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Abstract: Aiming to advance the coning algorithm performance of strapdown inertial 

navigation systems, a new half-compressed coning correction structure is presented.  

The half-compressed algorithm structure is analytically proven to be equivalent to the 

traditional compressed structure under coning environments. The half-compressed 

algorithm coefficients allow direct configuration from traditional compressed algorithm 

coefficients. A type of algorithm error model is defined for coning algorithm performance 

evaluation under maneuver environment conditions. Like previous uncompressed 

algorithms, the half-compressed algorithm has improved maneuver accuracy and retained 

coning accuracy compared with its corresponding compressed algorithm. Compared with 

prior uncompressed algorithms, the formula for the new algorithm coefficients is simpler. 

Keywords: compressed algorithm; half-compressed algorithm; uncompressed algorithm; 

coning environment; maneuver environment 

 

1. Introduction 

In the recent decades since Jordan [1] and Bortz [2] introduced the two-stage attitude updating 

algorithm for strapdown inertial navigation systems (SINS), the design of efficient coning algorithms 

which include designing an efficient coning correction structure and achieving the optimized structure 
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coefficients for coning correction accounting for a portion of the rotation vector has always been an 

attractive topic. 

Jordan [1] first presented the two-sample algorithm structure for non-commutativity error 

compensation. Miller [3] first presented the three-sample algorithm structure and the concept of 

designing the coning correction algorithm for optimum performance in a pure coning environment by 

using a truncated coning frequency Taylor-series expansion formulation for updating the rotation vector 

errors corresponding to updating the quaternion error. On the basis of Miller’s idea, Ignagni [4] 

summarized the generally uncompressed algorithm structure for coning correction and proposed several 

coning correction algorithms. Lee [5] applied Miller’s idea and concluded that there exists redundancy 

in the uncompressed coning correction structure under coning motion conditions. Based on Lee’s 

conclusion, Ignagni [6] proved that the cross product of both integral angular rate samples is 

independent of absolute time and a function of merely the relative time interval between sampling points 

under coning motion conditions, and derived the first compressed coning correction structure. Different 

from the previous coning algorithms for gyro error-free outputs, Mark [7] disclosed a method of tuning 

high-order coning algorithms to match the frequency response characteristics of gyros with filtered 

outputs. Based on the compressed coning correction structure, Savage [8] further expanded Miller’s 

idea, and raised an idea of using the least square method to design the coning correction algorithm for 

balanced coning performance in a given discrete coning environment. Song [9] concentrated on the 

improvement of maneuver accuracy of coning algorithms, and developed an approach for recovering 

maneuver accuracy in previous coning algorithms based on the uncompressed structure by combining 

the earliest time Taylor-series method and the latest frequency methods. 

This paper proposes a new half-compressed coning correction structure which is analytically proven 

to be equivalent to the traditional compressed coning correction structure under coning motion 

conditions. On the basis of the equivalency of the two types of structures, the half-compressed 

algorithm coefficients can be derived directly from the past compressed coning algorithm coefficients, 

rather than being specifically designed for coning or maneuver environments. The building of a 

reasonable structure makes for a simpler formula for the coefficients, retained coning accuracy and 

improved maneuver performance for the new half-compressed algorithm. 

2. Attitude Algorithm Structure 

The classical attitude updating computation formula [1,2,8] in modern strapdown inertial navigation 

systems is given by: 
)1(

)()1()(
−

− ⋅= lb
lb

n
lb

n
lb CCC  

2
21

)1(
)( ))(())(( ×+×+=−

llll
lb
lb ffIC φφφφ  


=

−
−

−
−==

1

)1(2

1
1 )!12(

)1(
sin

)(
i

i

li

l

l
l i

f
φ

φ
φ

φ  


=

−
−−=

−
=

1

)1(2

1
22 )!2(

)1(
cos1

)(
i

i

li

l

l
l i

f
φ

φ
φ

φ  



Sensors 2014, 14 14291 

 

 

















−
−

−
=×

0

0

0

xy

xz

yz

l

φφ
φφ

φφ
φ  (1)

where n  is a navigation coordinate frame, b  is a body coordinate frame, n
lbC )(  and n

lbC )1( −  are 

respectively an attitude direction cosine matrix at the end of attitude updating cycle l  and cycle 1−l , 
)1(

)(
−lb

lbC  and lφ  used to update n
lbC )(  from n

lbC )1( −  are respectively an updating attitude direction cosine 

matrix and an updating rotation vector from the ending time of cycle 1−l  to the ending time of cycle l , 

lφ  is the magnitude of vector lφ , and ×lφ  is the cross-product antisymmetry matrix composed of  

lφ  components. The rotation vector lφ  for the attitude update is generally calculated by using a simple 

form to approximate the integral of the rotation vector differential equation. A commonly used 

single-speed form [1,4,6,7] is given by: 
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where t  is a time, lα  is the integral of the gyro sensed angular rate ω  from time 1−lt  to time lt , and 

lδφ  denotes the coning correction. 

3. Coning Correction Structure 

In recent decades, strapdown attitude algorithm design activity has centered on developing routines 

for computing the coning correction using various approximations to the updating rotation vector lφ  in 

Equation (2). The traditional numerical computation algorithm formula for updating rotation vector lφ  

has the form of the integrated angular rate lα  and the coning correction lφδ ˆ
 [4,6,8,9]: 

lll φδαφ ˆ+= , 


+−=

Δ=
N

LNk
kl

1

αα , 
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= +=
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1 1

ˆ
N

i

N

ij
jiijl ααςφδ  (3)

where each αΔ  is an angular increment sample over a fixed time interval kT , the αΔ s are adjacent 

and spaced sequentially forward in time, 1+−Δ LNα  begins at time 1−lt , NαΔ  ends at time lt , ijς s are 

coefficients depending on the coning correction form, L is the number of angular increment samples 
selected to compute lα  in cycle l, N selected to be equal to or greater than L is the number of angular 

increment samples selected to compute l̂δφ  in cycle l. This form is the well-known uncompressed N 

subsample algorithm form with angular increments. 
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Based on the pure coning motion properties, the compressed algorithm form [6,8] equivalent to the 

uncompressed form for the coning correction lφδ ˆ  in Equation (3) is given by: 


−
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where sK  is the coning correction coefficient equivalent to the sum of isi ,−ς s from Equation (3), and 

other signs are defined as those in Equation (3). 

Both traditional coning correction forms defined by Equations (3) and (4) are equivalent under coning 

motion conditions, but not equivalent under maneuver conditions. Song [9] indicated that the algorithms 

based on the uncompressed form of Equation (3) would give much higher maneuver accuracies, but have 

a much heavier computation load than those based on the compressed form of Equation (4) after 

intensive design under maneuver conditions. This paper proposes a half-compressed algorithm form 

different from the former forms for coning correction lφδ ˆ  given by: 
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where sJ  is the coning correction coefficient depending on the half-compressed structure, sθ  which 

can be directly achieved from the process of computing lα  in Equation (3) is an angular increment 

beginning at time kl NTt −  and ending at time ( ) kl TsNt −− , kT  is the angular increment sample time 

interval, and other signs are defined as those in Equation (3). Several kinds of angular increments and 

time intervals defined by Equations (3)–(5) are illustrated in Figure 1. 

Figure 1. Distribution of several kinds of angular increment series against time. 
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4. Coning Correction Structure Equivalency and Algorithm Design 

Assume that the body is undergoing the pure coning motion defined by the angular rate vector [4,6,8]: 

( ) ( ) ( )JI tbtat ΩΩ+ΩΩ= sincosω  (6)

where t  is a time, ( )tω  is an angular rate vector in the body frame at time t , a  and b  are amplitudes 

of the angular oscillations in two orthogonal axes of the body, Ω  is frequency associated with the 

angular oscillations, and I , J  are unit vectors along the two orthogonal axes of the body. 

Under the coning motion defined by Equation (6), Ignagni [4] had derived the cross product 

ji αα Δ×Δ : 



Sensors 2014, 14 14293 

 

 

( )i j j iabfα α β−Δ × Δ = K , 

( ) ( ) ( ) ( )2sin sin 1 sin 1j if j i j i j iβ β β β− ≡ − − − − − − +           , 

kTΩ≡β  (7)

where K  is an unit vector orthogonal to the unit vectors I  and J , and β  is a coning frequency 

parameter relevant to kT . 

Simplification of the coning algorithm form of Equation (3) in the form of Equation (4) in [6], 

utilizing the coning property expressed by Equation (7) also allows the coning algorithm form of 

Equation (5) to be simplified as the form of Equation (4) with the relationship of coefficients sJ s  

and sK s: 
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where A  is 1−N  by one column matrix formed from components sJ s, B  is 1−N  by one column 

matrix formed from components sK s, and 1−NC  is 1−N  by 1−N  matrix whose upper triangular 

components are ones, and others are zeros concealed in Equation (8). 

It is easily proved that 1−NC  is a non-singular matrix. Thus A  and B  are linear representation. That 

means, N-sample coning algorithms designed by using the same optimum method and based on the 

correction structures of Equation (4) and Equation (5) have the same coning correction value under pure 

a coning motion. Therefore, Equation (5) and Equation (4) are equivalent under coning motions. Solving 

Equation (8) results in: 

( ) 1

1NA C B
−

−=  (9)

which gives the optimized coefficients sJ s applicable to the form of Equation (5) from already 

designed sK s of Equation (4). 

5. Algorithm Performance Evaluation 

Above we have verified that the half-compressed structure of Equation (5) and the compressed 

structure of Equation (4) are equivalent under pure coning motion. The uncompressed algorithm based 
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on Equation (3) presented by Song [9] also has the same accuracy as the compressed algorithm based on 

Equation (4) under a coning motion. Thus, the algorithms designed by using the same optimum method 

and based on Equations (3)–(5) have the same coning correction accuracy under a pure coning environment. 

Below is an error model used for evaluating the coning algorithm accuracy under maneuver 

environments. Assume that the body is undergoing a maneuver angular motion characterized by the 

angular rate vector: 

1

1

( )
M

j
j

j

t g tω −

=

=  (10)

where jg  is a coefficient vector based on the form of Equation (10), M  is the coefficient vector 

number, t  is a time. To evaluate the algorithm accuracy in maneuver environments, Equation (10) can 

be rewritten as another equivalent form: 
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where ig  is a coefficient vector based on the form of Equation (11). 

Through investigating Equation (10) and Equation (11), we can get the relationship of ig s and jg s: 
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where ( )1lt −Γ  is a M  by M  square matrix whose the j th row and i th column component is 

( )1ji ltγ − , G  is a M  by one column matrix whose the i th row component is ig , and G  is a M  by 

one column matrix whose the j th row component is jg . 

According to the maneuver error analysis method given by [9], the error of a coning algorithm based 

on uncompressed correction structure of Equation (3) under the maneuver motion expressed by  

Equation (11) with 5M ≥  can be built as: 
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where: 
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 (14)

According to Equations (3)–(5), Equation (13) can be used for analyzing the maneuver errors of 

coning algorithms based on the compressed correction structure of Equation (4) and the 

half-compressed correction structure of Equation (5), when the coefficients K s in Equation (4) and 

the coefficients J s in Equation (5) are respectively expanded into the coefficients ς s in Equation (3) 

with the following relationships: 

,

, 1, 2,..., 1,

0 , 1,2,..., 1, 1,2,..., 1
s

r s r

K s r r N

s r r N
ς −

= − =
=  = − = −

 (15)

, 1 , 1, 2,..., 1, 1, 2,...,r s sJ s N r sς + = = − = (16)

6. Algorithm Examples and Simulation 

To illustrate the properties of coning algorithms, algorithm errors computed using the optimized 

coning correction coefficients designed by using the frequency Taylor-series method and least 
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minimum square method would be produced, compared, and analyzed under coning environments and 
maneuver environments, each with 001.0=kT s, kl LTT =  and NL = : 

(1) FTSc indicates the coning algorithm based on the compressed form of Equation (4) taking the 

coefficients designed by using frequency Taylor-series method. 

(2) LMSc indicates the coning algorithm based on the compressed form of Equation (4) taking the 

coefficients designed by using least minimum square method. 

(3) FTShc indicates the coning algorithm based on the half-compressed form of Equation (5) taking 

the coefficients designed by using frequency Taylor-series method. 

(4) LMShc indicates the coning algorithm based on the half-compressed form of Equation (5) taking 

the coefficients designed by using least minimum square method. 

(5) FTSuc indicates the coning algorithm based on the uncompressed form of Equation (3) taking 

the coefficients designed by Song [9] using frequency Taylor-series method. 

(6) LMSuc indicates the coning algorithm based on the uncompressed form of Equation (3) taking 

the coefficients designed by Song [9] using least minimum square method. 

(7) X-N indicates the N-sample algorithm X (X respectively denote FTSc, LMSc, FTShc, LMShc, 

FTSuc and LMSuc). 

Tables 1 and 2 respectively give the 3-to-5-sample FTSc and LMSc algorithm coefficients  

sK s [5,6,8,9]. Using Equation (9), we can obtain the 3-to-5-sample FTShc and LMShc algorithm 

coefficients sJ s given in Tables 3 and 4 from coefficients sK s in Tables 1 and 2. According to 

Equation (15), expanding the coefficients sK s in Tables 1 and 2 give the expanded coefficients ς s in 

Tables 5 and 6 for maneuver accuracy evaluation. According to Equation (16), expanding the 

coefficients sJ s in Tables 3 and 4 give the expanded coefficients ς s in Tables 7 and 8 for maneuver 

accuracy evaluation.  

Table 1. FTSc algorithm coefficients. 

L N K1 K2 K3 K4 
3 3 27/20 9/20   
4 4 214/105 92/105 54/105  
5 5 1375/504 650/504 525/504 250/504

Table 2. LMSc algorithm coefficients. 

L N K1 K2 K3 K4 
3 3 1.360758 0.444312   
4 4 2.049323 0.866920 0.516734  
5 5 2.739618 1.277985 1.046872 0.495116

Table 3. FTShc algorithm coefficients. 

L N J1 J2 J3 J4 

3 3 18/20 9/20   
4 4 122/105 38/105 54/105  
5 5 725/504 125/504 275/504 250/504 
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Table 4. LMShc algorithm coefficients. 

L N J1 J2 J3 J4 

3 3 0.916446 0.444312   
4 4 1.182403 0.350186 0.516734  
5 5 1.461633 0.231113 0.551756 0.495116

Table 5. Coefficients expanded from the FTSc coefficients in Table 1. 

L N Coefficients 

3 3 ς12 = 0, ς13 = 9/12, ς23 = 27/20 
4 4 ς12 = ς13 = ς23 = 0, ς14 = 54/105, ς24 = 92/105, ς34 = 214/105 

5 5 ς12 = ς13 = ς14 = ς23 = ς23 = 0, ς15 = 250/504, ς25 = 525/504, ς35 = 650/504, ς45 = 1375/504 

Table 6. Coefficients expanded from the LMSc coefficients in Table 2. 

L N Coefficients 

3 3 ς12 = 0, ς13 = 0.444312, ς23 = 1.360758  
4 4 ς12 = ς13 = ς23 = 0, ς14 = 0.516734, ς24 = 0.866920, ς34 = 2.049323 
5 5 ς12 = ς13 = ς14 = ς23 = ς24 = ς34 = 0, ς15 = 0.495116, ς25 = 1.046872, ς35 = 1.277985, ς45 = 2.739618

Table 7. Coefficients expanded from the FTShc coefficients in Table 3. 

L N Coefficients 

3 3 ς12 = 18/20, ς13 = ς23 = 9/20 
4 4 ς12 = 122/105, ς13 = ς23 = 38/105, ς14 = ς24 = ς34 = 54/105 
5 5 ς12 = 725/504, ς13 = ς23 = 125/504, ς14 = ς24 = ς34 = 275/504, ς15 = ς25 = ς35 = ς45 = 250/504  

Table 8. Coefficients expanded from the LMShc coefficients in Table 4. 

L N Coefficients 

3 3 ς12 = 0.916446, ς13 = ς23 = 0.444312 
4 4 ς12 = 1.182403, ς13 = ς23 = 0.350186, ς14 = ς24 = ς34 = 0.516734 
5 5 ς12 = 1.461633, ς13 = ς23 = 0.231113, ς14 = ς24 = ς34 = 0.551756, ς15 = ς25 = ς35 = ς45 = 0.495116 

Tables 9 and 10 give the 3-to-5-sample FTSuc and LMSuc algorithm coefficients ς s designed by 

Song [9] from the coefficients sK s in Tables 1 and 2, respectively. 

Table 9. FTSuc algorithm coefficients. 

L N Coefficients 

3 3 ς12 = ς23 = 27/40, ς13 = 9/20 
4 4 ς12 = ς34 = 232/315, ς23 = 178/315, ς13 = ς24 = 46/105, ς14 = 54/105 

5 5 
ς12 = 18575/24192, ς13 = 2675/6048, ς14 = 11,225/24,192, ς15 = 125/252, ς23 = 2575/6048, 
ς24 = 425/672, ς25 = 139,75/24,192, ς34 = 1975/3024, ς35 = 325/1512, ς45 = 21,325/24,192 
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Table 10. LMSuc algorithm coefficients. 

L N Coefficients 

3 3 ς12 = 0.681306, ς13 = 0.444312, ς23 = 0.679452 
4 4 ς12 = 0.739716, ς13 = 0.432467, ς14 = 516734, ς23 = 0.571812, ς24 = 0.4434453, ς34 = 0.737795

5 5 
ς12 = 769,240, ς13 = 0.438591, ς14 = 0.467191, ς15 = 0.495116, ς23 = 0.431753, ς24 = 0.625867, 

ς25 = 0.579681, ς34 = 0.656805, ς35 = 0.213527, ς45 = 0.881820 

The coefficients z3, z4, z51, z52, z61, z62, z71, z72 and z73 depending on the power series terms  

in Equation (13) are calculated with the coefficients in Tables 5–10, and respectively listed in  

Tables 11–16. 

Table 11. Main attribution to maneuver error ( )me t  for FTSc algorithm. 

L N z3 z4 z51 z52 z61 z62 z71 z72 z73 
3 3 0 1/60 13/540 13/1620 7/270 5/432 257/10,206 150/12,179 47/13,124 
4 4 0 51/2240 55/1536 55/4608 187/4481 394/20,567 801/18,391 147/6512 89/12,840 
5 5 0 83/3150 167/3901 77/5396 137/2657 79/3334 486/8749 515/17,789 193/21,636

Table 12. Main attribution to maneuver error ( )me t  for LMSc algorithm. 

L N z3 z4 z51 z52 z61 z62 z71 z72 z73 
3 3 −2.29e−5 1.68e−2 2.42e−2 8.13e−3 2.61e−2 1.17e−2 2.54e−2 1.25e−2 3.64e−3
4 4 4.95e−7 2.28e−2 3.59e−2 1.19e−2 4.18e−2 1.92e−2 4.36e−2 2.26e−2 6.95e−3
5 5 1.07e−8 2.64e−2 4.28e−2 1.43e−2 5.16e−2 2.37e−2 5.56e−2 2.90e−2 8.93e−3

Table 13. Main attribution to maneuver error ( )me t  for FTShc algorithm. 

L N z3 z4 z51 z52 z61 z62 z71 z72 z73 
3 3 0 −1/180 −1/108 −1/324 −1/90 −11/2160 −121/10,206 −56/9029 −403/204,120
4 4 0 −13/3360 −1/192 −1/576 −41/7680 −115/44,239 −47/9216 −23/7680 −91/92,160 
5 5 0 −17/6300 −1/300 −1/900 −44/13,125 −16/9683 −37/11,250 −73/37,500 −29/45,000 

Table 14. Main attribution to maneuver error ( )me t  for LMShc algorithm. 

L N z3 z4 z51 z52 z61 z62 z71 z72 z73 

3 3 −2.29e−5 −5.85e−3 −9.69e−3 −3.18e−3 −1.16e−2 −5.23e−3 −1.23e−2 −6.36e−3 −2.02e−3
4 4 4.95e−7 −3.90e−3 −5.20e−3 −1.73e−3 −5.28e−3 −2.58e−3 −5.00e−3 −2.96e−3 −9.78e−4
5 5 1.07e−8 −2.71e−3 −3.33e−3 −1.11e−3 −3.35e−3 −1.65e−3 −3.29e−3 −1.95e−3 −6.45e−4

Table 15. Main attribution to maneuver error ( )me t  for FTSuc algorithm. 

L N z3 z4 z51 z52 z61 z62 z71 z72 z73 

3 3 0 0 −1/1080 −1/3240 −1/540 −1/1080 −53/20,412 −107/68,040 −17/29,038
4 4 0 0 0 0 0 0 −1/16,128 −1/13,440 −1/32,256 
5 5 0 0 0 0 0 0 −11/315,000 0 3/859,091 
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Table 16. Main attribution to maneuver error ( )me t  for LMSuc algorithm. 

L N z3 z4 z51 z52 z61 z62 z71 z72 z73 

3 3 −2.29e−5 0 −9.12e−4 −2.56e−4 −1.83e−3 −8.46e−4 −2.57e−3 −1.48e−3 −5.53e−4
4 4 4.95e−7 −1.30e−8 −2.00e−8 −1.04e−6 1.32e−7 −1.02e−8 −6.17e−5 −7.30e−5 −2.84e−5
5 5 1.07e−8 1.07e−9 2.24e−9 2.21e−8 3.03e−9 1.55e−9 −3.49e−5 2.08e−9 3.45e−6 

The maneuver environment set for algorithm accuracy evaluation is the extreme 2 s angular rate 

profile pictured in Figure 2 with M = 5, ḡ1 = [0 0 0]T, ḡ2 = [19572/143 ‒4360/143 ‒21800/143]T,  

ḡ3 = [1007/41 4000/143 9369/67]T, ḡ4 = [4843/155 ‒4000/117 ‒9206/213]T and  

ḡ5 = [‒5813/131 ‒ 625/858 3258/281]T in Equation (10). The dimension is deg/s for g s. According to 

Equation (13), the maneuver error vector ( )me t  is computed for the compressed algorithms, the 

half-compressed algorithms and the uncompressed algorithms with Tables 5 to 10 coefficients over the 

Figure 2 maneuver profile. 

Figure 2. Maneuver angular rate (deg/s) vs. time (s). 

 

Accordingly, maximum maneuver errors of several concerned algorithms over 2 s maneuver are 

listed in Table 17. 

Table 17. Maximum maneuver error over 2 s maneuver. 

L N 
Maximum Maneuver Error, μ rad 

FTSc LMSc FTShc LMShc FTSuc LMSuc 

3 3 1.00e−2 −1.88e−2 −3.34e−3 3.65e−3 2.86e−6 −2.52e−2 
4 4 3.24e−2 3.25e−2 −5.51e−3 −5.54e−3 1.48e−12 9.66e−4 
5 5 7.32e−2 7.33e−2 −7.50e−3 −7.52e−3 −7.23e−13 3.25e−5 
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Comparing the data in Tables 11 to 16, it is indicated that the absolute values of z3 for FTSc, FTShc 

and FTSuc algorithms are zeros, LMSc, LMShc and LMSuc algorithms have the same non-zero z3,  

the absolute values of z4 for 3 to 5 sample FTShc (or LMShc) algorithms are respectively about one 

third, one sixth and one tenth those of z4 for 3 to 5 sample FTSc (or LMSc) algorithms, while the 

absolute values of z4 for 3 to 5 sample FTSuc (or LMSuc) algorithms are much smaller than those for  

3 to 5 sample FTShc (or LMShc) algorithms. If the low order term with z in Equation (13) is the main 

supply of maneuver error, it would be concluded that the maneuver accuracy of FTShc algorithm is 

higher than that of FTSc algorithm if the FTSuc algorithm is compared with the FTShc algorithm,  

and the maneuver accuracy of LMShc algorithm is higher than that of LMSc algorithm if the LMSuc 

algorithm is compared with LMShc algorithm ignoring the error term with z3. The simulation results in 

Table 17 are basically consistent with the analytical conclusion above, whereas the maximum 

maneuver error of the LMSuc3 algorithm is bigger than that of the LMSc3 and LMShc3  

algorithms owing to the coupling of the first two error terms with z3 and z4 under this particular 2 s 

maneuver condition.  

According to the 21.3 μrad error contribution from sensors in Table 2 of [8] during the similar 

maneuver environment, all concerned algorithms with the maximum errors in Table 17 contributing 

less than 1% of 10 to 20 μrad are compatible with the overall INS accuracy requirement of  

0.01 deg/h. Like the uncompressed algorithm (reference [9]), the half-compressed algorithm has 

significantly more accuracy than the past compressed algorithm, and the new algorithm is more than 

adequate for modern INS applications. The formula for the algorithm coefficients for the new 

half-compressed algorithm is simpler compared to the uncompressed algorithm. 

7. Conclusions 

The new half-compressed coning algorithm can be directly derived from the past compressed coning 

algorithm. The new algorithms are highly efficient overall in coning and maneuver environments. 

Compared with the past uncompressed algorithm, the formula for the new algorithm coefficients is 

simpler. Like the past uncompressed algorithm, the half-compressed algorithm and its corresponding 

compressed algorithm have the same coning accuracy, while the maneuver accuracy of the 

half-compressed algorithm is significantly higher than the past compressed algorithm, and more than 

adequate for modern INS applications. 
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