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Abstract: Optimal sensor distribution in explosion testing is important in saving test costs 

and improving experiment efficiency. Aiming at travel time tomography in an explosion, 

an optimizing method in sensor distribution is proposed to improve the inversion stability. 

The influence factors of inversion stability are analyzed and the evaluating function on 

optimizing sensor distribution is proposed. This paper presents a sub-region and  

multi-scale cell partition method, according to the characteristics of a shock wave in an 

explosion. An adaptive escaping particle swarm optimization algorithm is employed to 

achieve the optimal sensor distribution. The experimental results demonstrate that optimal 

sensor distribution has improved both indexes and inversion stability. 

Keywords: sensor distribution design; travel time tomography; explosion; sub-region and 

multi-scale cells; adaptive escaping particle swarm optimization 

 

1. Introduction 

Explosion technology is applied increasingly [1,2]. As explosion experiments are complex and the 

costs are high, optimizing sensor distribution is necessary to save test costs and improve experiment 

performance. The number of sensors to be used and their locations should be optimized [3–5]. 

When a shock wave propagates in air, the shock wave velocity is very fast. Supposing that a shock 

wave propagates by direct rays without propagation by grid boundary, in the course of shock wave 

propagation, the relationship of travel time is: 
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The wave front normal is defined as rays, i.e., r. Each sensor corresponds to a ray. v is velocity and s is 

slowness. The travel time t is the integral of slowness along with rays. 

The test region is divided into some regular or irregular cells as shown in Figure 1, the 

discretization expression of Equation (1) is: 
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where ti is the travel time that a shock wave travels from the explosive to the ith  sensor. dij is the 

length of the ith ray in the jth cell. Sj is the slowness in jth cell. M is the sensor number and N is the 

cell number. Equation (2) can be written in a matrix form as: 

TDS   (3) 

where 1 2( , , , ) 'MT t t t   is the m-dimension column vector of travel time; 1 2( , , , ) 'NS s s s   is an 

unknown N dimensional column vector; D is the distance matrix of NM   and its element is dij [6,7]. 

The elements of T can be obtained by the tested data from sensors. The matrix D can be calculated by the 

position of the explosive and sensors. The unknown slowness S can be obtained by solving Equation (3). 

Based on the above-mentioned principle, the velocity distribution of shock wave can be obtained. 

Figure 1. Illustration of travel time tomography. 

 

For the travel time tomography, the driving source is single and the sensors are few. The 

tomography rays are distributed sparsely. The Equation (3) is ill-posed and underdetermined [8]. For 

this tomography modality, optimizing sensor distribution is necessary for reducing costs and increasing 

acquired information. Optimizing sensor distribution is to solve ill-posed tomography problems from 

the perspective of mathematics and then the inversion stability can be ensured. 

The ill-posed degree of Equation (3) is related to the structure of matrix D. Improving the ill-posed 

degree of Equation (3) is to improve the structure of matrix D. The structure of matrix D rests with a 

parameterized model of the test region and sensor distribution [9].  
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2. Theory of Optimal Sensor Distribution and Indexes 

2.1. Effect of Eigenvalue and Rank on Inversion 

In Equation (3), with a given data vector 0t , the model vector 0s ∈S and then 
2

00 Dst   is 

minimized. This is accomplished by pre-multiplying Equation (3) by TD  and taking a matrix inverse: 

TDDDS TT 1)(   (4) 

As the NN   square matrix DDL T  is often near-singular, it results in instability in the solution. 

That is, some of its eigenvectors  : 1, ,ie i N    have extremely small eigenvalues  : 1, ,i i N   . 

Measurement errors in data space T propagate into the solution S in parallel to each eigenvector with 
an amplification i/1 . Hence, when small eigenvalues exist, the solution becomes unstable and the 

inverse problem is ill-posed [10]. When an eigenvalue is zero, the corresponding eigenvector in the 

data space can not be mapped into the model space [11]. The greater the rank is and the larger the 

eigenvalues are, the more stable the inversion problem is and the more independent pieces of 

information may be gained from the data. Hence, optimal sensor distribution can be obtained by 

maximizing the magnitude of eigenvalues of L and the rank of D. The evaluating function is: 
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where 1  is the maximal eigenvalues of DDT ; 
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)(  ; N  is the cells number, )(Drank  

is the rank of matrix D . 

The evaluating function E1 has two components, one represents the relative distribution of 

eigenvalues and the other indicates the relative size of null space. If the value of E1 is minimal, the 

inversion results are optimal and stable. 

2.2. Effect of Condition Number on Inversion 

The Equation (3) is ill-posed if small perturbations of matrix D or T can result in a large change in 

solutions [12].  

Assuming that the observed data T has a minor perturbation of T , the perturbation of solution is 

S . Equation (3) becomes:  

TTSSD   )(  (6) 

Then, 

TDS  1  (7) 

According to the property of subordinate norm, TDTD  11S    and 
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Then, 

1)(  DDDcond
 (8) 

where )(Dcond  is the condition number of matrix D. When the observed data T has a minor 

perturbation, the relative error of solution is determined by the condition number. 

Supposing that T is accurate and the matrix D has a minor perturbation of D , the corresponding 
perturbation of solution is S . Supposing that SSSc   is the solution of perturbation equation, 

TSSDDSDD c  )()()(   (9) 

Similarly the following condition can be obtained: 
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When the matrix D has a minor perturbation, the error of solution is also determined by the 

condition number. 

Therefore, the condition number is the second judging index of matrix D’s quality. The smaller 

condition number means the more well-posed equation. 

The evaluating function expressed by the condition number can be written as: 

)(2 DcondE   (11) 

Optimal sensor distribution can reduce the condition number and the more stable inversion 

solutions can be obtained. 

2.3. Effect of Ray Coverage on Inversion 

When designing sensor location, rays coverage should be enlarged as much as possible, i.e., rays 

density and orthogonality should be maximized. The ray density represents the number of rays passing 

through each cell. The cells not being hit by any ray are the main factors giving rise to the null space. 

They make some column vectors of matrix D be zero (dj = 0) so that the equation can not be resolved. 

Therefore, tomography with sparse rays must ensure that any column vector is non-zero. Increasing the 

ray density can avoid zero vectors. 

Ray orthogonality is measured by maximal sinusoidal quantity of angle between rays [13]. The 

small orthogonality makes some rows in D linearly dependent.  

The greater the ray density is, the better the orthogonality is and the smaller inversion error can be 

achieved. The evaluating function expressed by rays density and orthogonality can be written as: 
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where j  is the ray density in the jth  cell. jO  is the ray orthogonality in the jth  cell. The value of 1k  and 

2k  are determined by the values of j  and jO . Sensor distribution can be optimized by  

maximizing 3E . 
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2.4. Evaluation Method 

As sensor distribution can be optimized by minimizing 1E  and 2E  and maximizing 3E , an 

evaluating function is defined as: 

3

3
2211 E

EEE


   (13) 

where 1 , 2 , and 3  are determined by the values of E1, E2, and E3. Sensor distribution can be 

optimized in terms of minimizing E. 

There are many factors on the ill-posed and underdetermined equations except for the above analysis. 

However, the value of E  can be used as a judging index with regard to optimizing sensor distribution 

and the experiment. The detailed process is as follows and a flow chart is illustrated in Figure 2. 

Figure 2. Illustration of evaluation process. 

 

(1) Dividing cells according to model character.  

(2) Giving a distribution model randomly according to the number of sensors and calculating 

matrix D and the rank of D. 

 

0
1




N

j
jd

MDrank )(

1 ii

Ki 

1i



Sensors 2014, 14 12692 

 

 

(3) If all column vectors of matrix D are non-zero and D is full rank, make this distribution 

model as an initial model; otherwise, go to Step (2). 

(4) When the number of initial model is equal to the given number K , the optimization algorithm 

is employed to obtain the optimum value of E and sensor distribution. 

3. Optimizing Sensor Distribution 

3.1. Sub-Region and Multi-Scale Cells Partition 

The test region is divided into cells and each cell has the same velocity. The dividing pattern of 

cells affects matrix D. We propose a sub-region and multi-scale cell partition method. Cells are divided 

in terms of the solution distribution, i.e., the smaller size and the higher density of cells correspond to 

the bigger changing gradient of solutions, and the bigger size and the lower density correspond to the 

smaller changing of solutions.  

When the explosive is exploding in air, the shock wave overpressure attenuates quickly in the near 

region to the explosive and the attenuation becomes slow with the increase in distance. According to 

the shock wave characteristic, the smaller cells are adopted in the near region to the explosive while 

the bigger cells are adopted in the far region. In order to avoid a row vector to be linearity dependent 

on matrix D  aroused by symmetry, cells are divided into different size in the symmetrical region with 

consideration of the resolution of inversion.  

3.2. Optimizing Sensor Distribution Based on Adaptive Escaping Particle Swarm Optimization Algorithm 

3.2.1. Particle Swarm Optimization (PSO) Algorithm and Modification 

Particle swarm optimization (PSO) algorithm is simple and easy to implement. However, PSO can 

fall into the local optimum [14,15]. The original algorithm is modified and an adaptive escaping 

particle swarm optimization algorithm (AEPSO) is proposed. 
Supposing that 1 2( , , , )i i i idX x x x   is the present position of ith  particle; 1 2( , , , )i i i idV v v v   is the 

present flying speed of ith  particle; 1 2( , , , )i i i idP p p p   is the individual optimal fitness of ith  

particle; 1 2( , , , )g g g gdP p p p   is group optimal fitness; d  is particle dimension, the evolution 

equations of original PSO algorithm are: 
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where, k is iteration times.   is inertia weight; 1c  and 2c  are the random numbers between (0, 2) and 

called learning factors; 1r  and 2r  are the random numbers between (0, 1) [16,17]. 

When Pg does not change over M generations, all particles are close to Pg. The flying speed of 

particles is very little and subsistence density is large. An escape strategy should be adopted to update 

the velocity of particles and enlarge the searching space. The escape strategy changes the velocity of 

particles and makes variation in order to increase the diversity of particles and jump out of local 

optimization. When escaping, the particles are divided into two components, one component updates 
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their velocity according to Equation (16) and the other component updates their velocity according to 

Equation (17). 

)'(3
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k
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id 
 (17) 

where 3r  and 4r  are the random numbers between (0, 1). A is a constant that controls the particle 

velocity. maxv  is the maximal velocity value that particles have. 

The declining linearly inertia weight helps to swarm searching. The adjusting strategy is as follows: 
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where )(kw  is the current inertia weight; maxw  and minw  are the maximum and minimum inertia 

weights; maxq  is the maximum number of iterations; k is current iteration times. 

3.2.2. Optimizing Sensor Distribution Based on AEPSO Algorithm 

The adaptive escaping particle swarm optimization algorithm is adopted to obtain the optimum value of 

E and the sensor distribution. The detailed process is as follows and a flow chart is illustrated in Figure 3. 

(1) Producing a particle. A d-dimension particle is produced by selecting a distribution model 

randomly according to the number of sensors, which is expressed as 

1 1( , , , , , )m ma xr xr yr yr     , where jxr  and jyr  represent x and y coordinate of jth  sensor, 

respectively, and m  is the number of sensors; 2d m . 

(2) Calculating matrix D and the rank of D. 

(3) If all column vectors of matrix D are not zero and matrix D is full rank, put this particle into 

the initial particle swarm; otherwise, return to Step (1). 

(4) Calculating the optimal group fitness when the number of particles in initial swarm is equal to 

the given number. 

(5) Updating the velocity and position of each particle according to Equations (14) and (15) and 

calculating fitness. 

(6) Updating the individual optimal fitness. If the current fitness is superior to experienced 
optimal fitness iP , the experienced optimal fitness iP  is replaced by the current fitness. 

(7) Updating the group optimal fitness. If the current fitness is superior to the group optimal 
fitness, the group optimal fitness gP  is replaced by current fitness.  

(8) Recording group optimal fitness gP  in each iteration. If the value of gP  does not change over 

M generations, return to Step (9) and adopt escaping strategy; otherwise, return to Step (5). 

(9) Dividing the particles into two components and updating particles velocity according to 

Equations (16) and (17). 

(10) If the ending condition is met, terminate the iteration or return to Step (5). 
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Figure 3. Process of optimizing sensor distribution. 
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4. Numerical Simulations 

4.1. Comparison of Cell Performance 

To verify the sensor distribution design, a test region is 16 m × 16 m, explosive is placed in the 

lower-left and sensors are distributed on the region boundary. Two cell patterns are used in dividing 

the test region. The first one is a uniform rectangle with 49 cells as shown in Figure 4a. The second 

one is sub-region and multi-scale cells as shown in Figure 4b. The velocity of shock wave decreases 

exponentially with the distance according to the prior information. In the near region to the explosive, 

the attenuation amplitude of velocity is larger and the cells are smaller and denser. In the far region the 

attenuation amplitude of velocity is smaller and the cells are bigger and sparser. The region is divided 

into seven sub-regions according to the proportional distance and different size cells in the symmetry 

region are placed in order to avoid a row vector to be linearity dependent on matrix D . The total cells 

number is 58. 

Figure 4. Two cell patterns. (a) Uniform rectangle cells; (b) Multi-scale cells. 

(a) (b) 

The influence of cells on matrix D is compared with the same sensor distribution. 

(1) To ensure each cell being passed through by at least one ray, the lowest number of sensor 

required by uniform rectangle cells is 9 as shown in Figure 4a. The multi-scale cells require at 

least five sensors as shown in Figure 4b. 

(2) Each index of matrix D in uniform rectangle cells and multi-scale cells is compared with  

13 sensors and the same distribution. Simulation results are given in Table 1. It is clear that the 

indexes in multi-scale cells are superior to those of the uniform rectangle cells. The matrix D in 

multi-scale cells is full rank mostly and the condition number is far smaller than that of 

uniform rectangle cells. The ray density and orthogonality in multi-scale cells are larger than 

that of uniform rectangle cells generally.  
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Table 1. Each index and simulation results. 

Cells Pattern Number Rank E1 E2 O    

Multi-Scale Cells 

1 13 53.08 111.08 0.220 3.334 

2 13 55.38 79.71 0.225 3.235 

3 13 55.57 50.38 0.229 3.235 

4 13 56.04 3285.90 0.227 3.353 

5 13 57.34 1178.80 0.185 3.235 

6 13 59.32 834.00 0.206 3.353 

7 13 59.73 972.40 0.218 3.451 

Uniform 
Rectangle Cells 

1 12 54.49 1.76 × 1016 0.134 2.653 

2 12 56.51 6.89 × 1015 0.149 2.755 

3 12 56.87 1.02 × 1016 0.145 2.694 

4 12 57.58 9.45 × 1015 0.151 2.755 

5 12 58.54 8.86 × 1015 0.139 2.857 

6 11 60.91 1.24 × 1016 0.141 2.857 

7 11 60.38 2.14 × 1016 0.141 2.898 

4.2. Optimizing Sensor Distribution Based on Multi-Scale Cells 

4.2.1. Parameters Setting and Simulation of AEPSO Algorithm 

To validate the AEPSO algorithm, two multi-modal functions are used to test the PSO and  

AEPSO algorithms. 

Rastrigrin function: 
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ii xxxf
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Griewank function:  
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The two functions have many local minimum values, which has the global minimum value of 0 

when xi = 0. The mean best fitness (MBF) and standard deviation (SD) are used to estimate the 

solutions. Parameters setting are given in Table 2. 

Table 2. Parameters setting. 

Algorithm   1c  2c  A M 

PSO 0.7 1.49 1.49 _ _ 
AEPSO [0.9, 0.4] 1.49 1.49 1 10 
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The simulation results are given in Table 3. From the table, it is concluded that AEPSO is superior 

to PSO algorithm in accuracy, convergence, and stability.  

Table 3. Simulation results. 

Function Dimension Algorithm MBF SD 

Rastrigrin Function 

10 
PSO 40.1 27.4 

AEPSO 1.8 × 10−2 2.1 × 10−2 

30 
PSO 149.7 45.3 

AEPSO 8.5 × 10−2 1.4 × 10−1 

Griewank Function 

10 
PSO 2.6 × 10−1 1.2 × 10−1 

AEPSO 2.5 × 10−4 6.9 × 10−4 

30 
PSO 6.8 7.1 

AEPSO 3.6 × 10−2 4.5 × 10−2 

4.2.2. Optimizing Sensor Distribution  

Each index based on multi-scale cells with symmetrical distribution and random distribution  

of sensors is shown in Figure 5a,b. According to the values of 1E , 2E ,   and O , the weight 

coefficients are selected as: 8.01  , 2.02  , 153  , 1.01 k , 9.02 k . The adaptive escaping 

particle swarm optimization (PSO) algorithm is adopted to obtain the optimum value of E and  

sensor distribution as shown in Figure 5c. The values of 1E , 2E ,  and O with different sensor 

distributions are in Table 4. It is clear that the indexes in optimum distribution are superior to that of 

the others: smallest 1E  and 2E , and the biggest 3E . Figure 6 shows a comparison of the normalized 

eigenvalue spectra respectively in each case. The optimized model is again superior to that  

of the others. Numerical simulations are presented with the same initial model and inversion algorithm. 

From the results it can be concluded that the optimum distribution can result in the smallest  

inversion error.  

Table 4. Comparison of each index in different distributions. 

Sensor 
Distribution 

Symmetrical 
Distribution 

Random 
Distribution 

Optimum 
Distribution 

Rank 11 13 13 
E1 56.68 58.90 50.84 
E2 3.67 × 1016 887.70 10.20 
E3 0.48  0.51 0.57 
O  0.178 0.190 0.254 
  3.157 3.373 3.373 
E 7.35 × 1015 254.16 69.24 

Related error (%) 7.89 7.41 5.51 
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Figure 5. Different sensor distributions, respectively in each case. (a) Symmetrical sensor 

distribution; (b) Random sensor distribution; (c) Optimum sensor distribution. 
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Figure 6. Comparison of eigenvalue spectra. 
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5. Conclusions 

For travel time tomography in explosion, optimizing sensor distribution is very important for saving 

the costs and increasing the acquired information. This paper shows the inversion stability can be 

improved by designing optimal sensor distribution. This paper analyzed the effect of eigenvalue, rank, 

condition number and rays coverage on improving matrix D and proposes the evaluating function on 

optimizing sensor distribution. An adaptive escaping particle swarm optimization algorithm is used to 

obtain the optimum sensor distribution based on sub-region and multi-scale cells. Simulation shows 

that the optimization method is feasible and the optimal sensor design achieves inversion stability.  
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