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Abstract: Electrostatic sensors have been widely used in many applications due to their 

advantages of low cost and robustness. Their spatial sensitivity and time-frequency 

characteristics are two important performance parameters. In this paper, an analytical 

model of the induced charge on a novel hemisphere-shaped electrostatic sensor was 

presented to investigate its accurate sensing characteristics. Firstly a Poisson model was 

built for electric fields produced by charged particles. Then the spatial sensitivity and  

time-frequency response functions were directly derived by the Green function. Finally, 

numerical calculations were done to validate the theoretical results. The results 

demonstrate that the hemisphere-shaped sensors have highly 3D-symmetrical spatial 

sensitivity expressed in terms of elementary function, and the spatial sensitivity is higher 

and less homogeneous near the hemispherical surface and vice versa. Additionally, the 

whole monitoring system, consisting of an electrostatic probe and a signal conditioner 

circuit, acts as a band-pass filter. The time-frequency characteristics depend strongly on the 

spatial position and velocity of the charged particle, the radius of the probe as well as the 

equivalent resistance and capacitance of the circuit. 

Keywords: electrostatic monitoring; hemisphere-shaped sensors; Green function; spatial 

sensitivity; induced charge 
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1. Introduction 

In recent years, due to their advantages of low cost and robustness, various electrostatic sensors 

have been widely used for detecting abnormal debris present in the gas path of the engine from  

faults [1,2] or measuring particle concentration and size in gas-solid flows [3–24]. At present, intrusive 

sensors and non-intrusive sensors are the main categories. 

In practice, sensing characteristics are very important for electrostatic sensors. Optimal sensor 

designs are the key to obtaining better sensing characteristics. In order to provide guidelines for sensor 

design, two key points are important. First, intrusive sensors have high spatial sensitivity, but they 

affect the gas flow. This contradiction raises difficulties in the sensor design process. Generally, a 

trade-off needs to be made between the spatial sensitivity and the gas flow disturbance. In order to 

achieve that, accurate sensor models have to be built. Second, while using these models to make 

optimal designs, analytical solutions are always difficult to obtain because of their irregular Dirichlet 

boundaries. Therefore, current designs of rod-shaped sensors [4] and intrusive round-head-screw-shaped 

sensors [5] always use Finite element modeling (FEM) methods instead of obtaining analytical 

solutions to study sensing characteristics. However, the corresponding calculation time of FEM 

methods is usually very long. 

In some cases, such as gas path monitoring, intrusive sensors are not allowed because they affect 

the gas flow. Conversely, non-intrusive sensors are widely used, since they cause no disturbance to the 

gas flow, but most of them have little spatial sensitivity due to the electrostatic pipeline shields or their 

intrinsic sensing characteristics. Such sensors include thin-plate-shaped probes [6–8], square-shaped 

probes [9,10], ring-shaped probes [11–23], small probes with arbitrary shape [24], and so on.  

Ghazali et al. [6] and Peng et al. [10] built mathematical models of thin-plate-shaped sensors and 

square-shaped sensors, respectively. However, the analytical functions are so complicated that they 

have to be calculated indirectly by an approximate numerical calculation. Vata Zhin et al. [24] built by 

Green function a theoretical and laboratory model for gas path monitoring. In this model, an arbitrary 

probe was located outside the jet, and the probe dimension was supposed small enough to not change 

the induced electric field outside the jet. However, these assumptions are invalid in practice. Induced 

signals are weak due to the electrostatic pipeline shields. Numerical models of ring-shaped sensors and 

sensors array were built based on FEM methods in [15,20–23]. However, as mentioned before, FEM 

methods are approximate and usually will take a long time to build the model. Furthermore, it is 

difficult to detect localized flow regimes with ring-shaped sensors because the induced signals are 

from all particles in the cross-section of the pipeline. Also they are usually expensive and difficult to 

install due to the fact they take the form of a spool piece installed in line with pipework [4]. Unlike 

those two types of sensors, in this paper, a hemisphere-shaped sensor was proposed. Since the probe 

size is much smaller than the radius of the pipeline, it causes fewer disturbances to the gas flow. It also 

has 3D-symmetrical and concise spatial sensitivity functions, so that the corresponding calculation in 

signal process methods becomes quite easy. These advantages make it be much promising in many 

applications, such as an electrical charge tomography system [8]. 

To date, few works have been done on hemisphere-shaped sensors. In order to study their sensing 

characteristics and provide guidelines for sensors design, analytical and elementary mathematical 

functions of hemisphere-shaped sensors are formulated for the first time in this paper, and then the 
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corresponding numerical calculations were done to verify the theoretical results. The main 

contributions of this paper include two aspects: the first innovation is to derive the mathematical 

functions of hemisphere-shaped sensors. This way, it should be easier, faster and more accurate to 

study their sensing characteristics than using FEM methods, since these functions are concise and  

3D-symmetrical. The second is that more parameters were taken into account to completely investigate 

the performance of sensors, such as the spatial position and velocity of the charged particle, the radius 

of the probe and so on. Especially, the equivalent resistance and capacitance of the whole signal 

processed circuit are discussed in detail in this paper, which can provide better guidelines for 

engineering applications. In fact, these factors have important effects on the time-frequency 

characteristic of sensors, but they were often neglected or forgotten in many papers [6,8,16,20]. 

The outline of this paper is summarized as follows: first, the Poisson model was built for electric 

fields produced by charged particles. Then the elementary spatial sensitivity and time-frequency 

response functions of hemisphere-shaped sensors were derived by a Green function. Finally, the 

numerical calculations performed to validate the theoretical results are presented and discussed. 

2. Mathematical Model 

2.1. Configuration of Hemisphere-Shaped Sensors 

As shown in Figure 1, the hemisphere-shaped sensor installation comprises a hemisphere probe and 

a signal conditioner unit. For gas path monitoring, the probe detects electrostatic charges present 

within the pipeline due to exhaust gas and debris. It was manufactured from a nickel alloy to meet the 

high temperature requirements of the engine. The signal conditioner unit receives a charge signal from 

the probe and converts it to a voltage signal suitable for processing and acquisition. For the current 

application, an amplifier and a filter were built into the signal conditioner unit. 

Figure 1. Schematic of the hemisphere-shaped sensor installation. 

 

2.2. The Poisson Model of Electric Fields 

The motion of a charged particle is essentially the nonstationary one consistent with the motion of 

the gas flow. Therefore a changed electric field appears inside the pipeline, which is determined by the 

charged particle motion. It can be seen from Figure 1, the center of the hemisphere probe is first set as 

the origin of the Descartes coordinate system. Then the axial orientation of the pipeline, the axial and 
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vertical orientations of the hemisphere probe are set as the x-axis, z-axis and y-axis of the global 

coordinate system, respectively. The arbitrary point in the pipeline can be denoted as ( , , )P x y z . In the 

considered approximation, it is assumed that volume charge density ( , )P tρ  is a prescribed function 

and simulates different charge motions in the pipeline. Here t  is the time. Since the inducted time is 

insignificant ( 1910  s− ), the interaction between the probe and moving charge particles could be treated 

as a pure electrostatic field. Hence the theoretical model of the hemisphere-shaped sensor is 

determined by the Poisson equation and Dirichlet boundary conditions as follows: 

( ) 0    ( , )
( , ) , . .

( )
P

N

P P SP t
P t s t

P P S

ϕρϕ
ϕ φε

= ∈
Δ =  = ∈

-
（t) 

 (1)

where ( )Pϕ  is the electric potential, ε  is the dielectric permittivity of free space. PS , NS  are the outer 

boundaries of the pipeline and the probe. The conducting probe forms an equipotential volume.  
The potential of the probe at time t  is denoted as φ（t). Since Equation (1) describes an external 

Dirichlet boundary problem, the hidden boundary condition is lim ( ) 0
P

Pϕ
→∞

= . As shown in [25], the 

solution to this problem is unique. The solution of an arbitrary Poisson Equation can be written by 

Green function as follows: 

0

0

0
0 0 0 0

( , )
( , ) ( , ) ( , ) ( ) Pv

P

G P P
P t G P P P t dP f P dSϕ ρ ε

Γ

∂= −
∂  n  (2)

Here Γ  is the outer boundary of the region, f  is the potential on the boundary. Thus Green 

function holds based on Equation (1): 

0 0 0 |( , ) ( , ) / , . . ( , ) 0pG P P P P s t G P Pδ ε ∈ΓΔ = =-  (3)

The Green function in Equation (3) describes the potential field distribution inside the pipeline 

when the unit charge 0( , )P Pδ  is located at 0 0 0 0( , , )P x y z  and the probe is grounded. When a point 

charge is outside the grounded probe, the Green function can be resolved by the image charges 

method. The potential inside the pipeline is affected by the grounded boundary of the pipeline. If the 

radius of the pipeline is much longer than the radius of the probe, the electric field on the boundary of 

the pipeline is similar to one on the infinite plane at the same position. The calculated results in [10,11] 

can validate the consequence. Thus the electric field near the hemisphere probe is shown in Figure 2. 

Figure 2. The electric field distribution of the hemisphere probe. 
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It is assumed that the radius of the hemisphere probe is a , point M  is on the hemispherical surface 

and 1M  is on the plane 0z = . A positive point charge 0q+  is located at 0 0 0 0( , , )P x y z . The potential on 

the hemispherical surface and plane 0z =  is zero, which can be denoted respectively as 

1( ) 0,  ( ) 0M Mϕ ϕ= = . First, the Equation ( ) 0Mϕ =  is considered. An image charge 1q  is located at 

1P  on the line connecting the origin and 0q . Selecting the suitable location and magnitude of the image 

charge, the electric field due to the charge 0q  outside the grounded conducting hemispherical surface 

can be created by the charge 0q  and 1q . Then the electric field at M can be formulated as follows: 

0 1

0 1

( ) 0
4 4

q q
M

MP MP
ϕ

πε πε
= + =  (4)

Choosing 1P  to satisfy the condition 1 0OPM OMPΔ Δ , one will have: 

1 1 1

0 0 0

OP OM MP q

OM OP MP q
= = = −  (5)

Substituting Equations 2 2 2
0 0 0 0OP b x y z= = + +  and OM a=  into Equation (5), then the 

magnitude of the image charge is 0
1

aq
q

b
= − , at 

2

1 0 0 02
( ( , , ))
a

P x y z
b

. To meet the condition 1( ) 0Mϕ = , 

as shown in Figure 2, image charges 0
2 0 3,  

aq
q q q

b
= − =  are symmetrically placed at 2 0 0 0( , , )P x y z− , 

2

3 0 0 02
( ( , , ))
a

P x y z
b

−  on the other side of the plane 0z = , respectively. Hence one will have

1 0 1 2M P M P= , 1 1 1 3M P M P=  and the boundary conditions are satisfied as follows: 

0 31 2
1
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1
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4
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M
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ϕ
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ϕ
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= + + + =

= + + + =
 (6)

Since the image charges are located outside the pipeline region, the unique Green function can be 

written as: 

0
0 1 2 3

2 2 2
0 2 0 0 0

2 2 2
2 2 2

1 3 0 0 02 2 2

1 1 1
( , ) ( )

4

, ( ) ( ) ( )

, ( ) ( ) ( )

a a
G P P

PP b PP PP b PP

PP PP x x y y z z

a a a
PP PP x x y y z z

b b b

πε
= − − +

= − + − +

= − + − +





 (7)

2.3. The Induced Charge of the Hemisphere Probe 

The surface charge density σ  on the hemisphere probe is: 

E
ϕσ ε ε ∂= = −

∂n n
 (8)
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where En  is the electrostatic field on the surface of the probe, n  is the normal vector. When the 

Equation 0 1q =  is set, the induced charge Q  can be calculated as follows based on Equations (2) and (8): 

1 2Q ds Q Qσ
Γ

= = +  (9)

Here 0
1

( , )
P

G P P
Q dsε

Γ

∂= −
∂ n , 2 ( )Q tλφ= , 

0

0

0

2

( , )
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P
P
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dsλ ε Γ

Γ

∂
∂=
∂


 n

n


 . Γ  is the surface of the 

hemisphere probe. The physical explanation of λ  is the capacitance of the probe itself, which plays an 

important role in the system response. Based on Gauss’ law, Equation (10) is given: 

0

0

1 2 2 2
0 0 0

1 0( )
2p

p

a a
Q

b x y z

Q P
ds aλ ε π ε

Γ

= − = −
+ +

= − =
∂ n

 (10)

The total induced charges of the hemisphere probe comprise 1Q  and 2Q . 2Q  is proportional to the 

potential of the hemisphere probe, which reflects the accumulated charges due to the capacitance of the 

probe itself. 1Q  is determined by the distribution of charges within the pipeline. It is not convenient to 

calculate Q  by Green function directly when ( , )P tρ  is prescribed. According to previous studies, the 

spatial sensitivity of the hemisphere probe is defined as the absolute value of the induced charge on the 

probe from a unity point charge in its sensing zone [16]. It can be expressed as: 

1 2 2 2
( , , )

a
S x y z Q

x y z
= =

+ +
 (11)

The total charges of the hemisphere probe can be written as follows: 

( ) ( ) ( , ) 2 ( )
v

Q t S P P t dP a tρ π εφ= − +  (12)

Obviously, the spatial sensitivity function is elementary. Using this function, it is easier and faster 

to study sensing characteristics of hemisphere-shaped sensors with the advantages of accuracy and less 

complexity. Furthermore, the spatial sensitivity is 3D-symmetrical, which evidently has more promise 

in many applications. 

2.4. The Output Signal of the Hemisphere-Shaped Sensor 

The signal conditioner unit converts a charge signal to a voltage signal suitable for processing and 

acquisition. The equivalent circuit of the signal conditioner is shown in Figure 3. It comprises an 
equivalent current source, a grounded capacitance aC , a grounded resistance aR , a cable capacitance cC  

and an amplifier resistance iR . Therefore, a i

a i

R R
R

R R
=

+
, a cC C C= +  are the equivalent resistance and 

capacitance of the whole circuit, respectively. Assuming the initialization of the circuit is zero, then the 

Fourier transform of the circuit equation can be obtained as follows: 

( ) ( ) ( )
1

jwR
U jw jw Q jw

jwCR
φ= − =

+
 (13)
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where U is the observational voltage, ϕ is the potential of the hemisphere probe. Based on Equations (9) 

and (13), one will have: 

1( ) ( )
1 ( )

jwR
jw Q jw

jw C R
φ

λ
= −

+ +
 (14)

Figure 3. The equivalent circuit. 

 

Gajewski [12] indicated that electrostatics induction depends strongly on the capacitance of the 

probe itself as well as of the whole system consisting of an electrostatic probe and a signal conditioner 

circuit. It must not be neglected to obtain actual theoretical results. Thus the function in the time 

domain is formulated in terms of convolution as Equation (15), where ⊗  is the convolution operator: 

( ) 1( )1
( )

( )

t

C R dQ t
t e

C dt
λφ

λ
−

+= − ⊗
+

 (15)

Supposing a unit point charge moves in the gas flow parallel to the pipeline with a velocity v  and 

the original position is at 0 0 0( , , )x y z , then the input of the electrostatic sensor is considered as a unit 

impulse signal 0 0 0( ( ), , )x x t y y z zδ ν− + − −  along the x-axis orientation. Thus the unit impulse 

response function of the probe is written as follows: 

( ) ( ) ( )1 0 0 0 0 0 0( ) ( ), , , , ( , , )h t Q t x x vt y y z z s x y z dxdydz s x vt y zδ= − = − + − − = +  (16)

The output signal in the time domain can also be written in terms of convolution based on 

Equations (15) and (16): 

3
2 2 2( ) 2

0 0 0 0( ) ( )[( ) ]
( )

t

C Ra
U t e x t x t y z

C
λνφ ν ν

λ
− −+= − = ⊗ + + + +

+
 (17)

The output voltage U ′  for processing is amplified by the amplifier. It is assumed the amplifier gain 

is k , then one will have U kU′ = . Generally, λ  is relatively smaller than the equivalent capacitance 

C  since it is affected by the small dielectric permittivity of free space. In the considered 

approximation, one can use C  instead of C λ+  in Equation (17) to simplify numerical simulations. 

3. Numerical Simulations 

In this section, the theoretical model of the hemisphere-shaped sensor is numerically calculated  

and analyzed using the Matlab software. The spatial sensitivity, the homogeneity of the spatial  
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sensitivity and the time-frequency response reflecting the performance of an electrostatic sensor are  

estimated respectively. 

3.1. The Spatial Sensitivity of the Hemisphere-Shaped Electrostatic Sensor 

The spatial sensitivity determines the magnitude of the output signal. Since the analytical function 

of the spatial sensitivity in Equation (11) is 3D-symmetrical and elementary, fixing any one of x-axis, 

y-axis or z-axis, the difference of simulated spatial sensitivity curves in the 2D-plane can be identified 

in terms of variable regions. For instance, if the radius of the pipeline is set as L = 200 mm, the various 

regions hold as follows: [ , ]x ∈ −∞ +∞ , [ , ]y L L∈ − + , [0, 2 ]z L∈  and 2 2( )y z L L+ − < . With the 

setting of a = 50 mm, y0 = 0 mm, the sensing plane of the hemisphere-shaped sensor is shown in Figure 4.  

It is obvious the spatial sensitivity increases with the decreases of | |,  | |x z , so that one can infer that 

the spatial sensitivity increases with the decreases of y  due to symmetry. The maximum value 1 is 

achieved at 2 2x z a+ =  when charges are near the hemispherical surface. It indicates the signals are 

mainly generated by particles near the probe. In other words, the spatial sensitivity is quite localized 

around the probe. Also one can find curves are truncated because charges can impossibly reach inside 

the hemisphere-shaped sensor. To further verify the 3D-symmetry of the spatial sensitivity, the 

contours of the spatial sensitivity on the cross-section of the pipeline with x0 = 0 mm are shown in 

Figure 5. It is evident the contours radiate as symmetrical rings. 

Figure 4. Variations of the spatial sensitivity with x and z. 

 

Figure 5. The contours of the spatial sensitivity. 
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A circular thin-plate-shaped electrostatic sensor is taken as the representation of non-intrusive 

sensors, so that the spatial sensitivity is compared with the hemisphere-shaped sensor. When the initial 

settings are y0 = 0 mm, 0z L= , Figure 6a shows the variations of the spatial sensitivity with x for 

different radiuses of sensors. It is easy to find the spatial sensitivity of the hemisphere probe is 

proportional with its radius, which is consistent with the theoretical results in Equation (11).  

In practice, the radius of the probe is determined by the tradeoff between spatial sensitivity and the gas 

flow disturbance. Also the spatial sensitivity of the circular thin-plate-shaped sensor is much lower than 

the hemisphere-shaped sensor as shown in Figure 6a. Setting the radius as a = 50 mm, Figure 6b shows the 

variations of the spatial sensitivity with x for different z. Obviously, the spatial sensitivity of the 

sensors increases with the decreases of | |z . It also indicates the similar compared conclusions as 

obtained from Figure 6a—the spatial sensitivity of the circular thin-plate-shaped sensor is much lower 

than the hemisphere-shaped sensor. In fact, even though z = 0 mm is set, the spatial sensitivity of the 

circular thin-plate-shaped electrostatic sensor cannot achieve a value of 1 due to its sensing characteristics. 

Figure 6. Variations of the spatial sensitivity with x for different radii (a) and z (b). 

(a) (b) 

3.2. The Homogeneity of the Spatial Sensitivity 

The homogeneity of the spatial sensitivity is another important performance parameter that 

determines sensing field. In this Section, the variance of the spatial sensitivity along the x-axis is 

defined to estimate the homogeneity of the spatial sensitivity due to symmetry. It is assumed that the 

related variables are limited as 2 2y z a+ > , [ , ]x N N∈ − , one will have: 
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 (18)

where 
2 2 2

2 2

( , , )
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s y z
N N y z
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+


 is the mean value of the spatial sensitivity.  

It is easy to find lim ( ( , )) 0
N

s y zσ
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-300 -200 -100 0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x-coordinate /mm

S
pa

tia
l s

en
si

tiv
ity

 

 
thin-plate a=20mm
a=40mm
a=60mm
a=100mm
hemisphere a=20mm
a=40mm
a=60mm

-300 -200 -100 0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x-coordinate /mm

S
pa

tia
l s

en
si

tiv
ity

 

 
thin-plate z=50mm
z=200mm
z=300mm
hemisphere z=0mm
z=50mm
z=200mm
z=300mm



Sensors 2014, 14 14030 

 

 

z ∈ [50 mm, 400 mm], the variations of the homogeneity of the spatial sensitivity with ,  y z  are  

shown in Figure 7. One can find σ  increases with the decreases of | |,  | |y z . It indicates the 

hemisphere-shaped sensors have higher spatial sensitivity with less homogeneous near the 

hemispherical surface and vice versa. 

Figure 7. The homogeneity of the spatial sensitivity. 

 

Within the pipeline, the particles always move past the probe with the gas flow. Hence improving 

the homogeneity and spatial sensitivity on the cross-section of the pipeline is more beneficial to detect 

particles and generate high output signals. Especially the homogeneity of the high sensitivity is 

frequently mentioned in practice. Since σ  cannot reflect the related characteristic, another estimated 

coefficient is redefined. As shown in Figure 8, Ns  sampling sites of the spatial sensitivity are built, 

whose value are denoted as ( )s n . Then the estimated coefficient can be expressed as: 
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(19)

where Sh  is the mean value of the first 4sN  sampling sites with the highest sensitivity. S  is the 

mean value of the spatial sensitivity. The smaller Du  indicates that the high sensitivity is more 

homogeneous. The variations of Du  with x  are shown in Figure 9.  

Figure 8. Sampling sites of the spatial sensitivity. 
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Figure 9. Variations of Du  with x for different radii. 

 

One can find Du  is almost the same for the different radii of the probe. It demonstrates the 

homogeneity of the high sensitivity has been little affected by the size of the probe. Incidentally, using 

a hemisphere-shaped sensor array instead of a single hemisphere-shaped sensor may be a good way to 

increase the homogeneity of the high sensitivity, and will be the topic of future work. 

3.3. The Characteristic Analysis of the Output Signal 

3.3.1. The System Frequency Response of the Hemisphere-Shaped Sensor 

The frequency response characteristics are critical parameters reflecting the performance of an 

electrostatic sensor, which can provide guidelines for optimal designing the hemisphere-shaped 

electrostatic sensor. The frequency response function of the hemisphere probe can be transformed  

from Equation (16): 
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where ( )K   is the modified Bessel function of the second kind. Then the system frequency amplitude 

response is formulated as follows: 

2 2
0 0 02

4 2
( ) ( )

1 (2 ( ) )

aRf f
U f K y z

f C R

π π
νν π λ

= +
+ +

 (21)

Equation (21) indicates the system frequency amplitude strongly depends on the original position

0 0,  y z , the velocity ν of the charge and the radius of the probe. When the related parameters are set as 

y0 = 0, v = 3 m/s, R = 500 MΩ, C = 100 pF, Figure 10a simulates the system frequency responses for 

different 0z  and probe radii. It can be seen that the system frequency response acts as a band-pass filter 

and the amplitude decreases with the decreases of the radius, but the bandwidth shows little changes. 

Also both the amplitude and bandwidth increase with the decreases of 0z . Obviously, the input signal 

produced by the debris near the hemispherical surface should be more easily detected. In other words, 

the signal bandwidth is mainly determined by the particles near the probe. 
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The variations of system frequency responses with the velocity of the particle are shown in Figure 10b. 

Unlike the amplitude, the bandwidth becomes wider with the increases of the velocity. In practice, 

there are diverse types of particles with different characteristic frequency. Hence, checking maxima 

frequencies in the power spectrum of the output signal allows detecting different particles. 

Additionally, since the velocity of the particle depends on the gas flow, the bandwidth increases when 

the velocity of the gas flow increases. 

Figure 10. System frequency responses for different radii (a) and ν  (b). 

(a) (b) 

With the settings of y0 = 0, z0 = 200 mm, v = 3 m/s, C = 100 pF the variations of system frequency 

responses for different resistances R  are shown in Figure 11a. It can be seen the amplitude decreases 

with the decreases of R , but the bandwidth is almost unchanged. Figure 11b shows the variations of 

system frequency responses for different capacitances C when R = 500 MΩ is set. Unlike Figure 11a, both 

the amplitude and bandwidth have changed with the variation of C —the smaller C causes a frequency 

signal with larger amplitude and bandwidth. Hence the results indicate the larger R and smaller C of 

the circuit should be a good choice. 

Figure 11. System frequency responses for different resistances (a) and capacitances (b). 
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As the previous discussion from Figure 10, farther charge streamlines from the probe induce signals 

with smaller frequency amplitude. Hence the flow distribution can also be inferred from the spectral 

density information. Figure 12 shows the peak spectral component of the signal that is induced by 

charges with different y and z. The corresponding parameters are set as v = 3 m/s, R = 500 MΩ,  

C = 100 pF. In practice, one can get the location of the real sensor signal from Figure 12. Identifying 

the real location of the concentrated bulk of the flow or debris in gas path is more possible. 

Figure 12. The peak spectral component. 

 

3.3.2. The System Time Response of the Hemisphere-Shaped Sensor 

In this section, the characteristics of the output signal with a unit impulse input signal are estimated. 

Supposing the original position of the particle is at (−3, 0, 0.2) m and the velocity is set as v = 3 m/s, 

one can find the output voltage increases with the increases of the radius in Figure 13a. Besides, the 

output voltage includes two impulsive signals, because it is the derivative of the induced charge. 

Furthermore, the smaller the distance between the charge and the probe, the larger the voltage 

amplitude. Figure 13b illustrates that the larger velocity of the particle causes a voltage with a larger 

amplitude. Obviously, the response time is also shorter with the larger velocity. 

Figure 13. System time responses for different radii, 0z  (a) and ν  (b). 
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One can see that the amplitude of the negative impulsive signal is larger than the positive one, which 

is different from many articles [6,8,16]. C and λ in Equation (17) are the main reasons with the 

responsibility for the attenuation of the voltage amplitude, which cannot be neglected. In fact, the time 

constant τ = R(C + λ ) is the delay factor. Figure 14 shows the system time responses for different 

resistances and capacitances. It can be seen from Figure 14a that when the capacitance is set as  

C = 100 pF, both the voltage amplitude and delay increases with the increases of the resistance.  

In contrast, using the setting of R = 500 MΩ, the voltage amplitude decreases with the increases of 

capacitance, while the delay still increases. Thereby one can infer that the delay increases with the 

increases of τ from the common results. Additionally, to decrease the attenuation of the voltage amplitude, 

one should choose smaller capacitance and larger resistance, consistent with the previous conclusions. 

Figure 14. System time responses for different resistances (a) and capacitances (b). 

(a) (b) 
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The simulation results are shown in Figure 15. 

Figure 15. System time responses with gravitational acceleration. 
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The attenuation of the voltage amplitude caused by the time constant τ is verified again. Otherwise, 

the positive impulsive signal should be larger than the negative one as the modeled curve shown with 

0.01τ =  because of the increases of the velocity. 

4. Conclusions 

The electrostatic probe is the key component for capturing the changes of total charges in the gas 

path or measuring particle concentration and size in a gas-solid flow. Due to their advantages of low 

cost and robustness, various probes have been widely used in industrial applications. Non-intrusive 

probes usually have little spatial sensitivity and weak output signals as the result of the pipeline shields 

or their small induced area. Conversely, the intrusive probes have the opposite advantages while they 

often affect the gas flow. The common disadvantages of those sensors are either that their 

electrodynamic models cannot be resolved due to their complicated shapes, i.e., rod-shaped, or the 

obtained analytical functions are too complicated to study their sensing characteristics. Unlike those 

sensors, a novel hemisphere-shaped sensor was investigated in this paper, and the corresponding 

analytically 3D-symmetrical model was obtained in terms of elementary functions, which is an 

important advantage in many applications. 

In this paper, the Green function of the point charge outside the hemisphere probe was derived first. 

Then the spatial sensitivity and time-frequency response functions were also directly formulated based 

on the Green function. The numeric simulations estimated the performance of sensors in terms of the 

spatial sensitivity, the homogeneity of the spatial sensitivity and the time-frequency response. The 

main results can be summarized as follows. 

(1) The spatial sensitivity of the hemisphere-shaped sensor is 3D-symmetrical and elementary, 

which is much higher than that of a non-intrusive sensor. 

(2) Hemisphere-shaped sensors have a highly inhomogeneous spatial sensitivity near the 

hemispherical surface and vice versa. 

(3) The temporal frequency response acts as a band-pass filter. The time-frequency characteristics 

are determined by the spatial position and velocity of the charged particle, and the radius of the 

probe, as well as the equivalent resistance and capacitance of the circuit. 
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