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Abstract: Clock synchronization is a very important issue for the applications of wireless 
sensor networks. The sensors need to keep a strict clock so that users can know exactly 
what happens in the monitoring area at the same time. This paper proposes a novel internal 
distributed clock synchronization solution using group neighborhood average. Each sensor 
node collects the offset and skew rate of the neighbors. Group averaging of offset and skew 
rate value are calculated instead of conventional point-to-point averaging method. The 
sensor node then returns compensated value back to the neighbors. The propagation delay 
is considered and compensated. The analytical analysis of offset and skew compensation is 
presented. Simulation results validate the effectiveness of the protocol and reveal that the 
protocol allows sensor networks to quickly establish a consensus clock and maintain a 
small deviation from the consensus clock. 
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1. Introduction 

Wireless sensor networks (WSNs) are now widely deployed in homes, hospitals, factories, streets, 
battlefields, etc., where they are used for a lot of monitoring applications, such as monitoring of water 
distribution systems [1], earthquakes [2], buildings [3], civil infrastructure [4], habitat activities [5], etc. 
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In some of the applications, such as data fusion, target tracking and speed estimation, the system needs 
to have the knowledge of time among sensor nodes in order to determine the timing of the event. This 
is realized by clock synchronization (sometimes called time synchronization). Besides the application 
requirement, clock synchronization is important to avoid interference if the medium access control 
protocol uses time division medium access (TDMA) [6,7]. For the networks that utilize duty-cycling 
schemes and turn off the radio for energy saving, accurate time helps to save energy by shortening the 
necessary guard time. 

Imperfections in low-cost sensor nodes will cause offsets and skew drifts. Environmental factors 
such as the temperature also contribute to this clock shift. Therefore, the sensors will lose 
synchronization with other sensor nodes. This leads to the meaninglessness of sensing data for many 
applications. Clock synchronization techniques are therefore needed to synchronize the sensor nodes in 
WSNs. The algorithms compensate the offset and skew rate by exchanging information among sensor 
nodes. There are several challenges to design a clock synchronization algorithm. First, since the 
information is shared among sensor nodes by passage exchanging, propagation delays would cause 
inaccuracy of time instant sharing, so a specific compensation technique is required. Second, because 
the sensor nodes are densely deployed in the monitoring area, the nodes can only communicate with 
the sink node via a multi-hop route. Designing an accurate, fast convergence and scalable global clock 
synchronization algorithm becomes a challenge. Third, the sensors are inexpensive devices, which 
may often incur failure. A dynamic and robust scheme is needed. Fourth, since sensor nodes are almost 
always powered by batteries, energy efficiency becomes one of the major concerns. These challenges 
need to be addressed in the design of any clock synchronization protocol. 

In this paper, a novel distributed clock synchronization scheme, named group neighborhood 
averaging (GNA), is presented. It is a fully distributed, network-wide clock synchronization algorithm. 
Two-way communication is adopted to estimate the propagation delay and further used for offset and 
skew rate compensation. Without extra data exchange, just using the exchanged messages, the algorithm 
takes average of the offset and skew rate value among the neighboring nodes within the transmission 
range. The group-averaging algorithm leads to a fast convergence. 

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3 presents the 
system model and Section 4 explains the proposed GNA algorithm. Simulation results are given and 
discussed in Section 5. Section 6 concludes the paper and describes possible future work. 

2. Related Work 

Many dedicated strategies and protocols have been proposed to address the problem of clock 
synchronization in WSNs in the past decades as surveyed in [8–11]. The Network Time Protocol 
(NTP) [12] is one of the popular clock synchronization protocols in use. It adopts a hierarchical tree of 
timeservers. By recording the sending and receiving timestamps, the propagation delay is estimated. 
The time is then compensated using this value. NTP is not suitable for WSNs for two main reasons. 
First, it takes long time for the entire network to synchronize to the reference clock. Second, the 
accuracy is low and the complexity is relatively high. Reference Broadcast Synchronization (RBS) [13] 
uses a node to send a reference broadcast beacon to neighbors in the physical layer. The receivers 
exchange the time of arrival and compensate their own clocks. The advantage is that RBS shortens the 
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critical path since the broadcast beacon is only used as a reference. The potential drawback lies that the 
exchanges of time of arrival between the neighbors incur a large overhead and the performance may 
decrease in large-scale multi-hop networks. In [14], by recording the sending and receiving time of the 
probe message, the bounds of the relative offset and drift can be obtained and then the relative offset 
and relative drift are estimated. It is simply a computational task. The algorithm is based on a tree 
topology network and the sensor nodes only synchronize with their parent fusion nodes. The 
disadvantage of the protocol is that it is designed only for a tree topology network, not a mesh network 
which is more common. Another problem is that if synchronization were required for the entire network, 
the convergence time would be very large. Timing-sync protocol for sensor networks (TPSN) [15] and 
recursive time synchronization protocol (RTSP) [16] have similar solutions. The protocols periodically 
elect a root node, which acts as reference clock. Root node rotation balances the energy consumption 
among all the sensor nodes. A tree architecture is formed for clock synchronization. A similar NTP 
algorithm, which uses four time stamps to estimate the propagation delay, is adopted. The 
disadvantage is that the level discovery phase consumes quite a large amount of energy and time, 
which leads to slow convergence. In addition, due to the hierarchical topology, the protocol is prone to 
node failure. The flooding time synchronization protocol (FTSP) [17] also randomly elects a root node, 
but for time synchronization, either single hop or multi-hop, FTSP adopts one way synchronization. 
The message delivery delay is decomposed into interrupt handling of CPU, encoding and decoding of 
radio chip to transform the message, byte alignment of radio chip at the receiver side and the 
propagation delay. The time stamping effectively reduces the error introduced by interrupt handing, 
encoding and decoding. Compared to them, propagation is relatively small and neglected.  
Time-diffusion synchronization protocol (TDP) [18] uses NTP-like information exchange and spreads 
the reference time to the whole network. The performance is good, but the algorithm is complicated 
and not energy efficient. In summary, for tree hierarchical clock synchronizations, the disadvantages 
include slow convergence, energy waste and complexity of root node election, proneness to node and 
link failure and difficulties for mobile scenarios. 

Distributed consensus-based protocols for global clock synchronization have been proposed in [19–23]. 
In [21], local synchronization is conducted by averaging the offset and finally the entire network 
converges to a virtual consensus clock, but only clock offset is compensated. Clock drift is not 
discussed. References [19] and [22] consider both offset and clock drift compensation. Each node 
periodically broadcasts a synchronization beacon. The receiving node takes an average of the offset 
and drift. The solution is fully distributed without the need of a root node. All nodes run the same 
algorithm. The protocol is robust to dynamic ad-hoc networks issues such as node and link failure.  
In [20], the algorithm is further improved. A confidence weight parameter is introduced for the average 
calculation. The node, which has conducted an averaging calculation, would be given a big weight.  
In [23], the protocol adopts max consensus to compensate for clock drift but the reason is not clearly 
presented. One limitation in the works presented in [19–22] is that the protocol is designed in the 
absence of propagation delay. However, the propagation delay is a very important issue, which cannot 
be ignored in real clock synchronization scenarios. Another limitation is that they take averaging only 
between one sender and one receiver at each time. This leads to a slow convergence. The authors of [24] 
use a group average and assume the propagation delay follows Gaussian distribution. However, the 
algorithm only achieves good performance when the network is time delay balanced. The reason is that 
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the averaging operation for a Gaussian distributed delay approaches zero. This method would not be 
suitable for an unbalanced network. [25] considers both fixed and random propagation delays and 
proposes a distributed synchronization algorithm. By using the maximum likelihood estimation and 
belief propagation on graphical models, global clock synchronization is achieved. [26] improves it and 
proposes an asynchronous algorithm. Different nodes could update their estimates based on different 
frequencies. For these two methods, the algorithms are relatively complicated and need more storage 
and computational resources. 

This paper proposes a fully distributed, network-wide clock synchronization scheme. The scheme is 
scalable and not constrained to a certain network topology. It is also robust to node failure. Two-way 
communication is adopted to estimate the propagation delay. The exchanged messages are multiply 
used for offset and skew rate compensation. Nodes take turns to ask their neighbors for clock 
information. Then they average all the received offset and skew rate values in each round and broadcast 
the values back to their neighbors. A fast convergence is achieved by the proposed group-averaging 
algorithm. The procedure of the algorithm is clearly presented. It has the advantages of accuracy, fast 
convergence, low complexity and easy implementation. The main contributions of this paper are: 

(1) Group averaging is used instead of point-to-point averaging for faster convergence. 
(2) Propagation delay is compensated compared with several important related papers. 
(3) Minimum data exchange is achieved for both offset and skew rate compensation, and at the 

same time the propagation delay is considered and compensated. 

3. System Model 

A typical WSN is composed of tens, hundreds or even up to thousands of sensor nodes which are 
deployed in an ad-hoc fashion without careful planning, as shown in Figure 1. The sensor nodes 
collect and transmit the sensing data to a sink node. The sink node stores and processes the data.  
As discussed in Section 1, the sensor nodes need to store the time instants of the data collection so that 
later the sink node can aggregate and process the data from different sensor nodes. Therefore, the 
requirement that all the sensor nodes strictly keep a common clock becomes essential. 

Figure 1. System model. 
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For each sensor node, we define the clock model as Equation (1). 𝐶(𝑡) is the clock reading at time t. 
α is the skew rate and β is the offset. In the ideal situation, α is equal to 1 and β is equal to 0: 

𝐶(𝑡) = α ∗ 𝑡 + β (1) 

The clocks in the sensor network may not be consistent for several reasons. First, the clock may 
drift, which can be caused by the manufacture of the oscillator components. Second, the clock could 
change due to some environmental condition such as temperature, pressure, battery voltage, etc. Third, 
the clocks from different sensor nodes may not be synchronized well at the beginning of the network 
deployment. All these reasons lead to clock readings varying from the real value. The clock reading 
𝐶𝑖(𝑡) of node i is then expressed in Equation (2): 

𝐶𝑖(𝑡) = α𝑖 ∗ 𝑡 + β𝑖 (2) 

The aim is to find the compensated α�𝑖  and β�𝑖 , so as to make the compensated clock ( �̂�𝑖(𝑡) 
expressed in Equation (3)) to converge to a consensus clock 𝐶𝑐(𝑡) (as shown in Equation (4)): 

�̂�𝑖(𝑡) =
α𝑖
α�𝑖
∗ 𝑡 + β𝑖 − β�𝑖 (3) 

𝑙𝑖𝑚
𝑡→∞

�̂�𝑖(𝑡) = 𝐶𝑐(𝑡) (4) 

Consensus clock is a virtual clock within the sensor network. For most WSN applications, there is 
no need for the clocks of sensor nodes to converge to the real clock. Take speed estimation as an 
example. As long as all sensor nodes are synchronized, they can successfully locate the target, and 
therefore successfully estimate the moving speed. In this case clock synchronization to a virtual clock 
is enough. 

Figure 2. An example of offset and skew rate compensation. (a) Before clock synchronization; 
(b) After clock synchronization. 

 
(a) 

 
(b) 

Figure 2 shows an example of offset and skew rate compensation. In Figure 2a, before clock 
synchronization, Node 1 and Node 2 have different offset and skew rates. For offset compensation, 
clock readings “2” for Node 1 and Node 2 are not aligned. For skew rate, it is equal to the 
multiplication of tick duration, 𝑇𝑡𝑖𝑐𝑘𝑖 , and counter limit, 𝑁𝑖, as shown in Equation (5). Either different 
𝑇𝑡𝑖𝑐𝑘𝑖  or different 𝑁𝑖 could make the two nodes have different α𝑖: 
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α𝑖 = 𝑁𝑖 × 𝑇𝑡𝑖𝑐𝑘𝑖  (5) 

After clock synchronization, as shown in Figure 2b, Node 2 is synchronized to Node 1. For offset 
compensation, the two nodes align the start time of the clock reading “2”. For skew rate compensation, 
Node 2 adjusts its counter limit to make the clock duration equal to that of Node 1. It should be noted 
that only the counter limit can be adjusted by users. Tick duration is a natural property of the oscillator 
and therefore cannot be modified. 

4. The Proposed GNA Algorithm for Clock Synchronization 

The GNA algorithm includes two parts: offset compensation and skew rate compensation. They are 
realized by clock exchange and computation. The clocks of the sensor nodes will eventually converge 
to a consensus clock. One thing that should be noted for clock exchange among sensor nodes, is that 
the propagation delay incurs errors and this leads to inaccuracy. This will be compensated by two-way 
message exchange. 

4.1. Propagation Delay Model 

The signal transmission from one node to another experiences a propagation delay. This delay 
would cause the inaccuracy for clock synchronization between two nodes [15–17]. The idea for 
compensating this propagation delay is using two-way message exchange. As shown in Figure 3,  
Node 2 asks Node 1 for time. Node 2 records the time instant t1, when it sends message. Node 1 
receives the message and records the instant t2. Then Node 1 returns the time information message and 
records the time instant t3. Node 2 receives it and keeps the time instant t4. Using these four time 
instants, Node 2 would estimate the propagation delay using Equation (6). Then it can compensate for 
the time offset. In the remainder of this paper, all the message exchanges adopt two-way message 
exchange. This is minimum information exchange for propagation delay estimation. 

Figure 3. Two-way message exchange. 

 

𝑑𝑒𝑙𝑎𝑦 =  
(𝑡4 − 𝑡1) − (𝑡3 − 𝑡2)

2
 (6) 

4.2. Offset Compensation 

Offset compensation is to make the sensor nodes to align at a common value of time. It is 
equivalent to obtaining β�𝑖 to satisfy Equation (4). We expand it as illustrated in Equation (7): 
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lim
𝑡→∞

α𝑖
α�𝑖
∗ 𝑡 + β𝑖 − β�𝑖 = 𝐶𝑐(𝑡) 

                                           = α𝑐 ∗ 𝑡 + β𝑐 
(7) 

We have: 

β�𝑖 = β𝑖 − β𝑐 (8) 

Since sensor networks normally have a large number of sensor nodes covering a relatively big area, 
is impossible for a certain node to directly communicate with all the nodes in a single hop way. 
Therefore, local information exchange and averaging is used in this algorithm. The nodes take turns to 
collect time information from their neighbors and take an average of the collected time information 
and their own value. The result is estimated as the consensus value of the node and neighbors. The 
algorithm of offset compensation is presented as below: 

Step 1: Periodically sense the channel, if the channel is clear, then broadcast a requesting packet to 
ask the neighbors within its transmission range for the clock information. 

Step 2: The neighbors return the clock values. 
Step 3: Compensate for the propagation delay 
Step 4: The node calculates the average offset of all the neighbors as well as itself. 
Step 5: Update its own offset value. 
Step 6: Broadcast the compensation table. The table includes node ID and compensated offset. 
Step 7: The neighbors receive the table and update their own clock offset. 
Step 8: Repeat. 

In this paper, 2-node offset averaging which is used in [19–22] is replaced by group neighborhood 
averaging with propagation delay compensation. As shown in Figure 4, it is assumed that Node 1 is the 
randomly selected node which synchronizes neighboring nodes. In Figure 4a, 2-node offset averaging is 
realized by broadcasting the synchronization message. Node 2 and Node 3 receive this message and 
calculate the average of the offsets of Node 1 and themselves. In this model, the propagation delay is 
ignored. The three nodes obtain different clock values and the deviation of errors becomes smaller. This 
method is used in [19–22]. In Figure 4b, two-way message exchange is adopted to compensate for the 
propagation delay between two nodes. Node 1 broadcasts a request message and records the time instant. 
Assume Node 2 replies earlier. Node 1 takes the average of Node 1 and Node 2’s offsets. Then Node 1 
sends the clock and propagation delay information to Node 2. Node 2 is synchronized with Node 1. 
Next Node 3 follows the same procedure. In this scenario, Node 1 needs to send different 
synchronization messages to every neighboring node, and these nodes do not converge to a single 
clock. In Figure 4c which is proposed by this paper, Node 1 waits to collect all the clock information 
from neighboring nodes. It calculates the propagation delay and takes the group average among all the 
nodes. In this way, an accurate, fast offset convergence is achieved. It should be mentioned that 
because there are three time message exchanges between the randomly elected node and its neighbor, 
one can use the first two message exchanges to estimate and compensate the propagation delay. There is 
no extra information exchange needed, therefore minimum information exchange is adopted for both 
propagation delay compensation and offset compensation. 
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Figure 4. Explanation of GNA algorithm. (a) 2-node synchronization without considering 
propagation delay; (b) 2-node synchronization with propagation delay compensation;  
(c) group neighborhood averaging with propagation delay compensation. 

 
(a) (b) (c) 

Next, it will be shown that the algorithm of offset compensation achieves global synchronization 
throughout the entire network. As defined in Section 2, β𝑖  is the offset value of node i. It can be 
obtained as below: 

Theorem 1. The offset values of all the sensor nodes in the network converge to certain value. 

Proof. Assume that β𝑚𝑎𝑥
0  and β𝑚𝑖𝑛

0  are the maximum and minimum offset values among all the sensor 
nodes in the network at the initial time. β𝑚𝑎𝑥

𝑛  and β𝑚𝑖𝑛
𝑛  are the maximum value and minimum value 

among the offset values of all the sensor nodes after the nth round synchronization. For the  
(n + 1)th round of synchronization, each node conducts the group averaging within its transmission 
range. The maximum offset value would be averaged with some other offset values which are smaller 
than or equal to it. Then the result should be smaller than or equal to β𝑚𝑎𝑥

𝑛 . If this result is the new 
maximum offset value after the (n + 1)th round of synchronization, we can say β𝑚𝑎𝑥

𝑛+1 ≤ β𝑚𝑎𝑥
𝑛 . If β𝑚𝑎𝑥

𝑛+1  
is from the averaging operation group without β𝑚𝑎𝑥

𝑛  node, since the offset values in the group is 
smaller than or equal to β𝑚𝑎𝑥

𝑛 , we can also obtain β𝑚𝑎𝑥
𝑛+1 ≤ β𝑚𝑎𝑥

𝑛 . β𝑚𝑎𝑥
𝑛+1  is equal to β𝑚𝑎𝑥

𝑛  only when all 
the offset values of the neighbors are equal to β𝑚𝑎𝑥

𝑛 . From β𝑚𝑎𝑥
0 , to β𝑚𝑎𝑥

𝑛 , until β𝑚𝑎𝑥
+∞ , the maximum 

offset value is non-increasing over the whole synchronization time. Similarly, we have β𝑚𝑖𝑛
𝑛+1 ≥ β𝑚𝑖𝑛

𝑛 , 
meaning that from β𝑚𝑖𝑛

0 , to β𝑚𝑖𝑛
𝑛 , until β𝑚𝑖𝑛

+∞ , the minimum offset value is non-decreasing over the 
whole synchronization time. Because the averaging operation is conducted all the time, we can obtain 
that lim𝑛→+∞ β𝑚𝑎𝑥

𝑛 = lim𝑛→+∞ β𝑚𝑖𝑛
𝑛 = β𝑐. This demonstrates that the offset values of all the sensor 

nodes converge to the certain value β𝑐 finally. 
Next we discuss the relationship between β𝑐 and the initial average offset value of all the sensor 

nodes β𝑎𝑣𝑔0 . For each neighborhood averaging, the average value of this sensor group does not change. 
Similarly, for each round of synchronization, the average value of the entire network does not change. 
Then we have β𝑎𝑣𝑔0 = β𝑎𝑣𝑔𝑛 = β𝑎𝑣𝑔∞ . As discussed above, after certain rounds of synchronization, the 
offset values of all the sensors converge to β𝑐. Then the average offset value of these sensors would be 
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1
𝑘
∑ β𝑐𝑘
𝑖=1 = β𝑐. Therefore, we obtain β𝑐 = β𝑎𝑣𝑔∞ = β𝑎𝑣𝑔0 . The offset values of all the sensor nodes in 

the network converge to the initial average offset value. 
MAC layer time stamping is adopted in the proposed protocol. It is well explained in detail  

in [19,22]. On the transmitter side, the timestamp is recorded into the message just before the packet is 
transmitted into the air at the physical layer. On the receiver side, once the message “Start Frame 
Delimiter” (SFD) is received, the instant time is recorded as the start of the packet reception. This 
mechanism significantly reduces the unpredictable delays in the protocol stacks at both transmitter and 
receiver sides. The computational complexity of the algorithm T(n) = 𝒪(n), where n is the number of 
nodes within the transmission range of a sensor node. 

4.3. Skew Rate Compensation 

Offset compensation is for time alignment among the network nodes. The skew rate also needs to 
be synchronized so that the sensor nodes can have a common clock speed. The method is the same as 
offset compensation by taking average of the skew rate values among the sensor nodes as illustrated  
in Equation (9): 

𝛼�𝑖 =
1
𝑁
�𝛼𝑖

𝑁

𝑖=1

 (9) 

The algorithm of skew rate compensation is given below: 

Step 1: Periodically sense the channel, if channel is clear, then broadcast a requesting packet to 
ask the neighbors within its transmission range for the skew rate. 

Step 2: The neighbors return the skew rate. 
Step 3: Compensate for the propagation delay 
Step 4: The node calculates the average skew rate for all these nodes of the neighbors and itself. 
Step 5: Update its skew rate value. 
Step 6: Broadcast the compensation table. The table includes node ID and compensated skew rate. 
Step 7: The neighbors receive the table and update their own skew rates. 
Step 8: Repeat. 

The skew rates of sensor nodes in the network will converge finally to a certain value. The proof is 
the same as Theorem 1. The computational complexity of the algorithm 𝑇(𝑛) = 𝒪(𝑛), where n is the 
number of nodes within the transmission range of a sensor node. This is the same as the reference 
protocols, FWA and CWA. 

To illustrate the skew rate compensation clearly, we take an example of two-node skew rate 
compensation. We collect the clock readings 𝜏𝑖(𝑡1) and 𝜏𝑗(𝑡1) at the absolute time 𝑡1 from node i and 
node j, and the clock readings 𝜏𝑖(𝑡2) and 𝜏𝑗(𝑡2) at the absolute time 𝑡2 as shown in Figure 5 (clock 
readings collected at the same time are achieved by delay estimation mentioned in Part A in this 
section. The algorithm demonstrates that there is a two-way message exchange). 𝑁𝑖  and 𝑁𝑗  are the 
maximum limit of the clocks of node i and node j. When the counter reaches the maximum limit, an 
interrupt is triggered and the clock value increments. The relationship of the clock duration 𝑇𝑐𝑙𝑜𝑐𝑘, tick 
duration 𝑇𝑡𝑖𝑐𝑘 and counter limit N is given in Equation (10). 
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Figure 5. An example of skew rate compensation. 

 

𝑇𝑐𝑙𝑜𝑐𝑘 = 𝑁 × 𝑇𝑡𝑖𝑐𝑘 (10) 

For skew rate synchronization, based on the pre-defined counter limits 𝑁𝑖 , 𝑁𝑗  and the collected 
clock readings τ𝑖(𝑡1), τ𝑗(𝑡1), τ𝑖(𝑡2) and τ𝑗(𝑡2), the goal is to find 𝑁𝑗+ , which is the compensated 

counter limit of node j, to satisfy 𝑇𝑐𝑙𝑜𝑐𝑘𝑖 = 𝑇𝑐𝑙𝑜𝑐𝑘
𝑗 +

. 
For node i, the duration between the two probe messages,  𝑡2 − 𝑡1, can be expressed as Equation (11). 

Similarly, 𝑡2 − 𝑡1 can also be expressed from node j as shown in Equation (12): 

𝑡2 − 𝑡1 = �𝜏𝑖(𝑡2) − 𝜏𝑖(𝑡1)� × 𝑁𝑖 × 𝑇𝑡𝑖𝑐𝑘𝑖  (11) 

𝑡2 − 𝑡1 = �𝜏𝑗(𝑡2) − 𝜏𝑗(𝑡1)� × 𝑁𝑗 × 𝑇𝑡𝑖𝑐𝑘
𝑗  (12) 

Combining Equations (11) and (12), we have: 

𝜏𝑖(𝑡2) − 𝜏𝑖(𝑡1)
𝜏𝑗(𝑡2) − 𝜏𝑗(𝑡1) =

𝑁𝑗 × 𝑇𝑡𝑖𝑐𝑘
𝑗

𝑁𝑖 × 𝑇𝑡𝑖𝑐𝑘𝑖 =
𝑇𝑡𝑖𝑐𝑘
𝑗

𝑁𝑖 × 𝑇𝑡𝑖𝑐𝑘𝑖 × 𝑁𝑗 (13) 

Since the goal is to satisfy 𝑇𝑐𝑙𝑜𝑐𝑘𝑖 = 𝑇𝑐𝑙𝑜𝑐𝑘
𝑗 +

, we expand it as Equation (14): 

𝑁𝑖 × 𝑇𝑡𝑖𝑐𝑘𝑖 = 𝑁𝑗+ × 𝑇𝑡𝑖𝑐𝑘
𝑗  (14) 

Combining Equations (13) and (14), the new counter limit of node j’s oscillator is obtained in 
Equation (15): 

𝑁𝑗+ =
𝜏𝑗(𝑡2) − 𝜏𝑗(𝑡1)
𝜏𝑖(𝑡2) − 𝜏𝑖(𝑡1) × 𝑁𝑗 (15) 

The above discussion is to synchronize node j to node i. If the average compensation is desired, 
then the goal becomes to find 𝑁𝑖+ and 𝑁𝑗+, which satisfies Equation (16): 

𝑇𝑐𝑙𝑜𝑐𝑘𝑖 + = 𝑇𝑐𝑙𝑜𝑐𝑘
𝑗 +

=
𝑇𝑐𝑙𝑜𝑐𝑘𝑖 + 𝑇𝑐𝑙𝑜𝑐𝑘

𝑗

2
 (16) 

Since 𝑇𝑐𝑙𝑜𝑐𝑘 = 𝑁 × 𝑇𝑡𝑖𝑐𝑘, for node i we have: 
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𝑇𝑡𝑖𝑐𝑘𝑖 × 𝑁𝑖+ =
𝑁𝑖 × 𝑇𝑡𝑖𝑐𝑘𝑖 + 𝑁𝑗 × 𝑇𝑡𝑖𝑐𝑘

𝑗

2
 (17) 

By dividing 𝑇𝑡𝑖𝑐𝑘𝑖  on both sides of Equation (17) and combining it with Equation (13), we obtain: 

𝑁𝑖+ =
1 + 𝜏𝑖(𝑡2)−𝜏𝑖(𝑡1)

𝜏𝑗(𝑡2)−𝜏𝑗(𝑡1)

2
× 𝑁𝑖 (18) 

Similarly: 

𝑁𝑗+ =
1 + 𝜏𝑗(𝑡2)−𝜏𝑗(𝑡1)

𝜏𝑖(𝑡2)−𝜏𝑖(𝑡1)

2
× 𝑁𝑗 (19) 

So far, the skew rates are compensated to a consensus value for the two nodes by adjusting the 
counter limit. This method can be extended to more nodes. After a certain number of compensation 
rounds, the entire network would eventually be synchronized. It should be noted that for neighboring 
information exchange, it is a two-way communication. By using the recorded clock values, the 
propagation delay can be estimated. Using the estimated propagation delay value, the clock readings of 
different nodes at the same time, e.g., τ𝑖(𝑡1) and τ𝑗(𝑡1), can be obtained. In Section 4 the algorithms 
are evaluated by simulations and the results are analyzed. 

5. Simulation Evaluation 

The algorithm of GNA clock synchronization has been simulated by MATLAB and compared with 
forward weighted average (FWA) and confidence weighted average (CWA) which are proposed  
in [20]. For FWA, Each node periodically broadcasts a synchronization beacon. The receiving node 
takes average of offset and drift. FWA calculates the average only between two nodes, as expressed as 
Equation (20). C�i(t) is the estimation of Ci(t). Ci(t) and Cj(t) are the clock readings from node i and 
node j. CWA is the improved algorithm based on FWA. CWA includes a confidence parameter which 
gives more weighting to the nodes that conduct more rounds of synchronization. It is expressed in 
Equation (21). The initial values of γi and γj are set to 1: 

�̂�𝑖(𝑡) =
𝐶𝑖(𝑡) + 𝐶𝑗(𝑡)

2
 (20) 

𝛾𝑖 = 𝛾𝑖 + 1 (21) 

A 10 × 10 grid sensor network is built up. After two minutes, the synchronization procedure starts 
and it performs the algorithm every minute for ten rounds. The simulation parameters are described in 
Table 1. Several cases are discussed to evaluate the proposed GNA algorithm. 

Table 1. Simulation parameters. 

Parameters Values Parameters Values 
Network size 10 × 10 Initial offset −1000 ~ +1000 

Synchronization rounds 10 Initial relative skew rate <20 ppm 
Initial sync time 2 Algorithms FWA, CWA, GNA 

Transmission range 1 Multiple runs 100 
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Case 1: α𝑖 = 1, β𝑖 ≠ 0 

In Case 1, α𝑖 is equal to 1, while β𝑖 is not equal to 0. The skew rates of all the nodes in the network 
are always the same. An initial error following normal distribution is given to all the sensor nodes. 
Figure 6 shows the geographic distribution of synchronization error before and after the first round of 
offset compensation. It can be seen that before the offset synchronization, the range of clock error is 
from −600 to +600 ticks. After one round of synchronization, the range of clock error reduces to  
−20 to +40 ticks. The offset is significantly compensated. It is also noted that after the offset 
synchronization, the values are the same for several node clusters. This is because the average 
algorithm is conducted for all the nodes within the transmission range of a central node. Then after the 
average calculation for one cluster, the nodes within the cluster would have a common clock. 

Figure 6. Geographic distribution of synchronization error before and after the first round 
of offset compensation. 

 

Figure 7 shows the relationship of the averaged standard deviation of errors and the synchronization 
rounds for 100 runs for three clock synchronization algorithms: FWA, CWA and GNA. For each run, 
random initial errors are generated for each sensor node. The standard deviation is calculated as in 
Equation (22): 

𝑠𝑡𝑑 = �
1

𝑛 − 1
�(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

 (22) 

where: �̅� = 1
𝑛
∑ 𝑥𝑖𝑛
𝑖=1 . 

After each round of synchronization, the standard deviation of clock offsets for a specific clock 
synchronization protocol is calculated and plotted. The standard deviation expresses the convergence 
performance by calculating how much variation exists from the average. A low standard deviation 
indicates that the errors of the sensor nodes tend to be very close to the mean, while a high standard 
deviation indicates that the errors are spread out over a large range of values. From Figure 7 it can be 
seen that the averaged standard deviation of the errors in the beginning is 290 ticks. It decreases as the 
synchronization is conducted round by round. As the synchronization is conducted, the standard 
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deviation reduction trend becomes slow and the value goes towards zero. This is realized by the 
averaging behavior for the three clock synchronization algorithms. The algorithms average the clock 
offsets between two nodes or among a number of sensor nodes, therefore the standard deviation 
reduces. The performance of the proposed GNA protocol is better than that of FWA and CWA. For 
each round of clock synchronization, GNA achieves a lower standard deviation than FWA and CWA. 
This is because the offset averaging calculation is conducted among all the neighbor nodes and the 
obtained value is assigned to these sensor nodes when using GNA algorithm, but for FWA and CWA 
the average is taken only between a pair of nodes for each round. The speed of convergence of FWA 
and CWA is slower than that of GNA. 

Figure 7. Averaged standard deviation of FWA, CWA and GNA for 10 rounds of clock 
synchronization. 

 

The case of the errors in ticks of the FWA, CWA and GNA algorithm for 10 rounds of 
synchronization are shown in Figure 8. For each round of clock synchronization, the offsets are 
compensated. Because the skew rates in this case are set to 1, the tick errors would last until the next 
clock synchronization. The GNA algorithm achieves the fastest convergence among the three 
algorithms. The error converges to zero after two rounds of clock synchronization (3 min after the 
simulation). Zero means that the sensor nodes converge to a common virtual clock. FWA and CWA 
need a longer time to converge. From the figure it can be seen that FWA and CWA do not converge to 
zero even after 10 rounds of clock synchronization. As discussed above, the better performance of 
GNA is because GNA takes average of all neighbor nodes but FWA and CWA only calculate the 
average between two nodes. 
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Figure 8. Errors of FWA, CWA and GNA with only offset compensation but without skew 
rate compensation. 

 

Case 2: α𝑖 ≠ 1, β𝑖 = 0 

In Case 2, there is no initial offset given to the sensor nodes in the network. Therefore, β𝑖 is equal  
to 0, but α, the skew rate of the sensor nodes clock is assigned a random value, which is not equal to 1, 
for each sensor node. The off-center skew rate causes clock errors. The clock errors for FWA, CWA  
and GNA algorithms within 12 min are compared in Figure 9. In this figure, only offsets are 
compensated, while the skew rates are not compensated. From the figure there are no initial errors in 
the first two minutes of the simulation. After that a random skew rate is generated for all the sensor 
nodes. Due to this skew rate, the errors increase in the next minute. At the third minute of the 
simulation, the three algorithms conduct the offset compensation. The clock errors of the sensor nodes 
are reduced, but because there is no skew rate compensation, the clock errors increase again in the next 
minute. The clock error patterns come out periodically. From the figure, for each clock 
synchronization at the integral time instant, the proposed GNA outperforms than FWA and CWA by 
obtaining a smaller clock error deviation of all the sensor nodes for each round of synchronization. As 
mentioned above, group averaging is the reason for GNA’s better performance. 

Figure 10 gives the simulation result of the comparisons of FWA, CWA and GNA for both offset 
and skew rate compensation. At the time instant of 2 min random skew rates are initialized for all the 
sensor nodes. The clock errors increase in the next minute. At the time instant of 3 min, The FWA, 
CWA and GNA algorithms are executed for both offset compensation and skew rate compensation. The 
clock errors therefore become smaller. Since one round of skew rate compensation cannot make all 
sensor nodes achieve a common skew rate, the clock errors still deviate in the following minutes. Then 
the next round of synchronization comes. The offsets and skew rates of sensor nodes are compensated 
again. From the figure it can be seen that at the end of the simulation, the clock errors of all the three 
algorithms are synchronized to a virtual consensus clock which is already not the real time.  
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Figure 9. Errors of FWA, CWA and GNA with only offset compensation but without skew 
rate compensation. 

 

Figure 10. Errors of FWA, CWA and GNA of both offset compensation and skew rate 
compensation. 

 

This is the nature of the consensus algorithm. The consensus algorithm can make the clocks of 
sensor nodes converge, but cannot guarantee that they will converge to the real time since there is no 
reference clock in the network. However, this is not an issue for most applications which require only 
internal clock synchronization. The convergence performance of GNA is much better than that of 
FWA and CWA. The two-node synchronization cannot make the clock converge. 

In Figure 11, the skew rates of the proposed GNA, FWA and CWA are compared. Initial skew rates 
are generated at the beginning of the simulation. After 10 rounds of synchronization, the deviation of 
the skew rate becomes smaller. The proposed GNA converges faster than FWA and CWA. After  
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six rounds of synchronization, the skew rate of GNA converges to a common value, but for FWA and 
CWA, the skew rates do not converge to a common value even after 10 rounds of synchronization. 
Group averaging within the transmission range is still the reason for the fast convergence of GNA. 

Figure 11. The skew rate of FWA, CWA and NA for the 10 round clock synchronizations. 

 

Case 3: α𝑖 ≠ 1, β𝑖 ≠ 0 

In Case 3, both initial errors and skew rates are assigned to all the sensor nodes. The errors in ticks 
of FWA, CWA and GNA algorithm for 10 round synchronizations are shown in Figure 12. In this 
simulation both offset and skew rate compensation are conducted for FWA, CWA and GNA. The 
initial clock errors are assigned to the sensor nodes in the beginning. After two minutes, the first round 
of offset and skew rate compensation are conducted. The clock errors decrease. During the next 
minute, due to the existence of skew rate deviation, the clock errors increase. In this figure this clock 
error increase cannot be clearly seen because the increase is not that significant compared with  
the initial errors with the range of −1000 to 1000 ticks. After 10 rounds of offset and skew rate 
compensation, the clocks of the sensor nodes in the network converge. It can be seen that GNA 
converges faster than FWA and CWA. 

Figure 13 shows the averaged standard deviation of clock errors for FWA, CWA and the proposed 
GNA algorithm during the 10 rounds of offset and skew rate compensation for 100 runs. For each run 
random initial errors are generated for all the sensor nodes. This result indicates a similar explanation 
as in Figure 7. At the beginning of the simulation, the standard deviation of the clock errors of the sensor 
nodes are big, here around 300 ticks. After one round of synchronization, the standard deviation drops 
significantly to around 50. As time collapses, the standard deviation continues to decrease towards 
zero. This illustrates that the algorithms of FWA, CWA and the proposed GNA are effective for the 
purpose of clock synchronization for WSNs. From the figure it can also be seen that the proposed 
GNA achieves better performance of convergence than FWA and CWA. 
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Figure 12. Errors of FWA, CWA and GNA of both offset compensation and skew rate 
compensation with initial offset and skew rate errors. 

 

Figure 13. Averaged standard deviation of FWA, CWA and GNA for 10 rounds of 
synchronization. 

 

Figure 14 shows the averaged standard deviation of errors for different transmission ranges using 
the proposed GNA for 100 runs. Transmission ranges equal to 1, 2 and 3 unit length are simulated. 
From the figure when the transmission range is equal to 1, the averaged standard deviation in the 
beginning is 28 ticks. As time collapses, the standard deviation decreases significantly. After ten 
rounds of synchronization, the standard deviation drops to zero. When the transmission range increases 
to 2 or 3, the performance of convergence becomes significantly better. This is because when the 
transmission range increases, more nodes are involved for the average calculation. N in Equations (6) 
and (7) becomes larger. The convergence becomes faster throughout the entire network. 
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Figure 14. Averaged standard deviation of errors for different transmission range using GNA. 

 

Figure 15. Averaged standard deviation of errors for different network sizes using GNA. 

 

Figure 15 shows the averaged standard deviation of errors vs. number of rounds for different 
network sizes using the GNA algorithm. There are four scenarios: 5 × 5, 10 × 10, 15 × 15 and 20 × 20. 
The standard deviation of errors goes down as the synchronization iteration increases. This demonstrates 
the convergence of the proposed GNA algorithm. It can also be seen from the figure that the standard 
deviation of errors for bigger network size is larger than that for smaller network size. The reason  
is that the transmission range is limited. The averaging operation can only be taken within a small 
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cluster. If the network size is larger, meaning that more sensor nodes are in the network, of course after 
the same rounds of synchronization, the standard deviation of errors is bigger. The convergence rate is 
slower if the network size increases. Therefore, more rounds of synchronization are needed for global 
synchronization if the network size becomes larger. 

6. Conclusions 

This paper has proposed a novel internal clock synchronization solution for wireless sensor networks. 
It is a fully distributed, network-wide synchronization algorithm. Compared with several recent 
popular synchronization algorithms, the proposed GNA algorithm considers the propagation delay. 
The two-way message exchange is adopted for the compensation of the propagation delay. Based  
on this new coming message exchange, a group average scheme was proposed. The random elected 
sensor node collects the offset and skew rate from neighbors and takes group averaging, which would 
achieve fast clock convergence. The analytical analysis of offset and skew compensation is described. 
The performance of the proposed GNA is fully simulated and analyzed for different kinds of offset and 
skew rate compensation scenarios. The simulation results showed that the proposed GNA algorithm 
achieves better performance in terms of accuracy and convergence speed than other algorithms like 
FWA and CWA. Future work would focus on full mathematical interpretation of clock synchronization 
in WSNs, energy consumption analysis and hardware testbed implementation. 
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