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Abstract: The bandwidth characteristics of a tuning fork micro-gyroscope with 

mechanically coupled sense mode were investigated in this paper to provide some 

references for mechanical bandwidth design. The concept of sense mode mechanical 

coupling is introduced first. Theoretical frequency response analyses were then carried out 

on the mechanical part of the gyroscope. Equations representing the relationships between 

the differential output signal and the frequency of the input angular rate were deduced in 

full frequency range and further simplified in low frequency range. Based on these 

equations, bandwidth characteristics under ideal and non-ideal conditions are discussed. 

Analytical results show that under ideal conditions, the bandwidth characteristics of a 

tuning fork micro-gyroscope are similar to those of a single mass micro-gyroscope, but 

under non-ideal conditions, especially when sense mass and/or stiffness are asymmetric, 

the bandwidth characteristics would be quite different because the in-phase mode would 

participate in the anti-phase vibration response. Experimental verifications were carried out 

on two micro-gyroscope prototypes designed in our laboratory. The deduced equations and 

analytical results can be used in guiding the mechanical bandwidth design of tuning fork 

micro-gyroscopes with mechanically coupled sense mode.  
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1. Introduction  

Micro-gyroscopes have achieved a rapid development in the past several decades. In comparison 

with their conventional counterparts, micro-gyroscopes hold the advantages of small size, low cost, 

reduced power consumption and batch fabrication, etc. With gradually mature design and 

manufacturing technologies, they are now widely used in various fields, such as the automotive 

industry, consumer electronics, aerospace navigation and military weapons.  

According to the number of Coriolis masses, micro-gyroscopes can be classified into three types: 

single mass gyroscopes, tuning fork gyroscopes and gyroscope arrays. Nowadays tuning fork 

gyroscopes are becoming the most popular ones. They are less complicated than gyroscope arrays and 

more attractive than the single mass ones because of their inherent common mode rejection capability.  

A tuning fork micro-gyroscope is generally composed of two identical single mass structures. 

Nevertheless, diverse configuration patterns have been implemented. Analog Devices Inc. configured 

its commercialized ADXRS tuning fork micro-gyroscope with two identical single mass structures 

which are mechanically independent with each other [1]. LITEF GmbH and Middle East Technical 

University configured their tuning fork micro-gyroscopes with two identical single mass structures 

which are mechanically coupled in drive mode, but mechanically independent in sense mode [2,3]. 

Moreover, the Georgia Institute of Technology, University of California—Irvine and Robert Bosch 

GmbH have configured their tuning fork micro-gyroscopes with two identical single mass structures 

which are mechanically coupled in both drive mode and sense mode [4–6].  

The introduction of mechanical coupling can improve the matching extent of the two single mass 

structures by one or two orders of magnitude. That can enhance the tuning fork effect in common 

mode rejection [7,8]. Meanwhile, the anti-phase vibration mode of the mechanically coupled structures 

can achieve a much higher Q-factor than that of the mechanically independent structures under the 

same vacuum conditions [9]. A high Q-factor in drive mode can reduce the drive voltages, electrical 

parasitic signals and the sensor power consumption. A high Q-factor in sense mode can improve the 

resolution and bias stability of the gyroscope. Therefore, mechanical coupling between the two single 

mass structures benefits the overall performance of a tuning fork micro-gyroscope.  

Nevertheless, mechanical coupling also has some potential drawbacks. For a tuning fork  

micro-gyroscope with mechanically coupled single mass structures, an in-phase vibration mode always 

coexists with the anti-phase one. This in-phase vibration mode is susceptible to linear environmental 

vibrations [10]. In the presence of structural asymmetry, it would even participate in anti-phase  

load induced vibration responses. Consequently, if its natural frequency is not appropriately 

configured, the in-phase mode would interfere with the gyroscope output. Bandwidth characteristics 

would also be affected in such a case.  

In practice, the angular rate signal is generally time dependent and contains a series of frequency 

components. Therefore, a micro-gyroscope should have a certain bandwidth for dynamic angular rate 

detection. So far, the bandwidth characteristics of single mass micro-gyroscopes are quite familiar, but 

these of tuning fork micro-gyroscopes are not reported in detail yet. For a tuning fork micro-gyroscope 

with mechanically independent single mass structures, the bandwidth characteristics are similar to 

those of two single mass micro-gyroscopes. For a tuning fork micro-gyroscope with mechanically 



Sensors 2014, 14 13026 

 

 

coupled single mass structures, the bandwidth characteristics are more complicated and deserve  

further study.  

This paper presents a study on the bandwidth characteristics of tuning fork micro-gyroscopes with 

mechanically coupled sense mode. The relationship between the differential output of the sense mode 

vibration response and the frequency of the input angular rate was discussed under ideal (i.e., 

symmetric) and non-ideal (i.e., asymmetric) conditions. The specific influences of the in-phase mode 

on bandwidth characteristics under several non-ideal conditions were investigated. Conclusions were 

made to provide some references for the mechanical bandwidth design of tuning fork micro-gyroscopes.  

The rest of this paper is organized as follows: Section 2 introduces the concept and working 

principle of a tuning fork micro-gyroscope with mechanically coupled sense mode. The coupling 

methods in sense direction were discussed at the same time. Section 3 describes the theoretical 

frequency response analyses. The equations representing the bandwidth characteristics were deduced 

in full frequency range, and further simplification was made in low frequency range. Section 4 

discusses the bandwidth characteristics under ideal conditions. Section 5 discusses the bandwidth 

characteristics under non-ideal conditions. Three kinds of asymmetry were covered: asymmetric drive 

amplitude, asymmetric sense mass and asymmetric sense stiffness. Section 6 provides the experimental 

verification on two prototypes of tuning fork micro-gyroscope designed in our laboratory. The 

mechanical structure and the testing method were both introduced, and the correctness of the analytical 

results was verified. Section 7 concludes the whole paper.  

2. Tuning Fork Micro-Gyroscope with Mechanically Coupled Sense Mode 

The conceptual schematic of a tuning fork micro-gyroscope with mechanically coupled sense mode 

is shown in Figure 1. The drive mode was also considered as mechanically coupled. As shown in 

Figure 1, while drive stiffness kDL and kDR exist between the drive masses and the anchors, a coupling 

stiffness kDC is designed between the two drive masses to realize the drive mode mechanical coupling. 

Similarly, while sense stiffness kSL and kSR exist between the sense masses and the anchors, a coupling 

stiffness kSC is designed between the two sense masses to realize the sense mode mechanical coupling. 

In-phase mode and anti-phase mode coexist both in drive direction and in sense direction.  

In operation, the two drive masses would be actuated into anti-phase resonance vibration with the 

same amplitude in the drive direction (X-axis). When an input angular rate ΩZ (Z-axis) was applied, 

due to the Coriolis effect, the two Coriolis masses would encounter anti-phase Coriolis forces in the 

sense direction (Y-axis). Hence, the two sense masses would be forced into anti-phase vibration in the 

sense direction with the same rate-related amplitude. A differential output can be obtained indicating ΩZ.  

Generally, the two single mass structures of a tuning fork micro-gyroscope share the same center 

line in the drive direction but occupy two parallel center lines in the sense direction. Therefore, 

mechanical coupling in sense mode is much more difficult to realize than that in drive mode.  

Two main kinds of sense mode coupling methods are shown in Figure 2. Coupling method Type-A 

is similar to that shown in Figure 1. While sense stiffness kS exist between the sense masses and the 

anchors, a coupling stiffness kC is introduced between the two sense masses. In coupling method  

Type-B, there are no direct connections between the sense masses and the anchors. Each sense mass is 

linked to the common nodes with sense stiffness kS. Two coupling stiffnesses kC are introduced 
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between the common nodes and the anchors. Mechanical coupling is realized with the combination of 

kS, kC and the common nodes.  

Figure 1. Schematic of a tuning fork micro-gyroscope with mechanically coupled drive 

mode and sense mode. 

 

Figure 2. (a) Type-A of sense mode coupling method; (b) Type-B of sense mode coupling method. 

 
(a) (b) 

Under ideal conditions, with coupling method Type-A, the natural frequencies of the in-phase mode 

and the anti-phase mode in sense direction would be:  

2 2 2
,S S C

in phase anti phase
S S

k k k

m m
ω ω− −

+
= =  (1) 

With coupling method Type-B, ignoring the small mass of the common nodes, the natural 

frequencies of the in-phase mode and the anti-phase mode in sense direction would be:  
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It can be found that the natural frequency of the in-phase mode is lower than that of the anti-phase 

mode. In coupling method Type-A, the frequency difference between these two modes can be adjusted 

by kC. In coupling method Type-B, the frequency difference can be adjusted by kS and/or kC. Unless 

via designing specialized mechanical coupling components which show different elastic characteristics 

in in-phase motion and in anti-phase motion [5,8], it is difficult to make the natural frequency of the 

in-phase mode to be higher than that of the anti-phase mode.  

Coupling method Type-A is easy to realize in structure design, but it has the disadvantage of torque 

unbalance because the coupling stiffness kC only exists at one side of each sense mass. Coupling 

method Type-B is more difficult in structure design, but its vibration stability is better than that of 

Type-A. Moreover, in Type-B, there are no direct connections between the sense masses and the 

anchors, and the natural frequency of the anti-phase mode is independent of kC according to  

Equation (2), hence the anti-phase vibration is less susceptible to the detrimental stress and strain 

passed through the anchors from the substrate and the package. For the tuning fork micro-gyroscope 

designed in our laboratory, coupling method Type-B was employed in sense mode.  

3. Theoretical Frequency Response Analysis 

3.1. Complete Equation in Full Frequency Range 

In order to study the bandwidth characteristics of a tuning fork micro-gyroscope with mechanically 

coupled sense mode, theoretical frequency response analysis was carried out to get the relationship 

between the differential output signal and the frequency of the input angular rate.  

A time dependent angular rate signal contains a series of frequency components. Without loss of 

generality, we defined the input angular rate as:  

( ) ( )cosZ t tωΩ = Ω  (3) 

where Ω is the amplitude and ω is the frequency of the input angular rate. 

The two drive masses are usually actuated into anti-phase resonance vibration with constant 

amplitudes. Therefore, drive velocity can be defined as:  

( ) ( ) ( ) ( )1 1 2 2sin , sind d d d d dx t A t x t A tω ω ω ω= − = + 
 (4) 

where Ad1 and Ad2 represent the drive amplitudes of the two drive masses, ωd is the natural frequency 

of the anti-phase mode in drive direction, which is hereinafter referred as drive frequency. It’s assumed 

that each sense mass is approximately equal to each Coriolis mass. With m1 and m2 denoting the two 

Coriolis masses, the two Coriolis forces in the sense direction can be expressed as:  

( ) ( ) ( ) ( )( ) ( )( )1 1 1 1 12 sin sinc Z d d d dF t m t x t m A t tω ω ω ω ω = − Ω = + Ω + + − 
 (5) 

( ) ( ) ( ) ( )( ) ( )( )2 2 2 2 22 sin sinc Z d d d dF t m t x t m A t tω ω ω ω ω = − Ω = − Ω + + − 
 (6) 
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It can be found that two frequency components, ωd+ω and ωd−ω, coexist in the Coriolis forces. If  

we define:  

( ) ( )( ) ( ) ( )( )sin , sinR d d L d dF t t F t tω ω ω ω ω ω= Ω + = Ω −
 (7) 

then the dynamic force vector applied to the sense mode vibration system can be expressed as:  

( )
( )

( ) ( )( )
( ) ( )( )

1 11

2 2 2

d R Lc

c d R L

m A F t F tF t

F t m A F t F t

 + + 
= =    − +    

F
 

(8) 

No matter what kind of structure a tuning fork micro-gyroscope has, the coupled dynamic equation 

of its undamped free vibration in the 2-DOF sense mode vibration system can always be expressed as:  

1 1 11 12 1

2 2 12 22 2

0 0

0 0

m y k k y

m y k k y

         
+ =         

        


  

(9) 

where k11 and k22 is the effective stiffness corresponding to the sense displacement y1 and y2, k12 is the 

coupling stiffness between y1 and y2. Natural frequencies ω1, ω2 and their corresponding modal vectors 

Y(1), Y(2) can be calculated from Equation (9):  

( )
( )

( )

( )

( )

2 1 12 2
1 1 12 22 1 11 2 22 1 11 2 12 11 22 11 1 1

1 11 1
1 2 1 2 1 2 122 1 1

, ,
2 2

Y Yk m k m k m k m k k k k m
r

m m m m m m kY rY

ωω
    + + − −

= − + = = = −    
        

Y (10) 

( )
( )

( )

( )

( )

2 2 22
2 1 12 22 1 11 2 22 1 11 2 12 11 22 12

2 2 22 2
1 2 1 2 1 2 22 2 22 2 1

, ,
2 2

Y Yk m k m k m k m k k k k
r

m m m m m m k mY r Y
ω

ω
    + + −

= + + = = = −     −        
Y (11) 

where r1, r2 are the amplitude ratios of the two sense masses in the modal vectors. 

Mode superposition method, a common method in mechanical vibration theories to obtain the 

dynamic response of a linear multi-DOF vibration system using the natural frequencies and modal 

vectors, was employed to get the vibration response of the sense mode vibration system under the 

action of the force vector shown in Equation (8). Considering modal damping ratios, the vibration 

response can be calculated from the following decoupled dynamic equations:  

( ) ( ) ( ) ( )2
1 1 1 1 1 1 12p t p t p t P tξ ω ω+ + =   (12) 

( ) ( ) ( ) ( )2
2 2 2 2 2 2 22p t p t p t P tξ ω ω+ + =   (13) 

where ξ1, ξ2 are the modal damping ratios corresponding to the two modal vectors, p1(t), p2(t) are the 

generalized coordinates and P1(t), P2(t) are the generalized forces. The relationship between the actual 

coordinates y1(t), y2(t) and the generalized ones, along with the relationship between the actual forces 

Fc1(t), Fc2(t) and the generalized ones, are shown as follows:  

( )
( )

( )
( )

( )
( )

( )
( )

1

2 2 2 2
1 1 2 1 2 2 1 1 2 1 1 21 1 1 1

2 2 2 21 2 2

2 2 2 2
1 1 2 1 2 2 1 2 2 1 2 2

1 1 1

,
1

c

c

r

m r m m r m m r m m r my t p t P t F t

y t p t P t F tr r r

m r m m r m m r m m r m

  
  + + + +         = =         

         
  + + + +   

 (14) 

With Equations (12)–(14), the differential output of the sense mode vibration response can be 

obtained as:  
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( ) ( ) ( ) ( )1 2 1 1 2 2oy t y t y t E Y E Yω ω= − = + Ω  (15) 

where Yω1 represents the response portion related to the 1st order modal parameters ω1 and r1, Yω2 

represents the response portion related to the 2nd order modal parameters ω2 and r2, and E1, E2 are 

constants representing the participation degrees of Yω1 and Yω2 in total response yo(t). Yω1, Yω2, E1 and 

E2 can be expressed as:  

( )( ) ( )( )1 1 1 1 1sin sinR d R L d LY Y t Y tω ω ω φ ω ω φ= + + + − + (16) 

( )( ) ( )( )2 2 2 2 2sin sinR d R L d LY Y t Y tω ω ω φ ω ω φ= + + + − + (17) 

( )( ) ( )( )1 1 1 1 2 2 2 1 1 2 2 2
1 22 2

1 1 2 1 2 2

1 1
,d d d dr m A r m A r m A r m A

E E
m r m m r m

− − − −
= =

+ +  
(18) 

where Y1R, Y1L, Y2R, Y2L and φ1R, φ1L, φ2R, φ2L can be expressed as:  

( ) ( )

( )
( )222 222

2
, arctan , 1,2

2

i i dd
iR iR

i d
i d i i d

Y i
ξ ω ω ωω φ

ω ω ωω ω ω ξ ω ω ω

+
= = − =

− +   − + + +    
(19) 

( ) ( )

( )
( )222 222

2
, arctan , 1,2

2

i i dd
iL iL

i d
i d i i d

Y i
ξ ω ω ωω φ

ω ω ωω ω ω ξ ω ω ω

−
= = − =

− −   − − + −    
(20) 

Our analysis is based on the condition that frequency difference exists between the anti-phase mode 

in drive direction and that in sense direction, and the modal damping ratios are rather small. Therefore, 

the normalized drive velocity signal sin(ωdt) was used as the demodulation reference signal. After 

demodulation and low pass filtering, the final output voltage signal would be:  

( ) ( ) ( ) ( ) ( )1 2
1 1 1 1 2 2 2 2cos cos cos cos

2 2o vy R R L L R R L L

E E
v t k Y t Y t Y t Y tω φ ω φ ω φ ω φ = Ω ⋅ + + − + + + −         (21) 

where kvy is the overall gain from sense displacement yo to sense voltage vo. Noted that only the 

mechanical part of the tuning fork micro-gyroscope is brought into discussion in this paper, hence the 

frequency response of the sensing circuits is ignored here.  

Summation of signals with the same frequency was conducted on Equation (21). The relationship 

between the output voltage signal and the frequency of the input angular rate was obtained as follows:  

( ) ( )cos
2
o

o vy o

Y
v t k tω ϕ= Ω ⋅ + (22) 

( )
( ) ( )
( ) ( )

2

1 1 1 1 1 2 2 2 2 2

2

1 1 1 1 1 2 2 2 2 2

cos cos cos cos

sin sin sin sin

R R L L R R L L

o

R R L L R R L L

E Y Y E Y Y
Y

E Y Y E Y Y

φ φ φ φ
ω

φ φ φ φ

+ + +  =
+ − + −    

(23) 

( ) ( ) ( )
( ) ( )

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

sin sin sin sin
arctan

cos cos cos cos
R R L L R R L L

o
R R L L R R L L

E Y Y E Y Y

E Y Y E Y Y

φ φ φ φ
ϕ ω

φ φ φ φ
− + −

=
+ + +  

(24) 

From Equations (19), (20), (23) and (24), it can be found that the amplitude-frequency curve Yo(ω) 

would have four peak points when E1 and E2 are all non-zero. The four peck frequencies are:  

11 1 12 1 21 2 22 2, , ,r d r d r d r dω ω ω ω ω ω ω ω ω ω ω ω= − = + = − = +
 (25) 
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3.2. Simplified Equation in Low Frequency Range 

The working frequency of a tuning fork micro-gyroscope is generally several kilohertz, and the 

necessary bandwidth is normally less than several hundred Hertz. Hence, the two peak points in high 

frequency range, ωr12 and ωr22, can be ignored in the discussion of bandwidth characteristics. In low 

frequency range, it can be considered that:  

1 2, ,dω ω ω ω ω ω<< << <<  (26) 

For the convenience of analysis, we defined two sign parameters, s1 and s2, to identify the relative 

size of ω1, ω2 and ωd. The related expressions are shown as follows:  

1 2
1 2

1 2

1 1
,

1 1
d d

d d

s s
ω ω ω ω
ω ω ω ω

+ > + > 
= = − < − < 

， ，

， ， (27) 

1 1 1 1 1 2 2 2 2 2, , ,d d d ds sω ω ω ω ω ω ω ω ω ω ω ωΔ = − − = Δ Δ = − − = Δ
 (28) 

Two effective Q-factors, Qe1 and Qe2, were also defined based on the actual Q-factors Q1 and Q2:  

1 2
1 1 2 2 1 2

1 2 1 2

1 1
, , ,

2 2e eQ Q Q Q Q Q
ω ω

ω ω ξ ξ
Δ Δ= = = =

 
(29) 

Then in low frequency range, Equations (19) and (20) can be approximately simplified as:  

2

2

1 /
, tan , 1,2

1 24

d ei
iR iR

i
i i i

i
i ei

Q
Y i

ss
Q

ω φ
ωωω ω ωω

−
≈ ≈ =

   − Δ − +  Δ Δ   

(30) 

2

2

1 /
, tan , 1,2

1 24

d ei
iL iL

i
i i i

i
i ei

Q
Y i

ss
Q

ω φ
ωωω ω ωω

−
≈ ≈ =

   + Δ + +  Δ Δ   

(31) 

While Qi is rather large and Δωi is not very small, it can be approximately considered that:  

cos 1 sin 0 1
, 1, 2

cos 1 sin 0 1
iR iR i

iL iL i

s
i

s

φ φ
φ φ

≈ − ≈ = −
= ≈ + ≈ = +

， ，

， ，
 (32) 

By this time, if we define new parameters YiP, YiS, and φiP as:  

2 2

2 2

, , 1,2
1 1

4 1 4 1

d d
iP iS

i i i i
i ei i ei

Y Y i

Q Q

ω ω

ω ωω ω ω ω
ω ω

≈ ≈ =
   

Δ − + Δ + +   Δ Δ     

(33) 

2 2

2 2

12 1

cos , sin , 1,2
1 1

4 1 4 1

i ei
iP iP

i ei i ei

Q
i

Q Q

ω
ω

φ φ
ω ω
ω ω

 
− − Δ ≈ ≈ =

   
− + − +   Δ Δ     

(34) 

where subscript P represents the primary portion closely related to the peak points, and subscript S 

represents the subordinate portion unrelated to the peak points, then in low frequency range,  
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Equations (22)–(24), representing the relationship between the output voltage signal and the frequency 

of the input angular rate, can be simplified as:  

( ) ( )cos
2
o

o vy o

Y
v t k tω ϕ= Ω ⋅ + (35) 

( ) ( ) ( ) ( ) ( )2 2

1 1 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2cos cos sin sino P P S P P S P P P PY E s Y Y E s Y Y E s Y E s Yω φ φ φ φ ≈ + + + + +    (36) 

( ) ( ) ( )
( ) ( )

1 1 1 1 2 2 2 2

1 1 1 1 1 2 2 2 2 2

sin sin
arctan

cos cos
P P P P

o
P P S P P S

E s Y E s Y

E s Y Y E s Y Y

φ φ
ϕ ω

φ φ
+

≈
+ + +  

(37) 

4. Bandwidth Characteristics under Ideal Conditions 

Under ideal conditions, the structure of a tuning fork micro-gyroscope is full symmetric, and the 

drive amplitudes are also the same with AGC loop control, that is:  

11 22 0 1 2 0 1 2 0, , d d dk k k m m m A A A= = = = = =  (38) 

In this condition, it can be calculated from Equations (10) and (11) that the amplitude ratio r1 would 

be +1 and r2 would be −1. That is, in 1st and 2nd order modal vectors, the two sense masses present  

in-phase and anti-phase mode vibrations with the same amplitude respectively. With Equation (18), the 

participation degrees were obtained as:  

1 2 00 , 2 dE E A= =  (39) 

Equation (39) indicates that under ideal conditions, the 1st vibration mode, i.e., the in-phase 

vibration mode, would not participate in anti-phase Coriolis forces induced vibration response. With 

Equations (35), (36), (38) and (39), the input-output amplitude-frequency response under ideal 

conditions can be found as:  

( ) 2 2
0 2 2 2 2 22 coso

vy d P S P S P

V
k A Y Y Y Y

ω
φ≈ ⋅ + +

Ω  
(40) 

where Vo represents the amplitude of vo(t). By substituting Equations (33) and (34) into Equation (40), 

the specific expression would be:  

( )

2

2
0 2 2 2

22 2

22 2 2 2
2 22 2 2 2

1
4 1 4 1

1
11 14 14 1 4 1

vy d do e

ee e

k AV Q

QQ Q

ω ω
ωω ω ω

ωω ωω ω ωω ω

   
− + −   ⋅ Δ Δ   ≈ + +

Ω     + +Δ − +   + +   ΔΔ Δ      

(41) 

Equation (41) is similar to a resonant system with a peak frequency of Δω2 and an effective Q-factor 

of Qe2. The peak amplitude and the initial amplitude have the relationship of Vo(Δω2)/Vo(0) ≈ Qe2.  

Actually, as only the anti-phase mode participates in the sense mode vibration response, under  

ideal conditions, the input-output amplitude-frequency response of a tuning fork micro-gyroscope is 

equivalent to that of a single mass micro-gyroscope with a sense mode natural frequency of ω2. 

Equation (41) has the same form with that of a single mass micro-gyroscope [11].  

A tuning fork micro-gyroscope with fd = 1800 Hz, f2 = 2000 Hz, Δf2 = 200 Hz, Q2 = 2000 and  

Qe2 = 200 was taken as an example to show the bandwidth characteristics under ideal conditions.  
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Here f denotes the frequency value corresponding to each angular frequency. The amplitude-frequency 

curve generated by Equation (41) is shown in Figure 3. It is well consistent with the previous analysis.  

Figure 3. Input-output amplitude-frequency response under ideal conditions.  

 

There are two cases of the gyroscope 3-dB bandwidth depending on Qe2. With a relatively high Qe2, 

the peak amplitude at Δω2 will exceed the 3-dB scope and the gyroscope bandwidth would be smaller 

than Δω2. With a relatively low Qe2, the peak amplitude at Δω2 will be included in the 3-dB scope and 

the gyroscope bandwidth would be larger than Δω2.  

While the frequency of the input angular rate ω is not very close to Δω2, the influence of Qe2 can be 

locally ignored and Equation (41) can be further simplified as:  

( ) 0

2 2

2 2

1

1 1

vy d do k AV ωω
ω ω ω ω

ω ω

≈ ⋅
Ω Δ  

− + Δ Δ   

(42) 

By Equation (42), the two cases of gyroscope 3-dB bandwidth, with BWH denoting the bandwidth 

with a high Qe2 and BWL denoting the bandwidth with a low Qe2, were obtained as follows:  

2 2 2 2

1
1 0.54 , 1 2 1.55

2
H LBW BWω ω ω ω≈ Δ − ≈ Δ ≈ Δ + ≈ Δ

 
(43) 

5. Bandwidth Characteristics under Nonideal Conditions 

In layout design, the structure of a tuning fork micro-gyroscope is generally fully symmetric. 

However, because of the unavoidable non-ideal factors such as fabrication errors, the actual structure 

is commonly asymmetric. For the bandwidth characteristics, our discussion covered three potentially 

harmful kinds of asymmetry: asymmetric drive amplitude, asymmetric sense mass and asymmetric 

sense stiffness.  
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5.1. Asymmetric Drive Amplitude  

Asymmetric drive amplitude is mainly caused by the comb asymmetry in drive mechanisms of the 

two single mass structures. According to Equation (18), its influence on the frequency response  

is mainly from the participation degrees E1 and E2. Assuming that all other parameters remain 

symmetric, when Ad1 ≠ Ad2, the participation degrees would be:  

1 2 1 20 , d dE E A A= = +  (44) 

It is obvious that the in-phase vibration mode still would not participate in the anti-phase  

Coriolis forces induced vibration response. With Equations (35), (36) and (44), the input-output 

amplitude-frequency response in the presence of asymmetric drive amplitude would be:  

( ) 2 21 2
2 2 2 2 22 cos

2
o d d

vy P S P S P

V A A
k Y Y Y Y

ω
φ+

≈ ⋅ + +
Ω  

(45) 

Comparing Equation (45) with Equation (40), it can be found that when all other parameters remain 

symmetric, the asymmetric drive amplitude would only make a difference on the overall amplitude 

level of the input-output amplitude-frequency response.  

5.2. Asymmetric Sense Mass and Stiffness 

Asymmetric sense mass and stiffness have a direct influence on the natural frequencies and modal 

vectors of the 2-DOF sense mode vibration system. From Equations (10), (11) and (18), it can be 

found that in the presence of asymmetric sense mass and stiffness, the amplitude ratios r1 and r2 would 

deviate from +1 and −1, and the participation degrees E1 and E2 would be both non-zero. That is, both 

the in-phase vibration mode and the anti-phase one would participate in anti-phase Coriolis forces 

induced vibration response.  

A tuning fork micro-gyroscope with design parameters given in Table 1 was taken as an example. 

Sense mode coupling method Type-B shown in Figure 2 was employed and the corresponding stiffness 

k11, k22 and k12 in Equation (9) would be:  

( ) ( )1 2 2 1 1 2
11 22 12

1 2 1 2 1 2

2 2 2
, ,S S C S S C S S

S S C S S C S S C

k k k k k k k k
k k k

k k k k k k k k k

+ + −
= = =

+ + + + + +  
(46) 

To analyze the specific influence of the asymmetric sense mass and stiffness, we defined mass 

asymmetric coefficient α and stiffness asymmetric coefficient β as follows:  

2 1 2 1, S Sm m k kα β= =  (47) 

With the assumption of symmetric drive amplitude, i.e., Ad1=Ad2=Ad0, change of the participation 

degrees E1 and E2 with the variation of α and β can be obtained from Equations (10), (11), (18), (46) 

and (47). While α and β change in a ±5% variation range, i.e., from 0.95 to 1.05 respectively, the 

change tendencies of E1 and E2 are shown in Figure 4.  

It can be found that while α and β change with the equal proportion in same direction, participation 

degrees E1 and E2 would always be 0 and 2Ad0; while α and β change with different proportions, E1 

would be larger than 0 and E2 would be smaller than 2Ad0; while α and β reach their extreme values in 
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opposite direction, E1 would get its maximum value and E2 would get its minimum one. No matter 

how α and β change, the sum of E1 and E2 would always be 2Ad0.  

Table 1. Design parameters of the tuning fork micro-gyroscope taken as an example.  

Symbols Descriptions Design Values 

kS1 Sense stiffness of the left structure  39.48 N/m  
kS2 Sense stiffness of the right structure  39.48 N/m  
kC Coupling stiffness  205.58 N/m  
m1 Sense mass of the left structure  0.5 × 10−6 Kg  
m2 Sense mass of the right structure  0.5 × 10−6 Kg  
fd Drive frequency  1800 Hz  
f1 Natural frequency of the 1st order sense mode  1700 Hz  
f2 Natural frequency of the 2nd order sense mode  2000 Hz  
Q1 Q-factor of the 1st order sense mode  1800  
Q2 Q-factor of the 2nd order sense mode  2000  

Figure 4. (a) Change of E1/Ad0 with the variation of α and β; (b) Change of E2/Ad0 with the 

variation of α and β; (c) Change of (E1 + E2)/Ad0 with the variation of α and β. 

 
(a) (b) 

 
(c) 
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It is obvious that while mass asymmetric coefficient α and stiffness asymmetric coefficient β 

change with different proportions, both the in-phase vibration mode and the anti-phase one would 

participate in anti-phase Coriolis forces induced vibration response. In this case, according to 

Equations (35) and (36), the input-output amplitude-frequency response in low frequency range would be:  

( ) ( ) ( )
( ) ( )

2

1 1 1 1 1 2 2 2 2 2

2

1 1 1 1 2 2 2 2

cos cos

2 sin sin

P P S P P Svyo

P P P P

E s Y Y E s Y YkV

E s Y E s Y

φ φω

φ φ

 + + + ≈
Ω + +    

(48) 

Two cases were considered in our investigation to show the specific influence of non-ideal α and β 

on the bandwidth characteristics. In the first case, sense stiffness was assumed to be symmetric, i.e.,  

β = 1, and a comparison of the amplitude-frequency curves with α being 1, 0.98, 0.95 and 0.90 are 

shown in Figure 5a. In the second case, sense mass was assumed to be symmetric, i.e., α = 1, and a 

comparison of the amplitude-frequency curves with β being 1, 0.98, 0.95 and 0.90 are shown in  

Figure 5b. The corresponding changes of the natural frequencies f1, f2 and the frequency differences 

Δf1, Δf2 in these two cases are shown in Table 2.  

In the first case, i.e., β=1, with decreasing mass asymmetric coefficient α, the natural frequencies f1 

and f2 both increase. For fd was designed between f1 and f2 as shown in Table 1, the frequency 

difference Δf1 decreases and Δf2 increases. Compared Figure 5a with Table 2, it can be found that 

when α < 1, the input-output amplitude-frequency curves would have two peak points, with peak 

frequencies locating at Δf1 and Δf2. The fluctuation phenomenon appears around Δf1, with a fluctuant 

extent increasing with the degree of asymmetry.  

Figure 5. (a) Input-output amplitude-frequency response with non-ideal α values;  

(b) Input-output amplitude-frequency response with non-ideal β values.  
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Figure 5. Cont. 

 
(b) 

Table 2. Change of the natural frequencies with nonideal α or β values.  

Natural 
frequencies (Hz)  

β = 1  α = 1  

α = 0.98 α = 0.95 α = 0.90 β = 0.98 β = 0.95 β = 0.90 

f1  1708.4  1720.2  1738.1  1693.6  1683.0  1662.4  
f2  2010.5  2027.9  2062.1  1990.2  1976.0  1954.0  

Δf1 = f1 − fd 91.6  79.8  61.9  106.4  117.0  137.6  
Δf2 = f2 − fd 210.5  227.9  262.1  190.2  176.0  154.0  

In the second case, i.e., α = 1, with decreasing stiffness asymmetric coefficient β, the natural 

frequencies f1 and f2 both decrease, hence the frequency difference Δf1 increases and Δf2 decreases. 

Comparing Figure 5b with Table 2, it can be found that when β < 1, the input-output  

amplitude-frequency curves also have two peak points, with peak frequencies locating at Δf1 and Δf2. 

Similarly, fluctuation phenomenon appears around Δf1, with a fluctuant extent increasing with the 

degree of asymmetry.  

In fact, for the anti-directional impact of α and β on E1 and E2, the input-output  

amplitude-frequency curves with β > 1 are similar to those with α < 1, and the input-output  

amplitude-frequency curves with α > 1 are similar to those with β < 1.  

Under ideal conditions, the gyroscope 3-dB bandwidth is decided only by the amplitude variation 

around Δf2, and the mechanical bandwidth design is commonly based on this frequency difference. 

However, according to the previous analysis, under non-ideal conditions, the gyroscope 3-dB 

bandwidth may also be disturbed by the amplitude variation around Δf1. Especially in the case that Δf1 

< Δf2, and the degree of mass and/or stiffness asymmetry is large enough to cause the fluctuant extent 

1 5 10 50 100 500
20

10

0

10

20

30

40

50

100. 110. 120. 130. 140.
0

5

10

15

20

200150
10

0

10

20

30

40

50



Sensors 2014, 14 13038 

 

 

around Δf1 exceeding the 3-dB scope, the actual bandwidth would be much smaller than the commonly 

designed one.  

6. Experimental Results 

To verify the correctness of the theoretical analyses, two tuning fork micro-gyroscope prototypes 

designed in our laboratory, referred to as SG-1 and SG-2, were taken into input-output  

amplitude-frequency tests using a virtual rate-table method [12]. These two prototypes have the same 

mechanical structure form, but different natural frequency configurations. They were fabricated and 

packaged in different research stages and the natural frequency configuration of SG-2 is better than 

that of SG-1.  

Figure 6. Mechanical structure of the designed tuning fork micro-gyroscope. 

 

The designed tuning fork micro-gyroscope is shown in Figure 6. Each single mass structure is fully 

decoupled, that is, 1-DOF drive mechanism and 1-DOF sense mechanism were designed along with 

the 2-DOF Coriolis mass. Both drive mode and sense mode are mechanically coupled. Drive mode 

mechanical coupling was realized with two folded beams. Sense mode mechanical coupling was 

realized with the application of coupling method Type-B shown in Figure 2. With the help of the finite 

element analysis software ANSYS, we got the four in-plane vibration mode patterns: in-phase mode in 

drive direction, anti-phase mode in drive direction, in-phase mode in sense direction and anti-phase 
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mode in sense direction, which are shown in Figure 7. In the discussion of bandwidth characteristics, 

we put the main focus on the natural frequencies of the later three mode patterns. The mechanical 

structures were fabricated by the Deep Dry Silicon On Glass (DDSOG) process. The procedure of this 

fabrication process is shown in Figure 8.  

Figure 7. (a) In-phase mode pattern in drive direction; (b) Anti-phase mode pattern in 

drive direction; (c) In-phase mode pattern in sense direction; (d) Anti-phase mode pattern 

in sense direction.  

   
(a)                                                                   (b) 

   
(c)                                                                   (d) 

Figure 8. Fabrication process of Deep Dry Silicon On Glass (DDSOG). 

 

Both prototypes were vacuum packaged with ceramic packages. The measured parameters of the 

two prototypes after vacuum packaging are shown in Table 3. In prototype SG-1, the natural 
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frequencies fd, f1 and f2, respectively, corresponding to anti-phase mode in drive direction, in-phase 

mode in sense direction and anti-phase mode in sense direction, were configured as f1 < fd < f2.  

In prototype SG-2, the natural frequencies were configured as f1 < f2 < fd. The modal spectra  

indicating resonant frequencies and quality factors of these three modes in SG-1 and SG-2 are shown 

in Figures 9 and 10, respectively.  

Table 3. Measured parameters of the two tuning fork micro-gyroscope prototypes. 

Measured Parameters  SG-1 SG-2 

fd  3318.2 Hz  3358.8 Hz  

f1  3291.3 Hz  3170.1 Hz  
Δf1 = f1 − fd  26.9 Hz  188.7 Hz  

s1  −1 −1 
Q1  3740.1 1132.2 

f2  3406.5 Hz  3261.6 Hz  
Δf2 = f2 − fd  88.3 Hz  97.2 Hz  

s2  +1 −1 
Q2  4731.3 1173.2 

Figure 9. (a) The modal spectrum of anti-phase mode in drive direction in SG-1; (b) The 

modal spectrum of in-phase mode in sense direction in SG-1; (c) The modal spectrum of 

anti-phase mode in sense direction in SG-1. 
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Figure 10. (a) The modal spectrum of anti-phase mode in drive direction in SG-2; (b) The 

modal spectrum of in-phase mode in sense direction in SG-2; (c) The modal spectrum of 

anti-phase mode in sense direction in SG-2. 
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The virtual rate-table method was used to get the input-output amplitude-frequency response of the 

two prototypes. The functional block diagram of this method is shown in Figure 11. In the 

experimental tests, the drive mode of the tuning fork micro-gyroscope was actuated into anti-phase 

resonance vibration with constant amplitude. A signal generator was used to provide a cosine signal of 

varying frequency imitating the dynamic input angular rate. We named this the virtual angular rate 

signal. The multiplication of the virtual angular rate signal and the drive velocity signal was used to 

imitate the Coriolis force. Two anti-phase Coriolis force signals from the left and right single mass 

structures of the tuning fork micro-gyroscope were then applied onto the sense combs to actuate the 

vibration of the sense mode in an anti-phase way. Corresponding to different frequencies of the input 

virtual angular rate signal, the differential output amplitude values of the sense mode vibration 

response were collected.  

Figure 11. The functional block diagram of virtual rate-table method.  
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In our designed tuning fork micro-gyroscope, the Coriolis mass is quite large and lots of flexure 

beams are used, hence the fabrication induced stiffness asymmetry is much more severe than the mass 

asymmetry. With the assumption of symmetric mass, the stiffness asymmetric coefficient β of 

prototype SG-1 was estimated to be 0.98, and the stiffness asymmetric coefficient β of prototype SG-2 

was estimated to be 0.99. The theoretical amplitude-frequency curves were generated from Equation (48), 

and the experimental amplitude-frequency curves were obtained from tests. Comparison of the theoretical 

and experimental curves of SG-1 and SG-2 are shown in Figure 12a and Figure 6b, respectively.  

It could be found that the theoretical curves coincide well with the experimental ones. Hence 

Equation (48) could be used to estimate the input-output amplitude-frequency response under nonideal 

conditions, providing a reference for mechanical bandwidth design. It is noted that in Figure 12, when 

the frequency of the input angular rate is relatively high, e.g., f > 70 Hz, the experimental results 

would be smaller than the theoretical ones in an overall level. That is mainly caused by the frequency 

response of the sensing circuits ignored in this paper. It is now undergoing further study.  
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It is obvious that the amplitude-frequency curves of the two prototypes, SG-1 and SG-2, both have 

two peak points for the unavoidable asymmetry caused by fabrication errors. The primary peak point 

locates at frequency difference Δf2, which is the main consideration in traditional bandwidth design. 

The subordinate peak point locates at frequency difference Δf1, which is non-ignorable in bandwidth 

design of a tuning fork micro-gyroscope with mechanically coupled sense mode.  

In prototype SG-1, Δf1 is designed to be smaller than Δf2, hence when the degree of asymmetry is 

large enough to cause the fluctuant extent around Δf1 to exceed the 3-dB scope, and the gyroscope  

3-dB bandwidth will be decided by the amplitude variation around Δf1 instead of Δf2. In prototype  

SG-2, Δf1 is designed to be larger than Δf2, hence no matter how large the degree of asymmetry is, as 

long as the frequency difference between Δf1 and Δf2 is large enough, the gyroscope 3-dB bandwidth 

will always be decided by the amplitude variation around Δf2. Therefore, to insure an appropriate 

bandwidth, the design value of Δf1 is recommended to be larger than Δf2, or at least make the key 

frequency point, where the maximum likelihood asymmetry induced fluctuant extent exceeding the  

3-dB scope, to be larger than the necessary bandwidth.  

Actually, the natural frequency configuration in prototype SG-2 (f1 < f2 < fd) is an improved version 

of that in prototype SG-1 (f1 < fd < f2) based on the deduced equations and analytical results. 

Compared with the amplitude variation around Δf1 which is largely influenced by uncertain fabrication 

errors, the amplitude variation around Δf2 is much more stable. Therefore, it is strongly recommended 

that Δf1 = f1 − fd be larger than Δf2 = f2 − fd in mechanical design. 

Figure 12. (a) Theoretical and experimental input-output amplitude-frequency responses of 

SG-1; (b) Theoretical and experimental input-output amplitude-frequency responses of SG-2.  
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Figure 12. Cont. 

 
(b) 

However, with a relatively low working frequency to improve the mechanical sensitivity, most of 

the time Δf = f2 − f1 couldn’t be large enough. Hence with the commonly seen natural frequency 

configuration in SG-1, when a large bandwidth is needed, Δf2 would have to be designed larger and 

Δf1 would be quite small. That would generate a disturbing fluctuation phenomenon in the useful 

bandwidth range and deteriorate the dynamic sensing capability of the micro-gyroscope. The improved 

natural frequency configuration in SG-2 can overcome this problem and has provided an application 

example of the deduced equations and analytical results.  

7. Conclusions 

Micro-gyroscopes need a certain bandwidth for dynamic angular rate sensing. For a tuning fork 

micro-gyroscope with mechanically coupled sense mode, in-phase and anti-phase vibration modes 

coexist in the sense direction. Under ideal (i.e., symmetric) conditions, their bandwidth characteristics 

are similar to those of a single mass micro-gyroscope. The input-output amplitude-frequency curve has 

only one peak point, with a peak frequency locating at the frequency difference between the drive 

frequency and the natural frequency of the anti-phase mode in sense direction. The gyroscope 3-dB 

bandwidth is decided by the amplitude variation around this peak frequency only.  

Under non-ideal (i.e., asymmetric) conditions, the in-phase mode in the sense direction may 

participate in the anti-phase Coriolis forces induced vibration response, thus disturbing the bandwidth 

characteristics. The asymmetric drive amplitude would only make a difference on the overall 

amplitude level of the input-output amplitude-frequency curve, but the asymmetric sense mass and 

sense stiffness would have a direct influence on the natural frequencies and modal vectors of the  

2-DOF sense mode vibration system. When the sense mass asymmetry and the sense stiffness 
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asymmetry have equal proportions in same direction, the bandwidth characteristics would be the same 

as those under ideal conditions. When the sense mass asymmetry and the sense stiffness asymmetry 

have different proportions, the input-output amplitude-frequency curve would have two peak points. 

The primary peak point locates at the frequency difference between the drive frequency and the natural 

frequency of the anti-phase mode in the sense direction, which also exists under ideal conditions. The 

subordinate peak point locates at the frequency difference between the drive frequency and the natural 

frequency of the in-phase mode in the sense direction, which is caused by the participation of the  

in-phase mode in the sense vibration response. In this condition, the gyroscope 3-dB bandwidth would 

be decided by the amplitude variation around these two peak frequencies synthetically.  

Conclusively, in the mechanical bandwidth design of a tuning fork micro-gyroscope with 

mechanically coupled sense mode, the relationships between the drive frequency and the natural 

frequencies of the in-phase mode and the anti-phase mode in sense direction, as well as the maximum 

likelihood asymmetry should all be taken into account. The equations representing the relationships 

between the differential output signal and the frequency of the input angular rate were deduced 

theoretically and verified by experimental results. They can be used as references in mechanical 

bandwidth design of a tuning fork micro-gyroscope with mechanically coupled sense mode.  
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