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Abstract: In this paper a stochastic resonance (SR)-based method for recovering weak 

impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It 

was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR 

produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion 

a moving least squares fitting method is introduced to reconstruct the signal from the output of 

the SR process. This proposed method is verified by comparing its detection results with that 

of a morphological filter based on both simulated and experimental signals. The experimental 

results show that the background noise is suppressed effectively and the key features of 

impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate 

diagnosis of faults in roller bearings in a run-to failure test. 

Keywords: weak impulsive signals; parameter-tuning stochastic resonance; moving least 

squares fitting; recovery 
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1. Introduction 

An impulsive signal is a typical vibration response due to faults in many mechanical components 

such as bearings and gears. It is characterized by the presence of a periodic repetition of sharp peaks 

modulated by high frequency harmonic components, which are defined in terms of natural frequency, 

fault frequency and decay coefficient [1]. In mechanical systems, a regularity of impulsive signals may 

arise from rotor-to-stator rub, defects or wear of certain parts such as bearings and gears. Impulsive 

signals can also be generated by many other mechanisms and can be found in many other applications. 

Acoustic noise and image noise are typical examples [2–7]. An impulsive signal often contains 

important equipment status information and is also important for system maintenance and process 

automation. Thus, detecting impulsive signals is of great engineering practical significance, and this 

has attracted the attention of many researchers. 

However, impulsive signals are frequently overwhelmed by strong noise when the fault is at its 

early engine phase. The impulsive signals may be filtered out because the impulsive energy of the 

incipient anomaly is very small and the transmission channel is frequently complex. Numerous 

attempts have been made to extract useful information from such response signals. For example, 

envelope analysis is widely used [8–11]. Lou and Loparo [8] employed wavelet envelope analysis in 

the fault diagnosis of rolling bearings and claimed that the decomposed details are different in 

magnitude between the inner race fault and normal condition. Yu et al. [9] applied the EMD and 

Hilbert method to extract the envelope signal of rolling bearings and found that the fault characteristics 

can be extracted by selecting proper IMFs. A morphological filter is also an efficient tool in processing 

impulsive signals. Jing [1] proposed an improved morphological filter for the feature extraction of 

impulsive signals in the time domain, which aims to extract the entire signal including fault frequency, 

natural frequency and decay coefficient. Laplace wavelet correlation filtering (LWCF), which uses a 

Laplace wavelet as the transient model and identifies the parameters by correlation filtering, is 

effective in detecting a single transient [10]. However, these methods are not suitable for extracting 

signal features of impulsive signals with strong background noise.  

With the aid of stochastic resonance, the unavoidable noise can, however, be applied to enhance the 

signal-to-noise ratio (SNR) of a system’s output. Although the SR method uses random noise to 

enhance the useful signal characteristics, the signals after SR is often distorted into rectangular-like 

waves by its nonlinear amplification, which confines the use of SR in the quantitative diagnosis of 

machinery. Li [11] presented an inversion method to restore the output waveform after SR. However, 

it is still necessary to locate the inflection point of the system and carry out corresponding special 

treatment. The program is complicated and requires adjustment of various parameters.  

To overcome the reviewed problems, the present study concentrates on developing a more effective 

technique for extracting impulsive signals with strong noise contamination that cannot be extracted 

using a morphology filter or other filters. The fault period and phase of impulsive signals are extracted 

after SR. However, there are still two problems with the SR recovery process. The first problem is 

intercepting data that contain only a single period of impulsive signals. The recovery process for 

impulsive signals is different from that of cosine signals or others because of the compact 

characteristic of impulsive signals in the time domain. To realize the piecewise fitting of data, a 

moving least squares fitting operation is applied to segment data in the time domain using a sliding 
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window. Using the fault period and phase obtained in the first SR, we can intercept the data that 

contain only single shocks of attenuation signals. A second stochastic resonance with the intercepted 

data is then used to obtain damping of the oscillation frequency of the signal to improve inversion 

results. The experimental results show that the background noise is suppressed effectively and the key 

features of impulsive signals are reconstructed with good degree of accuracy, which leading to an 

accurate diagnosis of faults on bearings undertaking a run-to failure test. 

2. Stochastic Resonance and Impulsive Signal Recovery 

2.1. The Theory of Stochastic Resonance 

Stochastic resonance (SR) is a nonlinear physical phenomenon where weak signals are enhanced 

and the noise is weakened through the interaction of a small parameter signal and noise for a nonlinear 

system model. SR is widely used in the extraction of weak cosine-like signals. However, impulsive 

signals are more common in mechanical systems. In this section the Kramers rate is used to explain the 

SR characteristic of impulsive signals. 

The over-damped motion of a Brownian particle in a bistable potential in the presence of noise and 

periodic force is considered to describe SR, as in Equation (1) [12,13]: 

d
( ) ( )

d
x U

s t n t
t x


   

  
(1)

where s(t) is the input weak periodic signal which should be detected with the frequency of 0f . Let

( ), ( ) 2 ( )n t n t D t   , where D is the noise intensity and ( )t represents a Gaussian white noise 

with zero mean and unit variance. Then, Equation (1) can be written as Equation (2): 
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where a and b are barrier parameters of bistable model and are positive real parameters, A0 is the 

periodic signal amplitude and f0 is the driving frequency. The potential function is denoted by 
2 41 1

( )
2 4

U x ax bx   .  

The crucial process of using SR to detect weak signals is to adjust the interaction of signal and noise 

to let the Brownian particle jump freely into the left or right potential. The height of the potential 

barrier is 2 / (4 )U a b  . In this paper, a normalized scale transformation is applied to enable the 

classical SR approach to detect signals with large parameters like in [13]. 

2.2. Nonlinear Distortion Phenomenon of SR 

Although the SR method uses random noise to enhance the useful signal characteristics, the signals 

after SR is often distorted into rectangular-like waves by its nonlinear amplification, which confines 

the use of SR in the quantitative diagnosis of machinery. To realize the quantitative diagnosis of 

rotating machine faults, we need an accurate value for the amplitude of impulsive signal. Hence, we 

need to study the inversion method for SR. The trajectory of the Brownian particle excited by an 

impulsive signal can show two different forms of output waves when SR occurs: one is a trapezoidal 
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wave and the other is the form of impulses as shown in Figure 1a,b. As the trapezoidal waveform 

cannot be easily controlled, and its corresponding SR evaluation index is difficult to select, this 

resonance form is frequently neglected in practice. As shown in Figure 1a,b, a trapezoidal wave can be 

used to clearly judge the SR results, and it is more exact when evaluating the information pertaining to 

fault frequency and phase. In this paper, an adaptive algorithm is applied to enable the classical SR 

approach to detect the signals concerned in [14,15]. 

Figure 1. Resonance characteristics of impulsive signals: (a) the trapezoidal wave of SR 

output and (b) impulse output of SR. 

 

2.3. The Recovery of Impulsive Signals 

Stochastic resonance can qualitatively judge whether there is any fault, yet it is not suited for 

quantitative diagnosis because of the nonlinear amplification due to SR. To realize the quantitative 

diagnosis of rotating machine faults, we need an accurate value for the amplitude of impulsive signal. 

Hence, we need to study the inversion method for SR. 

Traditional curve fitting is a global fitting, which is not suitable for impulsive signals. To realize the 

piecewise fitting of data, a moving least squares fitting operation is applied to data segment in the time 

domain using a sliding window. 
Let u(x) be an unknown function whose values are known in the   calculation domain N nodes  

(I = 1, 2... N), namely, 1( )IU u x . Additionally, in the calculation domain of x , h ( )u x  is used as the 

approximation of u(x) and can be represented as the polynomial: 

1

( ) ( ) ( ) ( ) ( ) ( )
m

h T
i i

i

u x u x p x a x p x a x


  
 

(3)

where, ( )p x is the polynomial base vector; ( )A x  is the coefficient vector; m  is the number  

of fundamentals. 

The moving least squares is to get the weighted sum of squares a minimum structure approximation 

function through the difference between the order and the corresponding node function value, that is to 

let Equation (4) take the minimum: 
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where, n is the calculation of the node number point; x  is contained in the domain x  and node 

related weight function ω:  
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Equation (4) takes the minimum solution of the coefficient vector ( )a x : 

1( ) ( ) ( )a x A x B x u  (10) 

Substituting Equation (3) with Equation (5): 

( ) ( )hu x x u  (11) 

Usually a monomial is selected as the base function, such that a one-dimensional space monomial 

and quadratic basis function, respectively, are as follows: 

2
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(12) 

A two-dimensional space monomial and quadratic basis function are, respectively, as follows: 

2 2

( ) [1, , ] 3

( ) [1, , , , , ] 6

P x x y m

P x x y x xy y m





  


 

 
 (13) 

This paper focuses on impulsive signals, so we choose the following function as the basis function. 

As to the fit of weak impulsive signals, ߱௦ is important because, without it, the least squares fitting 

will not lead to correct results:  

( ) sin(2 )nt
ss t Ae t    (14) 

In addition, the weight function should: be compact, that is only in the surrounding area is it not 

equal to zero but in all other areas it is zero; be negative; attenuate, along with the increasing domain
x x , ( )x x   gradually decay. In this paper, the Gaussian Function (15) is selected as the  

weight function, 
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where Ir d R , such that d is the distance d x x   for calculation point 1x ; R  is the node domain 

of the influence radius, IR k d   ; k is the radius of the influence multiplier and is slightly greater 

than 1 to ensure that the calculated point solving domain has enough nodes; d  is a dynamic variable 

that changes with node distribution in dense situations and is smaller when the nodes are concentrated; 

and   is a weighting factor critical for those nodes that are closer to x  but that has no effect on far 

nodes. The flow diagram of the recovery of impulsive signals is shown in Figure 2. 

Figure 2. Flow diagram of the recovery of impulsive signals. 
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2.4. Algorithm Construction 

The impulsive signal is constructed as:  

0 0 0 0 0 0( ) ( ) ( ) exp[ ( )] sin[ ( )] ( )c s
k

s t x t n t A D t kT t kT n t               (16)

where A is the amplitude, Dc is the damping ratio, k  is the number of impulsive signals, 0T  is the period 

between different impulsive signals, 0 is the time index, ߱௦  is oscillation frequency and ( )n t  is the 

noise. Considering the compact characteristic of the impulsive signal in the time domain and the need for 

a moving least squares fitting, we modify two steps of stochastic resonance: the process for extraction 

and recovery of impulsive signal, which can be described in detail as the following paragraphs. 

First, reading the original signal and the sample rate, the initialization of A(0), T0(0), τ0(0), K(0), 

߱௦ሺ0ሻ, Dc(0) are estimated. These parameters indicate the probable geometric characteristics of the 
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impulsive signal. Then, two steps of adaptive parameter-tuning stochastic resonance are used to update 

0T , 0 , k  and ߱௦, which are shown in Figure 3: 

Step 1. Estimate the value of T0, let 01/ (0),  ( ) 0 :a T b n a  . 

Step 2. According to the adaptive optimization algorithm, we use parameter-tuning stochastic 

resonance to obtain T0, τ0, and k. 

Step 3. According to the value of 0T  and 0 , we extract ' ( )s t  for 1K  . 

Step 4. Estimate the value of ߱௦, let 1/ (0),  ( ) 0:sa b n a  . 

Step 5. According to the adaptive optimization algorithm, another parameter-tuning stochastic 

resonance is used to obtain ߱௦, which is important because, without it, the moving least squares fitting 

will not lead to a reasonable result.  

Next, the least squares fitting using a Gaussian function as the weight function, the impulsive signal 

as the interval function and ߱௦ as the known parameter is used to obtain A and Dc. A can then be used 

to realize the quantitative fault diagnosis of the rotating machine.  

Figure 3. Flow diagram of extraction and recovery of impulsive signals. 

0 0, (0), (0), (0), (0), (0)S CA(0) T K D 

, ss ( t ) f

0T

01/ , ( ) 0:a T b n a 

0 0, ,T K
's (t)

's (t)

01/ , ( ) 0:a b n a 

s

,cD A

 

3. Numerical Evaluation 

To illustrate the effectiveness of the proposed method in detecting and recovering of weak 

impulsive signals, a simulation is carried out based the signal in Equation (17): 

0 0 0 0 0 0( ) ( ) ( ) exp[ ( )] sin[ ( )] ( )c s
k

s t x t n t A D t kT t kT n t               (17)
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where 0.4A   is the signal amplitude, 5cD   is the damping ratio, 4k   is the number of impulsive 

signals, 0 2.1T   is the period between different impulsive signals, 0 0   is the time index, 20s   

is the oscillation frequency, ( )n t  is the Gaussian noise with a mean value 0   and  

root-mean-square-value 3  , and the sampling frequency is 400 Hz in the time range [0, 8].  

Figure 4a presents the simulation signals 0( )x t  and 0( )n t and Figure 4b presents the noisy signal ( )s t .  

Figure 4. The simulation signal, (a) the signal and (b) the noisy signal. 

 

The adaptive parameter-tuning stochastic resonance and moving least-squares fitting is adapted to 

extract and recover the impulsive signal. Following the previous section’s steps, the results obtained by 

the proposed method from the simulation signal are shown. The result of the first parameter-tuning 

stochastic resonance is shown in Figure 5, which shows that T0 = 2.1 s, k = 4, τ0 = 0. 

Figure 5. Output of the first parameter-tuning stochastic resonance. 

 

Then, considering that T0 = 2.1 s, k = 4, τ0 = 0, a segment of data was segregated in the time  

range [0, 2] from the above simulation signal as shown in Figure 6. 
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Figure 6. The segment of simulation data. 

 

The result of the second parameter-tuning stochastic resonance is shown in Figure 7, and a FFT 
algorithm is used to find 62.83 Hzs  . 

Figure 7. Output of the second parameter-tuning stochastic resonance. 

 

The result of the least squares fitting is shown in Figure 8, from which it has found that  

A = 0.38 mms−1 and Dc = 5.  

Figure 8. Result of the moving least squares fitting. 
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A direct comparison between the original transient and reconstructed signal is shown in Figure 9. It 

can be seen they display good agreement.  

Figure 9. Comparison between the original signal and the least squares fitting. 

 

A comparison with morphological filtering is illustrated in Figure 10. A Laplace wavelet is chosen 

as the structural element of the morphological filtering. It can be found that the impulsive cluster is not 

extracted from the original because of the influence of strong noise. Additionally, the traditional 

recovery method for SR does not involve a sliding window, which is vital to the compact characteristic 

of impulsive signals in the time domain. Thus, the morphological filtering method cannot be used in 

the recovery of the impulsive signal after SR. 

Figure 10. The result of the morphological filtering. 

 

The simulation results demonstrate the effectiveness and superiority of the proposed method in the 

detection of weak impulsive signals. 

4. Application in Rotating Machine Fault Diagnosis 

To validate the proposed method a bearing run-to-failure test was performed under normal load 

conditions on a specially designed test rig. The bearing test rig consisted of four test bearings on one 

shaft. The shaft was driven by an AC motor and coupled by rub belts. The rotation speed was kept 

constant at 2000 rpm. A radial load of 2000 N was added to the shaft and bearing by a spring 

mechanism. All the bearings were lubricated through an oil circulation system which regulates oil flow 

to maintain constant temperature of the lubricant. Figure 11 shows the test rig and illustrates sensor 

placement. The failure of all bearings occurred after exceeding the designed lifetime of the bearing, 

which is more than 100 million revolutions. 
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Figure 11. Bearing test rig and sensor placement illustration. 

 

A magnetic plug installed in the oil feedback pipe collected debris from the oil as evidence of 

bearing degradation. The test stopped when the accumulated debris adhered to the magnetic plug 

exceeded a certain level and caused an electrical switch to close. Four Rexnord ZA-2115 double row 

bearings were installed on one shaft as shown in Figure 11. The bearings had 16 rollers in each row, a 

pitch diameter of 7.15 cm, roller diameter of 0.841 cm, and a tapered contact angle of 15.171°.  

A PCB 353B33 High Sensitivity Quartz ICPs accelerometer was installed on the housing of each 

bearing. Four thermocouples were attached to the outer race of each bearing to record bearing 

temperature for monitoring the lubrication. Vibration data were collected every 10 min by a National 

Instruments DAQ Card-6062E data acquisition card. The data sampling rate was 20 kHz and the data 

length was 20,480 points. Data collection was controlled by a National Instruments LabVIEW 

program. The parameters of the experimental bearing are shown in Table 1. BPFI, BPFO, BSF and 

FTF represent the characteristic frequency of the inner race fault, outer race fault, ball fault and the 

cage fault, respectively. 

Table 1. Parameters of the experiment bearing. 

Bearing 
Designation 

Ball 
Numbers 

Groove 
Section 

Size (cm) 

Contact 
Angle 

BPFI 
(Hz) 

BPFO
(Hz) 

BSF 
(Hz) 

FTF 
(Hz) 

ZA-2155 of 
Rexnord 

16 0.841 2.815 296.9 263.4 139.9 29.55 

Figure 12 shows the monitoring result for the whole test using, which are obtained by using the 

morphological filter and the time complexity to the vibration data. In [16] the monotone increasing 

trend of the result has been viewed into five phases to represent different degrees of severity and fault 

progression. However, it is clear that the morphological filter cannot extract fault information before 
and near the symbols ⊙ in Phase I.  

To demonstrate the effectiveness of current method, signals in Phase I are used for applying the 

adaptive parameter-tuning stochastic resonance and moving least squares fitting. Figure 13 shows a 

segment of the signal measured at time instant of 5000 min. From it there is no impulsive information 

which can be observed.  
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Figure 12. The Lempel-Ziv complexity features for the whole life cycle of the bearing 

with an outer fault. 

 

Figure 13. The signal of early outer race fault. 
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The result of the first parameter-tuning stochastic resonance is shown in Figure 14, from which it 

has found that T0 = 0.0038 s, k = 4, τ0 = 0. Equation (18) indicates that the fault frequency has a good 

match with the characteristic frequency of the outer race fault as Table 1, which preliminarily verifies 

the effectiveness of the method: 

0

1 1 1
263.2 Hz

0.0038 0.0038
f

T
     (18)

Figure 14. Output of the first parameter-tuning stochastic resonance. 
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Then, considering that T0 = 0.0038 s, k = 4, τ0 = 0, data in the time range [0, 0.0008] is segregated 

from the simulation signal as shown in Figure 15. 

Figure 15. The intercept data of early outer race fault. 

 

The result of the second parameter-tuning stochastic resonance is shown in Figure 16, 
3989.8 Hzs  .  

Figure 16. Output of the second parameter-tuning stochastic resonance. 

 

The result of the least squares fitting is shown in Figure 17, from which we find A = 0.21 and  

Dc = 5.  

Figure 17. The result of the moving least squares fitting. 

 

Figure 18 is a section of data intercepted from Phase IV. Figure 19 is the morphology filtering of 

this data, and Figure 20 is the FFT processing of this data. 
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Figure 18. The signal of serious outer race fault. 

 

From Figure 20, we find that the proposed method has a good match with the frequency of the outer 

race fault 263.2 Hzf  and the oscillation damping vibration frequency 3989.8 Hzs  . The 

proposed method can predict bearing fault information much earlier than morphology filtering. 

Moreover, the amplitude of the impulsive signal can be further used to judge the severity of the fault of 

the rotating machine. Therefore, the method proposed in this study has good processing ability for 

weak impulsive signals and a specific practical application. 

Figure 19. The morphology filtering result of serious outer race fault. 

 

Figure 20. The morphology filtering result of serious outer race fault. 

 

5. Conclusions 

In this paper, a stochastic resonance (SR)-based method of recovering weak impulsive signals is 

developed for quantitative diagnosis of faults in rotating machinery. It has been shown in theory that 

weak impulsive signals fulfill the mechanism of SR, but the SR produces nonlinear distortion of the 
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shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is 

induced to reconstruct the signal from the output of SR process. To verify the effectiveness of the 

proposed method, a contrastive analysis between the proposed method and the morphology filter is 

conducted based on simulation. Experiments are carried out on bearings with outer race faults to verify 

the proposed approach. The experimental results show that the background noise is effectively 

suppressed and the key features of impulsive signals are reconstructed with good degree of accuracy, 

which leads to an earlier diagnosis of faults in bearings undertaking a run-to failure test. 
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