ,{ } { , , , , , , }

j j jj t j w j w j N j j wx x x x x x    . In 

this way we destroy possible cross-correlations so that the time series are consistent with the null 

assumption, but possible autocorrelations and also the marginal distribution of the original time series  

are preserved. 
We calculate the statistic r (where r is ( )jir   or ( )ji  ) on the initial pair of time series, call it 0r , 

and on each of the Μ pairs of time-shifted surrogates (here we use M = 1000), denoted 1 2, , , Mr r r . If 

0r  is at the tails of the empirical distribution which is formed from 1 2, , , Mr r r  the null hypothesis is 

rejected. The rank of 0r  in the ordered list of M + 1 values 0 1 2, , , , Mr r r r , denoted 0i , defines the  

p-value of the randomization test. Concretely, if 0 ( 1) / 2i M   then: 

0
0.326

2
1 0.348

p
M
i 


 

 (4) 

otherwise: 

0
1 ( 0.326)

2
1 0.348

p
M

i 


 
 (5) 

where the correction in [15] is used for the empirical cumulative distribution. The binary network 

derived by the p-values of the randomization significance test is called P-VALUE-R. The correction of 

FDR is applied also to the p-values of the randomization tests and this method for constructing binary 

networks is called FDR-R. The p-values from the parametric test and the randomization test, and also 
the corrections with FDR, are defined for the significance of both ( )jir   or ( )ji   at a predefined  

α = 0.05. 
A simpler approach to determine significance of correlation is to set an arbitrary threshold, here set 

to 0.1, and this way of constructing binary networks is denoted THRESH. If the value of the 

correlation between two variables is greater than the value of the threshold then there is connection 

between them in the network. Such a small threshold was found appropriate because the time series 

have already undergone pre-whitening and the cross-correlation, along with the autocorrelation, has 

been reduced.  

2.2. Network Measures 

There are a number of network statistical measures capturing different characteristics of the 

network structure [16,17]. Here, we use two such measures defined for each node of a binary network, 

namely the node degree and the shortest path length. The node degree for a node i is the sum of all 

binary connections between the node i and any other node j. The shortest path length for node i is the 

average of all the shortest path lengths between node i and each other node j. Further, the average 

degree and average shortest path length for the binary network is the average of the node degree and 

the average of the short path length over all nodes, respectively. 
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2.3. TMS-EEG Protocol 

The study participant gave informed consent for the procedures, which were approved by an 

institutional review board and performed in accordance with the ethical standards laid down in the 

1964 Declaration of Helsinki. The patient was a 38 year old female suffering from drug-resistant, 

structural frontal lobe epilepsy. Her EEG contained particularly frequent epileptiform discharges that is 

spikes, sharp waves or spike-wave complexes as well as longer-lasting subclinical electrographic 

seizure patterns [18]. The epileptogenic zone was located on the frontal convexity on the right and 

therefore was easily accessible to transcranial stimulation (Figure 1). 

Figure 1. Positions of electrodes on the scalp surface according to 10-10 system. The 

electrodes of whose the measurements where used in this study are shown in rectangular 

frames. The label “Epileptogenic focus” indicates the area of the epileptogenic zone. 

 

TMS-EEG recordings were performed according to recent methodological guidelines [19] in an 

electrically shielded room. For brain stimulation, we used a repetitive magnetic stimulator (Magstim 

Rapid, Magstim, Dyfed, Wales) with a circular coil (Magstim type P/N 9784-00) positioned manually 

over the epileptogenic focus. 

The TMS-induced artifact was minimized by employing the minipuncture technique [20]. EEG was 

recorded with a 60-channel TMS-compatible EEG amplifier (eXimia, Nexstim Ltd., Helsinki, 

Finland). During acquisition, the reference channel was attached to the left mastoid and the ground 

electrode was placed on the left zygomatic bone. The EEG signals were band-pass filtered from 0.1 to 

500 Hz and sampled with a 1450 Hz sampling frequency and 16-bit precision.  

We followed the TMS protocol described in detail in [8]. Briefly, brain stimulation (trains of 1-5 

stimuli at 5 Hz and a stimulus intensity corresponding to the lower epileptogenic threshold) was 

applied at variable treatment latencies after the onset of EDs in an intermittent fashion so that EDs in 

conjunction with TMS were interleaved with EDs in the absence of TMS. It should be noted that the 

time periods between successive EDs were in the order of tens of seconds. In view of the short-lived 

character of TMS-induced perturbations of brain activity it is therefore unlikely that carry-over effects 

might have acted as a confounder in the analysis.  
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For the analysis in this study, we chose eight EEG channels, as highlighted in Figure 1. In choosing 

EEG channels, we were guided by topographical criteria as well as the quality of the recorded signal. 

With regard to the former, our intention was to sample EEG data primarily from the area of the 

epileptogenic zone, that is the convexity of the right frontal lobe. In addition, we wanted to include 

representative channels from the remaining parts of the homologous hemisphere and to a lesser extent 

from the non-affected left hemisphere. The second critical factor was the quality of the signal meaning 

that the selected channels had to be consistently free of any biological (i.e., muscle activity, EOG 

artifacts, etc.) or mechanical artifacts. 

3. Application of Correlation Networks to TMS-EEG 

We analyzed 20 episodes of epileptiform discharges. TMS was applied in 10 of them. In each 

episode, we picked out the last 10 s of an 8-channel EEG recording prior to the occurrence of ED 

(denoted preED). For the episodes without TMS administration, we considered also the first 10 s after 

the start of ED (denoted ED). For each of the two states, 10 non-overlapping windows of 1 s were used 

(Ν = 1450 observations) and for each window we calculated the cross-correlation and partial  

cross-correlation matrix for τ = 0 and τ = 1, which defined the undirected and directed weighted 

networks, respectively. The network nodes were the eight channels highlighted in Figure 1. Further, 

we used the five methods for the significance of correlation presented in Section 2.1 to form the 

respective five binary adjacency matrices and the respective binary networks. For the episodes with 

TMS administration, in order to address the pure effect of TMS we considered only the 2 first seconds 

after the onset of brain stimulation, denoted postTMS. We chose a 2-s period as a minimal common 

denominator of TMS after-effects in view of the varying number of stimuli (1-5) delivered during EDs. 

To compare with the state of the ED just before the TMS, we considered also the last 2 s before the 

TMS, denoted preTMS. For preTMS and postTMS, we applied the same procedure but to only two 

consecutive windows of 1 s. An EEG segment from eight channels is shown in Figure 2 for an episode 

containing 10 s preED, ED before and after TMS. 
The average connectivity structure at each state of an episode (pre-ED and ED for an episode 

without TMS, and preED, preTMS and postTMS for an episode with TMS) is obtained by the 

component-wise mean of the adjacency matrices over the corresponding 10 or two windows. For 

illustration, we discuss in the following the results for the episode shown in Figure 2. In Figure 3, the 

connectivity structure at preED (10 s before the ED start), preTMS (2 s right before the TMS) and 

postTMS (2 s right after the TMS) for this episode is shown by color maps regarding the average over 

all adjacency matrices for windows of 1 s given by the cross-correlation at lag zero, (0)jir , and the 

methods THRESH (binary connection when a value is larger than 0.1) and FDR-R (FDR correction to 

the p-values of the randomization test). The average degree for THRESH changes from 3.8 for preED 

(Figure 3a), to 0.62 for preTMS (Figure 3b) and 1.75 for postTMS (Figure 3c), while for the average 

shortest path length the corresponding values are 1.33, 0.35 and 1.82. Accordingly, for FDR-R, 

average degree changes as 5.92 for preED (Figure 3d), 0.75 for preTMS (Figure 3e) and 3.0 for 

postTMS (Figure 3f), while average path length changes as 1.15, 0.45 and 1.29, respectively. These 

results on preED, preTMS and postTMS show that the connectivity decreases with the ED and is 

regained with the TMS. Further, we observe that before the epileptiform discharge there is significant 
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correlation between the nodes that are near the epileptogenic focus (channels FPZ, F2 and AFZ) and in 

the middle and back of the brain (channels CP4, P1 and PO4, see Figure 3a,d), whilst during the ED 

and before the administration of TMS there is an overall reduction in the correlation at these areas 

(Figure 3b,e). With TMS administration we observed that the reduction in the correlation is not so 

prominent and appears to mitigate the difference between preED and ED state (Figure 3c,f). 

Figure 2. EEG from eight channels as denoted at each panel for an episode with ED 

starting at zero time point, denoted by the vertical solid line, and TMS administered 

approximately 4 s later, denoted by the vertical dashed line. The ED terminated about 12 s 

after the start (not shown). 

 

Figure 3. For the episode in Figure 2, the average of the binary connections constructed by 
the method THRESH and (0)jir over 10 binary networks for 10 s of preED in (a), and 

accordingly 2 s of preTMS in (b) and postTMS in (c). In (d–f), the same results are 
displayed but for the method FDR-R and (0)jir . 
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The reduction of correlation with the ED is observed in many episodes but not all. Representative 
results for the average degree on binary networks given by the method FDR-R and the (0)jir  are 

shown in Figure 4 for the 10 episodes with TMS (preED, preTMS, postTMS) and the 10 episodes 

without TMS (preED, ED). In the majority of cases, TMS tends to change correlation towards the 

average level of correlation at the preED state, which corresponds to about 4 degrees per node on 

average. For the 10 episodes without TMS, we observe that in all but three episodes the average degree 

gets smaller during ED, and this decrease is also observed when TMS is present (comparing preED 

and preTMS). It is notable that the level of preED is not the same across episodes, which justifies the 

use of paired comparisons (preED-ED, preED-preTMS and preED-postTMS).  

Figure 4. The average degree on binary networks given by the method FDR-R and (0)jir  

for the 10 episodes with TMS (the three values at each episode correspond to preED, 

preTMS and postTMS) in (a) and the 10 episodes without TMS (the two values correspond 

to preED and ED) in (b). 

 

Further, the grand average connectivity structure for each state (preED and ED for episodes without 

TMS, or preED, preTMS and postTMS for episodes with TMS) is obtained by the mean of these 

adjacency matrices over the 10 episodes without TMS and the 10 episodes with TMS. To evaluate the 

change of connectivity between preED and ED state, we applied paired samples student test for the 

equality of mean network measure for ED and preED state, as well as the area under ROC curve 

(AUROC), where an observation in the sample is taken from the average network measure value 

computed on the 10 windows of an episode. Non-parametric test (Wilcoxon sign-rank test) gave 

similar results to student test, and indeed overall there was no evidence of a significant deviation from 

Gaussian distribution for any of the network measures in the 10 windows. Similarly, the t-test and 

AUROC were computed for the pairs preED–preTMS and preED–postTMS. The spread of the 

difference in the average degree values at the states preED and preTMS, preED and postTMS, as well 

as preED and ED, are shown in the form of boxplots in Figure 5 for different methods. For the case of 
the difference preED-ED, when this is derived by FDR-R and (0)jir  it is spread mainly above the zero 

level, indicating statistically significant decrease of the brain connectivity quantified by the average 

degree, when going from the preED state to the ED state (Figure 5a). This however does not seem to 
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be established by FDR-R and (0)ji as the spread of the average degree difference is around the zero 

level (Figure 5a). The positive difference using FDR-R and (0)jir  is also obtained for the pair  

preED-preTMS, which is essentially the same as preED-ED but preTMS is restricted to 2 s, while after 

TMS the difference (preED-postTMS) is decreased to the zero level (Figure 5b). Similar differences of 

preED-preTMS and preED-postTMS are obtained with other methods, as shown in Figures 5c,d for 
two exemplary cases of different lag and correlation type, namely P-VALUE and (1)jir , and FDR and 

(0)ji , respectively. In all these cases, the difference of preED-preTMS is found statistically significant 

using the paired t-test (also the Wilcoxon sign rank test), whereas the difference preED-postTMS is not 

found statistically significant. 

Figure 5. (a) Boxplots for the average degree differences of preED-ED for the method 
FDR-R using (0)jir  (denoted CC) and (0)ji (denoted PC); (b) Boxplots for the average 

degree differences of preED-preTMS and preED-postTMS for the method FDR-R using 
(0)jir ; (c) As in (b) but for the method P-VALUE and (1)jir ; (d) As in (b) but for the 

method FDR and (0)ji . 
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(only marginally with p = 0.069 for P-VALUE-R and (0)ji ). The smallest AUROC values for the 

difference preED-postTMS were obtained for lag zero, at about the 0.6 level, to be contrasted to the 

AUROC for the difference preED-preTMS, as well as preED-ED, being at the 0.7 level. We note that 

the difference for preED-ED is not as large as for preED-preTMS for all combinations of  
method, correlation measure and lag, e.g., for (1)jir  the AUROC is smaller for preED-ED than for 

preED-preTMS for any method. Also, the randomization test for the significance of (0)ji  and (1)ji  

(methods P-VALUE-R and FDR-R) seems to give smaller differences for preED-preTMS, as well as 

preED-ED, than the other three methods. Finally, it is noted that the average shortest path length did 

not give distinct differences at the same extent as the average degree (results not shown here). 

Table 1. The p-values of the paired t-test and the AUROC values computed on the average 

degree for the paired comparisons preED-preTMS and preED-postTMS for the 10 episodes 

with TMS and preED-ED for the 10 episodes without TMS for the method constructing 
binary networks, cross-correlation ( )jir   and partial cross-correlation ( )ji  for τ = 0 and  

τ = 1. 

Method PreED-PostTMS PreED-PreTMS PreED-ED 

 p-Value AUROC p-Value AUROC p-Value AUROC 

cross-correlation, lag zero 

P-VALUE 0.502 0.65 0.027 0.68 0.057 0.69 
P-VALUE-R 0.749 0.57 0.066 0.70 0.025 0.72 

FDR 0.487 0.66 0.021 0.72 0.032 0.70 
FDR-R 0.820 0.57 0.073 0.72 0.018 0.73 

THRESH 0.203 0.69 0.042 0.74 0.090 0.70 

cross-correlation, lag one 

P-VALUE 0.335 0.68 0.039 0.71 0.222 0.58 
P-VALUE-R 0.445 0.60 0.077 0.71 0.122 0.58 

FDR 0.336 0.68 0.028 0.72 0.149 0.58 
FDR-R 0.241 0.62 0.089 0.67 0.127 0.55 

THRESH 0.110 0.69 0.028 0.70 0.150 0.66 

partial cross-correlation, lag zero 

P-VALUE 0.634 0.59 0.044 0.68 0.043 0.71 
P-VALUE-R 0.943 0.54 0.254 0.62 0.013 0.72 

FDR 0.993 0.58 0.042 0.72 0.010 0.73 
FDR-R 0.622 0.52 0.836 0.58 0.474 0.62 

THRESH 0.646 0.65 0.271 0.67 0.047 0.75 

partial cross-correlation, lag one 

P-VALUE 0.358 0.64 0.063 0.68 0.055 0.62 
P-VALUE-R 0.069 0.69 0.231 0.62 0.117 0.58 

FDR 0.220 0.69 0.053 0.65 0.040 0.59 
FDR-R 0.117 0.63 0.626 0.64 0.172 0.69 

THRESH 0.549 0.68 0.331 0.69 0.062 0.76 
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4. Conclusions 

The first main conclusion of this study is that different methods for constructing binary networks 

from weighted networks could detect similarly the differences in correlation structure at the states 

before the epileptiform discharges (ED), during ED, as well as during ED but after TMS is 

administered. From the five methods for the derivation of binary networks used in the study, FDR 

using p-values from randomization test is proposed as an appropriate method to form binary 

correlation networks despite the large computational cost. However, this method did not give the 

largest differences between the comparisons of the state before the ED with the state at ED before and 

after TMS. Comparing the cross-correlation to the partial cross-correlation, though the partial  

cross-correlation measure can distinguish direct from indirect correlation, it did not seem to 

discriminate as well as cross-correlation the state before the epileptiform discharge (preED) from the 

state during the epileptiform discharge (ED). It should be noted that alternative methods of analysis 

such as the correlation matrix analysis proposed by Li et al. [21] allow the quantitative, time-resolved 

investigation of synchronization phenomena in multiple time series and warrant further study as 

methods for the fine characterization of TMS effects on synchronization patterns in epilepsy. 

The second interesting observation is that ED occurrence in patients with focal epilepsy tends to be 

associated with decreased cross-correlation of the scalp recorded EEG [22]. This finding may appear 

paradoxical as hyperchronicity is traditionally thought to be a defining characteristic of epileptic 

discharges. However, recent studies challenge this view and suggest that seizure occurrence is 

associated at least in part with decreased brain synchronizability.  

For instance, Schindler et al. [23–25] investigated the zero-lag cross-correlation of multichannel 

intracranial EEG in patients with focal epilepsy and computed the eigenvalue spectrum of the cross 

correlation matrix. The authors observed that seizure onset and seizure propagation is associated with a 

significant decrease of the larger eigenvalues indicating decorrelation of the EEG. This finding was 

consistent from seizure to seizure and occurred irrespective of the anatomical location of seizure onset 

or the total seizure duration. Accordingly, it appears to be a generic characteristic of focal seizures. 

The authors ascribed the EEG desynchronization to the different propagation times of locally 

synchronous ictal discharges from the seizure onset zone to other brain areas. Alternatively and more 

speculatively they suggested that the intense neuronal firing at seizure onset saturates “hub” neurons 

which are densely interconnected with other network elements. The silencing of these hub neurons 

results in the functional disconnection between local substructures and is ultimately reflected in 

decreased coupling in the EEG [23]. In contrast, seizure termination is associated with increased 

coupling [24,25]. Interestingly, the increased cross-correlation appears prior to seizure ending raising 

the possibility that it may represent a self-emergent mechanism for the cessation of epileptic activity. 

Similarly, we did not observe regaining of connectivity with time after the ED onset and during the 

ED, but rather by the end of the ED, as there was no systematic upward trend within the 10 sec ED 

(with no TMS), but rather fluctuations around a level, tending to be lower than the level for the 10 sec 

just before the ED onset. 

Based on this observation, Schindler, Elger and Lehnertz [24,25] suggested that one possible 

mechanism for terminating epileptic seizures with brain stimulation techniques is the enhancement of 

brain synchronization. This proposition is in line with our observation that TMS aborted epileptiform 
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discharges and concurrently prevented the ED-associated reduction in cross-correlation thereby 

restoring brain connectivity to pre-ED levels. It is clear that further studies are warranted in order to 

clarify whether connectivity changes are causally related to seizure termination or if they are simply an 

epiphenomenon of the cessation of epileptic activity.  

In conclusion, simple time-domain connectivity measures, such as cross-correlation and partial 

cross-correlation, can detect alterations in the EEG connectivity structure and can be used to 

investigate the effects exerted by TMS on the correlation network in patients with focal epilepsy.  
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