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Abstract: Existing traffic information acquisition systems suffer from high cost and low 
scalability. To address these problems, the application of wireless sensor networks (WSNs) 
has been studied, as WSN-based systems are highly scalable and have a low cost of 
installing and replacing the systems. Magnetic, acoustic and accelerometer sensors have 
been considered for WSN-based traffic surveillance, but the use of ultrasonic sensors has 
not been studied. The limitations of WSN-based systems make it necessary to employ 
power saving methods and vehicle detection algorithms with low computational 
complexity. In this paper, we model and analyze optimal power saving methodologies for 
an ultrasonic sensor and present a computationally-efficient vehicle detection algorithm 
using ultrasonic data. The proposed methodologies are implemented and evaluated with a 
tiny microprocessor on real roads. The evaluation results show that the low computational 
complexity of our algorithm does not compromise the accuracy of vehicle detection. 

Keywords: power saving; low computational complexity; ultrasonic sensors; traffic 
information acquisition systems; wireless sensor networks 

 

1. Introduction 

A wireless sensor network (WSN) is a large group of independent wireless sensor nodes comprised 
of sensors, microprocessors and communication modules. The objective of the WSN is to collect 
specific data and transmit it to the required destination. WSNs were originally studied for military 
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purposes, but research is now focused on a wide range of consumer industries, giving rise to the notion 
of ubiquitous computing. Recently, new WSN approaches have been employed for more efficient 
traffic surveillance in intelligent transportation systems (ITS). Existing traffic information acquisition 
systems use wired power and communication and require powerful computing resources to attain high 
detection accuracy. However, such methodologies elevate the cost of construction and maintenance; 
consequently, the available detection area is narrowed. Thus, to measure traffic information across 
entire road networks, we require a low cost, highly scalable detection system. 

WSN-based traffic information acquisition systems satisfy these twin requirements of low cost and 
high scalability. However, a number of issues must be overcome before WSN techniques are applied to 
traffic information acquisition systems. As the sensor nodes in WSNs are typically very small and driven 
by batteries, their computing power is limited. Thus, it is important to minimize power consumption, 
and to reduce as much as possible the computational complexity and memory usage of the vehicle 
detection algorithm. Studies on the application of WSNs to traffic surveillance have considered 
magnetic, accelerometer and acoustic sensors. However, ultrasonic sensors have not been applied in 
such a WSN environment. 

Thus, in this paper, we introduce a power saving methodology for ultrasonic sensors and a  
low-complexity vehicle detection algorithm. Our approach does not compromise the vehicle detection 
accuracy. First, we analyze the characteristics of ultrasonic waves and sensors and then describe the 
vehicle detection methodology. Next, we discuss the power consumption of an ultrasonic sensor and 
provide detailed power-saving strategies. In addition, we introduce a novel detection algorithm that has 
low computational complexity and memory usage, while still providing an appropriate level of 
performance. The proposed vehicle detection algorithm is evaluated on real roads. Using the 
evaluation results, we discuss the possibilities and limitations of WSN-based traffic information 
acquisition systems with ultrasonic sensors. 

The remainder of this paper is organized as follows. In the next section, we review the background 
to traffic information acquisition systems and the related literature. In Section 3, we describe the 
characteristics of ultrasonic waves, and in Section 4, we analyze and model the process of vehicle 
detection using WSN-based ultrasonic sensors. Section 5 describes a case study, and Section 6 presents 
the results of a performance evaluation. Finally, our conclusions and ideas for future work regarding 
this research are given in Section 7. 

2. Related Work 

Various sensors have been considered for the acquisition of traffic information in ITS. Existing 
systems can be considered as either intrusive or non-intrusive, depending on the sensor position. 
Intrusive sensors are installed under or across the pavement. They provide accurate traffic information,  
but the installation and maintenance of these sensors can cause traffic disruption. Examples of 
intrusive sensors include inductive loop detectors, pneumatic tubes, piezoelectric sensors and  
weigh-in-motion [1–4]. Non-intrusive sensors are installed above or to the side of the road, ensuring 
minimal disruption to traffic flow. Such sensors may utilize microwave radar, infrared, video, 
ultrasonic systems and acoustic sensors [5–9]. Existing systems collect highly accurate traffic 
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information, but require high computing power, wired power supplies and wired communication. This 
increases their cost and decreases scalability. 

To address these problems, traffic information acquisition systems based on WSNs have been 
studied. WSN-based systems use a wireless network and are battery driven, which enhances the system 
scalability and reduces the cost. In [10], a WSN-based vehicle detection system was introduced that 
used small magnetic sensors to replace conventional inductive loop detectors. Traffic flow and speed 
information could be collected with high accuracy, but this system did not allow for vehicle 
classification. Accurate vehicle classification was achieved by applying both magnetic and 
accelerometer sensors [11], where each vehicle could be detected by magnetic sensors and classified 
by axle detection using accelerometer sensors. A detection system has been proposed that uses acoustic 
sensors to provide wide-range, low-cost traffic surveillance [12]. This system collects speed and flow 
data at a master node, and traffic congestion is detected by the sensor nodes. Pyro-electric sensors were 
employed to detect vehicles in a parking space and a typical road environment [13,14]. In [13],  
pyro-electric sensors were used to sense the status of car parking space. The status information is 
displayed for the users on the LED (Light-Emitting Diode) screen. The authors in [14] tried to increase 
vehicle detection accuracy by combining different type of sensors, such as acoustic, magnetic, 
accelerometer and pyro-electric sensors. 

The WSN-based systems mentioned above have proved that low-cost, highly scalable traffic 
surveillance can be accomplished. However, many issues remain to be overcome. The approaches  
in [10,11] showed that vehicle detection and classification can be achieved using multimodal sensor 
data, but these systems should be installed on the pavement, which will increase their cost and cause 
traffic disruption. The approach reported in [12] is non-intrusive, but could not achieve high detection 
accuracy across multiple lanes. The studies in [13,14] are also non-intrusive, but did not provide 
detailed methods of power saving and lightweight detection algorithm. 

In our previous paper, we introduced entire architecture of vehicle detection systems with ultrasonic 
sensors in WSN [15]. However, the detailed methodologies of power saving and lightweight detection 
algorithm were not provided. Thus, in this paper, we propose advanced methods of power saving and 
lightweight detection algorithm using WSN-based ultrasonic sensors. Figure 1 illustrates some typical 
mount positions for ultrasonic sensors. We use the horizontal mount position shown in Figure 1c, as 
this enhances the scalability of the proposed system. 

3. Characteristics of Ultrasonic Waves 

This section describes the characteristics of ultrasonic waves. Generally, frequencies above 20 kHz 
are considered to be ultrasonic. The speed of ultrasonic waves varies with air temperature and can be 
calculated as follows: 

Ultrasonic speed = 331.5 m/s + (0.61 × temperature) (1) 

The dissemination angle of an ultrasonic sensor depends on the ultrasonic frequency. As illustrated 
in Figure 2, for instance, the dissemination angle θ increases as the ultrasonic frequency decreases.  
In addition, to detect the reflected ultrasonic wave, we require α < θ

2
, where α is the angle between an 

ultrasonic sensor and the detection object. 
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Figure 1. Mount positions of an ultrasonic sensor. (a) Overhead mount; (b) side top mount; 
(c) horizontal mount. 

   
(a) (b) (c) 

Figure 2. Dissemination and detectable angle of an ultrasonic sensor. 

 

These characteristics of ultrasonic waves must be considered when designing vehicle detection 
systems. The variation of ultrasonic speed with air temperature influences the detection interval of an 
ultrasonic sensor, and the angle between the sensor and detection object influences its installation 
position. These factors are discussed further in Section 4. 

4. Vehicle Detection Using Ultrasonic Sensors 

The important aspect of WSN-based traffic information acquisition systems is to minimize power 
consumption. Because WSN-based systems are battery driven, their total lifetime is restricted by the 
residual battery capacity. Typically, the largest power consumption occurs with ultrasonic bursts in an 
ultrasonic sensor. Figure 3 shows the power consumption of an ultrasonic sensor under a series of 
ultrasonic bursts. 

Figure 3. Power consumption of an ultrasonic sensor. 
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Thus, minimizing the number of ultrasonic bursts will reduce the power consumption of the sensor. 
Using a long detection interval can reduce the power consumption caused by such bursts, but an overly 
long detection interval will increase the number of detection errors. This is because a certain amount of 
data is needed to guarantee accurate vehicle detection. Therefore, it is important to determine an 
appropriate detection interval for WSN-based traffic information acquisition systems. To do this, we 
constructed the analysis model illustrated in Figure 4. 

Figure 4. Analysis model. 

 

4.1. Analysis with a Single Vehicle 

First, to simplify our analysis, we consider a single vehicle on a single-lane road, as illustrated in 
Figure 4. We assume the vehicle has length 𝑙𝑣 and is traveling at constant speed 𝑣𝑣 on a straight path 
along a lane of width 𝑙𝑙. The ultrasonic sensor is placed at a distance of 𝑙𝑔 from the roadside. The 
ultrasonic wave spreads at constant speed 𝑣𝑢 and with angle θ. The width of the ultrasonic wave 𝑙𝑑 is 
2𝑙𝑢 tan θ

2
, where 𝑙𝑢 is the distance from the sensor to the detection point. 

The detection point is the side of the vehicle owing to the mount position of an ultrasonic sensor. 
Vehicles are detected using a number of distance data collected from the ultrasonic sensors. This 
requires the ultrasonic sensors to have detection intervals that can collect sufficient distance data for 
reliable vehicle detection. 

The detection interval of an ultrasonic sensor is given by: 
detectable period of a vehicle

number of distance data necessary for vehicle detection
  

In Figure 4, the detectable period of the vehicle can be calculated as 𝑙𝑣
𝑣𝑣

 when the vehicle passes the 

ultrasonic sensor. However, as the ultrasonic wave has a width of 𝑙𝑑  at detection distance 𝑙𝑙 , the 
detectable period of the vehicle is 𝑙𝑣+𝑙𝑑

𝑣𝑣
. Thus, if we know how many distance measurements are 

needed, we can calculate the detection interval. However, this is not simple. We must examine the 
system design to determine the necessary number of distance data. 

Generally, raw signal data collected from the sensors should be filtered for noise before being input 
to a specific algorithm. To avoid useful signals being filtered out, the volume of data should be larger 
than some minimum amount required by the noise filter. This minimum varies depending on the type 
of noise filter. The most appropriate noise filter is determined by the characteristics of ultrasonic sensors. 
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Ultrasonic sensors generate distance data by measuring the time taken to receive reflected ultrasonic 
waves. The time is directly proportional to the distance between the ultrasonic sensor and the detection 
object. Owing to the slow speed of ultrasonic waves, the sampling rate is much lower than in other 
sensors, e.g., acoustic and magnetic sensors. Moreover, if the noise filter is implemented in a software 
package, its complexity must be suitable for the low computing power of WSN-based systems. 
Considering these two restrictions, we analyzed various filters. A median filter has been selected for 
the proposed system, because it combines appropriate performance with a low sampling rate. 

The required number of data for a median filter is �𝑚
2
�, where 𝑚 is the mask size of the filter. Thus, 

the detection interval of an ultrasonic sensor using a median filter is given by Equation (2), which 
means the maximum detection interval. If the detection interval is longer than that given by Equation (2), 
the data will be filtered out: 

Maximum detection interval =
𝑙𝑣 + 𝑙𝑑
𝑣𝑣 �

𝑚
2 �

 (2) 

Previously, the maximum detection interval for an ultrasonic sensor was derived based on the 
model in Figure 4. If more frequent data are needed, a shorter detection interval can be applied. 
However, the detection interval cannot be shortened indefinitely, owing to the slow speed of ultrasonic 
waves. If a new ultrasonic wave is emitted before the previous wave has been received, a detection 
error will occur. Thus, the ultrasonic sensor should wait until the previous wave has arrived. 

In Figure 4, the maximum detection distance is 𝑙𝑙 + 𝑙𝑔. Because the ultrasonic wave makes a round 
trip, the maximum total distance traveled by the ultrasonic wave is 2(𝑙𝑙 + 𝑙𝑔). If a road has 𝑛 lanes, 
this distance will be 2(𝑛𝑙𝑙 + 𝑙𝑔). The travel time of an ultrasonic wave over this distance is given  
by Equation (3). This is the minimum detection interval, because the ultrasonic sensor cannot emit a 
new ultrasonic wave during this period: 

Minimum detection interval =
2(𝑛𝑙𝑙 + 𝑙𝑔)

𝑣𝑢
 (3) 

Thus, the available detection interval 𝑡𝑖 can be written as: 

Available detection interval →
2(𝑛𝑙𝑙 + 𝑙𝑔)

𝑣𝑢
< 𝑡𝑖 <

𝑙𝑣 + 𝑙𝑑
𝑣𝑣 �

𝑚
2 �

 (4) 

If the detection interval of an ultrasonic sensor is outside these bounds, the reliability of the 
collected data cannot be guaranteed. 

We can now determine an appropriate detection interval for an ultrasonic sensor in a road 
environment. If power saving is more important, a longer detection interval can be applied, whereas a 
shorter interval can be used when sufficient power resources are available. This shorter detection 
interval will provide more distance data. However, the parameters of Equation (4) vary depending on 
the road environment. Thus, further analysis is necessary. 

According to Equation (2), the vehicle speed 𝑣𝑣  and detection distance 𝑙𝑢  affect the maximum 
detection interval ( 𝑙𝑑  varies according to 𝑙𝑢 ). Figure 5 illustrates the variation in the maximum 
detection interval with 𝑣𝑣 for different values of 𝑙𝑢. In this simulation, we used parameter values of 



Sensors 2014, 14 14056 
 

 

𝑚 = 3, 𝑙𝑣 = 3.5 m and θ = 90. As shown in Figure 5, the maximum detection interval decreases 
linearly with shorter 𝑙𝑢, whereas it decreases logarithmically with higher 𝑣𝑣. 

Figure 5. Variation in the maximum detection interval. 

 

According to Equation (3), the distance traveled by an ultrasonic wave and the ultrasonic speed 𝑣𝑢 
influence the minimum detection interval. Figure 6 illustrates the variation in the minimum detection 
interval with temperature for different numbers of lanes. Parameter values of 𝑙𝑙 = 3.5 m and 𝑙𝑔 = 0 
were used. As expected, the minimum detection interval decreases for shorter travel distances. Because 
the speed of an ultrasonic wave increases with temperature, the minimum detection interval also 
decreases with higher temperature. However, the variation with temperature is insignificant and is thus 
neglected in our later analysis. 

Figure 6. Variation in the minimum detection interval. 

 

Figures 5 and 6 show that the maximum and minimum detection intervals are affected by specific 
parameters. Among these, 𝑙𝑢 significantly influences both detection intervals. Therefore, it is necessary 
to determine the detection interval that is least affected by variations in this parameter. 

Figure 7 shows the maximum and minimum detection interval on a one-lane road with respect to  
the detection distance 𝑙𝑢 , maximum and minimum detection intervals vary significantly with the 
detection distance. Thus, for reliable vehicle detection, the available detection interval should be from 
20 ms to 111 ms, the interval that is not affected by the variation in detection distance. Because 
Equation (3) uses the maximum value of 𝑙𝑢 (i.e., 2(𝑛𝑙𝑙 + 𝑙𝑔)), the minimum detection interval is not 
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influenced by changes in 𝑙𝑢. However, Equation (2) varies with 𝑙𝑢, so Equation (4) should include the 
following additional restrictions: 

Available detection interval →
2�𝑛𝑙𝑙 + 𝑙𝑔�

𝑣𝑢
< 𝑡𝑖 <

𝑙𝑣 + 𝑙𝑑
𝑣𝑣 �

𝑚
2 �

 (5) 

ld = width of minimum lu; 
lv = minimum vehicle length; 
vv = maximum vehicle speed. 

Figure 7. Available detection interval on a one-lane road. 

 

First, for the maximum detection interval, the minimum value of 𝑙𝑑 (i.e., the width given by the 
minimum 𝑙𝑢) should be used, because Figure 7 indicates that larger values lead to unreliable vehicle 
detection. The minimum of 𝑙𝑑 varies according to the sensor position and road environment, but this 
information can be easily measured. Second, the vehicle length 𝑙𝑣 should be minimized. Thus, we may 
use the length of a typical compact car. Finally, the vehicle speed 𝑣𝑣 should be the maximum speed on 
the target road. The speed limit, or a slightly larger value, can be used for 𝑣𝑣, as people often drive 
above the speed limit [16]. The main reason for these restrictions on 𝑙𝑣 and 𝑣𝑣 is that they affect the 
maximum detection interval. 

As we have mentioned, the sampling rate of an ultrasonic sensor is much lower than that of other 
sensors. Thus, the detectable vehicle speed represents important information. As expected, the 
detectable vehicle speed is also lower than with other sensors, owing to the slow sampling rate of 
ultrasonic sensors. Figure 8 shows the detectable vehicle speed on a one-lane road using parameter 
values of θ = 90, 𝑚 = 3,  𝑙𝑣 = 3.5 m, 𝑙𝑑 = 0.2 m, 𝑙𝑙 = 3.5 m, 𝑙𝑔 = 0 m and 𝑣𝑢 = 343.7 m/s. 

Because the minimum detection interval is not influenced by the vehicle speed, this remains 
constant for different vehicle speeds. In contrast, the maximum detection interval decreases with 
higher vehicle speeds. The two values meet at about 330 km/h, which is the maximum detectable 
vehicle speed. This speed is more than sufficient for a normal one-lane road, indicating that reliable 
data collection on such roads is possible. 

The same experiments were performed on a two-lane road, and the results are shown in Figures 9  
and 10. The same parameters as used to produce Figures 7 and 8 were used. Figure 9 shows that the 
available detection interval is narrower than for a one-lane road, because the longest minimum 
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detection interval increases from 20 ms to 41 ms. This increase is a result of the increase in the 
detection distance. The detectable vehicle speed is also reduced owing to the increase in minimum 
detection interval. These results indicate that more lanes reduce the available detection interval and 
detectable vehicle speed. 

Figure 8. Detectable vehicle speed on a one-lane road. 

 

Figure 9. Available detection interval on a two-lane road. 

 

Figure 10. Detectable vehicle speed on a two-lane road. 
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4.2. Analysis with Multiple Vehicles 

The previous analysis of the available detection interval considered a single vehicle. We now 
extend our analysis to a multiple-vehicle environment. Figure 11 illustrates the analysis model with 
multiple vehicles. For reliable vehicle detection with more than two vehicles, it is vital that two 
vehicles can be distinguished. To separate the two vehicles, a certain amount of data should be 
measured in the space between the two vehicles. This means that 𝑡𝑔 > �𝑚

2
� 𝑡𝑖, where 𝑡𝑔 is the temporal 

gap between the vehicles, 𝑚 is the mask size of the median filter and 𝑡𝑖 is the detection interval of an 
ultrasonic sensor. Moreover, 𝑙𝑐 > 𝑙𝑑 + �𝑚

2
� 𝑡𝑖𝑣𝑣  should hold, where 𝑙𝑐  is the distance between two 

vehicles. These restrictions can be summarized as: 

Requirements to separate two vehicles → �
𝑡𝑔 > �

𝑚
2
� 𝑡𝑖

𝑙𝑐 > 𝑙𝑑 + �
𝑚
2
� 𝑡𝑖𝑣𝑣

� (6) 

Figure 11. Analysis model with multiple vehicles. 

 

The first constraint of Equation (6) implies that, if 𝑡𝑔 is shorter than �𝑚
2
� 𝑡𝑖, the collected data will be 

filtered out by the noise filter. As a result, the two vehicles cannot be separated. In the second 
constraint, 𝑙𝑐 > 𝑙𝑑  must be satisfied. If 𝑙𝑐 < 𝑙𝑑 , the ultrasonic sensor cannot collect any data from 
between the two vehicles. There must be sufficient data, after filtering, from between the two vehicles, 
which requires additional space between them. Thus, the distance moved by the vehicle at the rear 
during the total detection period should be added to 𝑙𝑑 . The total detection period is �𝑚

2
� 𝑡𝑖 , so the 

distance moved by the rear vehicle is �𝑚
2
� 𝑡𝑖𝑣𝑣. 

We now describe how Equation (6) affects our previous analysis. First, we must calculate the gap 
time 𝑡𝑔 to analyze the first requirement of Equation (6). However, this gap time varies according to 
vehicle speed and road environment, so we cannot apply a constant gap time for the first requirement 
of Equation (6). 

Thus, we consider a specific gap time to explain the influence of Equation (6). Figure 12 shows the 
available detection interval from Figure 7 adjusted by the first requirement of Equation (6) with 
parameter values of 𝑡𝑔 = 0.1 s and 𝑚 = 3. As the gap time is assumed to be 0.1 s, the constraint 
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imposed by Equation (6) causes the maximum detection interval to decrease from 111 ms to 50 ms. 
Although we assumed a gap time of 0.1 s, this will typically be longer on real roads. If a longer gap 
time was used for the previous analysis, the available detection interval would be unchanged. For 
example, if the gap time is longer than 222 ms, it does not influence the available detection interval. 
Thus, an appropriate estimate of the gap time is important to obtain a reliable detection interval. 

We now consider the second requirement of Equation (6). If the angle θ of the ultrasonic sensor is 
reduced, the width of the ultrasonic wave 𝑙𝑑  decreases, which means that the minimum distance 
required between two vehicles can be reduced by a narrower ultrasonic angle. Thus, the second 
constraint of Equation (6) implies that a narrower angle in the ultrasonic sensor will enable easier 
separation of two vehicles. 

Figure 12. Available detection interval on a one-lane road. 

 

4.3. Other Considerations 

The previous analysis results demonstrate the importance of determining the detection interval for 
power saving in WSN-based traffic information acquisition systems that use ultrasonic sensors. In this 
section, we discuss other considerations that influence the detection interval. 

Figure 13 illustrates a modified analysis model. When a vehicle passes the ultrasonic sensor, the 
maximum value of the detection distance 𝑙𝑢 cannot exceed 𝑙𝑙 + 𝑙𝑔 − 𝑙𝑤, where 𝑙𝑤 is the width of the 
vehicle. Thus, we have that 𝑙𝑢 < 𝑙𝑙 + 𝑙𝑔 − 𝑙𝑤, i.e., 

0 < 𝑙𝑢 < 𝑙𝑙 + 𝑙𝑔 − 𝑙𝑤   (7) 

Equation (7) implies that reducing the maximum value of 𝑙𝑢  decreases the longest possible 
minimum detection interval. Figure 14 shows the effect of Equation (7) on the available detection 
interval in Figure 12. The parameters used are the same as those used to produce Figure 12, and  
𝑙𝑤 = 1.5 m (the approximate width of a compact car). As shown in Figure 14, the constraints of 
Equation (6) mean that the maximum detection interval is fixed to 50 ms. In contrast, the longest 
minimum detection interval decreases from 20 ms to 12 ms. This reduction widens the range of the 
available detection interval, which indicates that data can be collected more frequently and increases 
the detectable vehicle speed. 
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Figure 13. Modified analysis model. 

 

Figure 14. Available detection interval on a one-lane road. 

 

The analysis model of Figure 13 considered a one-lane road. The model can be extended to a  
two-lane road, as illustrated in Figure 15, in which one vehicle is placed in each lane. In this case, the 
maximum value of 𝑙𝑢  for the vehicle in the inside (respectively outside) lane will be 2𝑙𝑙 + 𝑙𝑔 − 𝑙𝑤  
(respectively 𝑙𝑙 + 𝑙𝑔 −

𝑙𝑤
2

). These two conditions can be summarized as follows: 

0 < 𝑙𝑢 < 𝑙𝑙 + 𝑙𝑔 −
𝑙𝑤
2

 

𝑙𝑙 + 𝑙𝑔 −
𝑙𝑤
2

< 𝑙𝑢 < 2𝑙𝑙 + 𝑙𝑔 − 𝑙𝑤 
(8) 

Equation (8) also influences the range of the available detection interval, and the impact on the 
longest minimum detection interval is the same as that resulting from Equation (7). 

Finally, we discuss the positioning of the ultrasonic sensors. As shown in Figure 2, we require  
α < θ

2
 to correctly detect vehicles, and this condition influences the positioning of the ultrasonic 

sensors. Figure 16 illustrates that, if an ultrasonic sensor is placed on a curved section of road, the 
value of α  will increase. Consequently, the reflected ultrasonic wave cannot be received by the 
ultrasonic sensor. Thus, ultrasonic sensors should be installed on straight sections of road to ensure 
reliable vehicle detection. 
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Figure 15. Modified analysis model on a two-lane road. 

 

Figure 16. Ultrasonic sensor positioning. 

 

5. Case Study 

In this section, we use a case study to introduce a framework for designing a lightweight vehicle 
detection algorithm. The target road has two lanes and an 80 km/h speed limit. Initially, we use the 
detection interval derived from our previous analysis and then explain the vehicle detection algorithm. 

5.1. Detection Interval 

The parameters of the target road are n = 2, θ = 90, m = 3, lv = 3.5 m, ll = 3.5 m, lg = 0 m,  
vv = 80 km/h and vu = 343.7 m/s. The available detection interval of 32 ms to 50 ms is generated using 
Equations (5), (6) and (8) (Figure 17). As WSN-based systems should generally minimize their power 
consumption, we select the longest available detection interval. 

5.2. Vehicle Detection Algorithm 

Figure 18 depicts an overview of our vehicle detection algorithm. As WSN-based systems have low 
computing power, algorithms with high computational complexity cannot be applied. Moreover, 
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memory reduction mechanisms should be included owing to the limited memory size. Our algorithm is 
designed based on these restrictions. 

Figure 17. Available detection interval on a two-lane road. 

 

Figure 18. Vehicle detection algorithm. 

 

Our algorithm is classified into five steps. The raw distance data 𝑟(𝑛) measured by an ultrasonic 
sensor are passed through a noise filter. We use a median filter, because this retains good performance 
with the low sampling rate of ultrasonic data. To minimize the computational complexity of the 
median filter, a mask size of three is used. The filtered distance data 𝑒(𝑛) are then quantized according 
to the lane width. This step is very important, because it limits the type of vectors to be handled in the 
vector extraction step. This, in turn, minimizes the search overhead in the pattern matching step. 
Moreover, quantization simplifies the segmentation operations. 

Figure 19 shows the effect of noise filtering and quantization on a two-lane road, where 𝑟(𝑛) is raw 
distance data, 𝑒(𝑛) is noise filtered data and 𝑞(𝑛) is quantized data, with a mask size of three and a 
quantization level of 3.5 m. From the filtered data 𝑒(𝑛), we can confirm that the median filter exhibits 
proper filtering performance with ultrasonic data. The quantized data 𝑞(𝑛) clearly show information 
about the passing vehicles. 

As shown in Figure 20, if the specific data that includes traffic information can be segmented, we 
can greatly reduce the amount of memory needed. The starting point 𝑠𝑠  and end point 𝑠𝑒  of 
segmentation can be easily selected as: 

𝑠𝑠 = 𝑞(𝑡),   𝑖𝑓 𝑞(𝑡) < 𝑞𝑚𝑎𝑥  

 𝑠𝑒 = 𝑞(𝑡),   𝑖𝑓 𝑞(𝑡) < 𝑞𝑚𝑎𝑥 𝑎𝑛𝑑 𝑠𝑠 𝑖𝑠 𝑒𝑛𝑎𝑏𝑙𝑒𝑑   
(9) 
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where 𝑞𝑚𝑎𝑥 is the maximum distance data measured by an ultrasonic sensor, which means that there 
are no vehicles on roads where 𝑞(𝑡) is the quantized distance data at time 𝑡. This simple method can be 
applied owing to the previous quantization step. More complicated mechanisms would be needed to 
select 𝑠𝑠 and 𝑠𝑒  without the quantization. 

Figure 19. Example of noise filtering and quantization. 

 

After quantization, a segmentation process is employed to minimize the amount of memory 
required. The periodic collection of traffic information is widely used in traffic information acquisition 
systems. For instance, the intelligent roadway information system in Minneapolis, Minnesota, USA, 
collects traffic information every 30 s [17]. If two bytes of distance data are collected at 50 ms 
intervals, a total of 1.2 KB will be generated every 30 s. The widely used WSN platform MICAz 
(Crossbow, Milpitas, CA, USA) has 4 KB  memory space [18]. Thus, considering that the WSN 
computing platform must run a routing protocol and operating system at the same time, 1.2 KB is a 
significant amount of data. 

Figure 20. Segmentation. 

 

The segmented distance data are then represented as vectors, as depicted in Figure 21. To change 
the segmented distance data 𝑠(𝑘) to vectors, a high-pass filter is applied. As shown in Figure 21,  
high-pass-filtered data have their own size and direction, depending on the quantized distance data. 
The quantization according to lane width in the previous step limits the possible vector types. For a  
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two-lane road, only four different vectors can be generated (two different directions and two different 
sizes). Figure 22 illustrates example vectors and patterns for our target road. Each pattern represents 
the number of lanes on the road. There are a total of six patterns for our target road. Using these 
patterns, traffic information is generated in the final pattern matching step. 

Figure 21. Vector extraction. 

 

Figure 22. Example patterns for the target road. 

 

5.3. Vehicle Detector 

Figure 23 shows the internals of our vehicle detector. The detector is composed of an ultrasonic 
module and a control module. We used an SRF04 (Devantech, Attleborough, England) from 
Devantech [19] for the ultrasonic module and a MICAz from Crossbow [18] for the control module. 
The ultrasonic module is controlled by a pulse-width modulation (PWM) signal generated by the 
Atmega128L (Atmel, San Jose, CA, USA) in the control module. The distance data measured by the 
ultrasonic module are transmitted to the control module as an analog signal, and then, the received 
distance data are interpreted as traffic information using our vehicle detection algorithm. The collected 
traffic information is transmitted to a server by a CC2420 radio transceiver. (Texas Instruments, Dallas, 
TX, USA) The software is based on TinyOS, which is the most popular WSN operating system [20]. 
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Figure 23. Vehicle detector. 

 

6. Performance Evaluation 

Our vehicle detection algorithm is designed to minimize both computational complexity and 
memory usage. We implemented our algorithm on the MICAz mote, which has only an 8 MHz clock 
speed and 4 KB of memory. We confirmed the complete operation of our algorithm with TinyOS in 
real time. It indicated that our algorithm is designed with greatly lowered computational complexity 
and memory usage. 

Next, we analyzed the accuracy of our vehicle detection algorithm. The experiments considered a  
two-lane road from 10:00 to 11:00. Table 1 compares the detection results with video results. 

Table 1. Vehicle detection results. 

Time 

Count by Video 

(vehicles) 
Count by Ultrasonic (vehicles) Error Rate (%) 

Type of Error (vehicles) 

Overlap Loss Over Counting 

Lane 1 Lane 2 Total Lane 1 Lane 2 Total Lane 1 Lane 2 Total Lane 1 Lane 1 Lane 2 Lane 1 Lane 2 

10:00~10:10 23 63 86 21 63 84 −8.70 0.00 −2.33 1 3 0 2 0 

10:10~10:20 35 62 97 34 63 97 −2.86 1.61 0.00 1 1 0 1 1 

10:20~10:30 25 59 84 23 59 82 −8.00 0.00 −2.38 2 1 0 1 0 

10:30~10:40 19 49 68 18 49 67 −5.26 0.00 −1.47 2 0 0 1 0 

10:40~10:50 29 72 101 27 72 99 −6.90 0.00 −1.98 2 1 0 1 0 

10:50~11:00 26 60 86 24 61 85 −7.69 1.67 −1.16 2 1 0 1 1 

Total 157 365 522 147 367 514 −6.37 0.55 −1.53 10 7 0 7 2 

In Table 1, the possible detection errors in our system are classified into three categories. An 
“overlap” error occurs when two vehicles in different lanes pass the detector at the same time. In this 
case, the vehicle furthest from the sensor cannot be detected. A “loss” error occurs when the vehicle 
detection data are filtered out by the noise filter. Finally, an “over-counting” error is caused by a 
vehicle lane change. If a vehicle changes lanes in front of the detector, the data pattern is measured as 
the third or fourth pattern in Figure 22. The “loss” and “over-counting” errors can occur in other types 
of sensors, such as magnetic and acoustic sensors. However, “overlap” errors are specific to the 
roadside installation of sensors. It is obvious that the number of “overlap” errors will increase with 
higher traffic flow. 
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As shown in Table 1, the total number of detection errors using the ultrasonic sensors is 6.37% 
lower in Lane 1 and 0.55% higher in Lane 2. This difference is because the detector is installed on the 
roadside next to Lane 2. The total error rate is 1.53% lower than that recorded by the video sensors, 
which indicates that our algorithm has high vehicle detection accuracy. 

The previous analysis and performance evaluation indicate the feasibility of vehicle detection with 
ultrasonic sensors within a WSN-based traffic information acquisition system. The traffic information 
can be collected in real time with small, simple hardware and software. Moreover, the detection 
accuracy is very high. However, such a system has some limitations. The roadside installation of 
sensors leads to “overlap” errors, and their number will increase with higher traffic flows. Our detector 
was tested on a road with 522 veh/h, which is a normal traffic flow on a two-lane road. If the 
experiments were performed with higher traffic volumes, the error rate would be higher than that 
reported here. This suggests that roadside sensor installation, while improving the system’s scalability, 
can increase the number of detection errors. 

Thus, to maintain detection accuracy, ultrasonic sensors should only be employed on roads with few 
lanes, and dense traffic flows should be avoided. These two limitations can be overcome with small 
changes. For instance, the detection accuracy could be increased across multiple lanes by installing 
sensors on both sides of the road. In addition, our system could be used for temporal vehicle detection, 
such as within a work zone. 

It is true that the roadside installation of sensors has limitations for accurate vehicle detection with 
dense traffic flows. Other mount positions, such as overhead and side top mount, in Figure 1 can be 
used. In these case, the scalability will decline, because each lane needs its own sensor. However, our 
strategies for power saving and the framework for the lightweight vehicle detection algorithm 
introduced in this paper can be applied for the other mount positions. 

7. Conclusions and Future Work 

In this paper, we analyzed vehicle detection using roadside ultrasonic sensors in WSNs and 
suggested methodologies for power saving and lightweight vehicle detection. From the detailed 
analysis, we confirmed the importance of determining an appropriate detection interval in minimizing 
power consumption. We introduced design methodologies to reduce computational complexity and 
memory usage while maintaining high detection accuracy. However, our experiments showed that 
vehicle detection across multiple lanes with a single roadside ultrasonic sensor suffers a reduction in 
detection accuracy under dense traffic flow, because the number of “overlap” errors increases. Thus, to 
guarantee high detection accuracy, ultrasonic sensors should be employed in situations with few lanes 
and low traffic flows. 

However, the two limitations can be overcome with some effort. For instance, installing sensors on 
both sides of the road reduces the detection complexity of a single ultrasonic sensor, which can 
increase vehicle detection accuracy with multiple lanes. Moreover, applying a narrower dissemination 
angle of an ultrasonic sensor can increase detection accuracy owing to easier separation of two vehicles. 

Our detailed analysis and evaluation will provide a guide for the future development of traffic 
information acquisition systems using ultrasonic sensors. 
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We considered a single sensor for multiple lanes in this paper. In the future, we will apply multiple 
sensors across multiple lanes. This will require accurate time synchronization among the sensors. 
Thus, we will study the efficient time synchronization of multiple sensors in WSNs. Moreover, we will 
examine the use of other sensor types for WSN-based traffic information acquisition systems. 
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