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Abstract: This paper investigates fault detection of a roller bearing system using a wavelet 

denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) 

covariance matrix. The IMF of the bearing vibration signal is obtained through empirical 

mode decomposition (EMD). The signal screening process in the wavelet domain 

eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing 

conditions. We segmented the denoised bearing signal into several intervals, and 

decomposed each of them into IMFs. The first IMF of each segment is collected to become 

a covariance matrix for calculating the POV. We show that covariance matrices  

from healthy and damaged bearings exhibit different POV profiles, which can be a  

damage-sensitive feature. We also illustrate the conventional approach of feature 

extraction, of observing the kurtosis value of the measured signal, to compare the 

functionality of the proposed technique. The study demonstrates the feasibility of  

wavelet-based de-noising, and shows through laboratory experiments that tracking the 

proper orthogonal values of the covariance matrix of the IMF can be an effective and 

reliable measure for monitoring bearing fault. 

Keywords: fault detection; wavelet de-noising; empirical mode decomposition;  

intrinsic mode function; proper orthogonal value 
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1. Introduction 

Rotating machines are major components of energy transformation in power plant facilities. It is of 

primary importance for the rotating machines to be constantly and reliably operative if power 

production is to be organized cost-effectively. Increasing demands for preventive maintenance of 

rotating machinery have brought about enormous developments in fault monitoring techniques. The 

challenge of monitoring the condition of rotating machines is how to identify the component with a 

defect in the area where an increased vibration level has been noticed or measured, but simple 

measurement of the vibration signal is not a suitable means of detecting the damage and identifying its 

nature. Most of the methods exploit advanced signal processing techniques on a real-time basis, to 

separate fault-induced features from the vibration response of normal operating condition. Determining 

the adequate level of deviation from the baseline or healthy condition becomes a crucial portion of the 

fault detection process. Basically, successful condition monitoring consists of knowing what to listen 

to, how to interpret it, and when to provide timely maintenance.  

A mechanical system having rotating components such as bearings and/or gears, provides a good 

example of condition monitoring. Specifically, bearing systems experience overload, misalignment, 

fatigue, looseness, and contamination, which can become major causes of cracks or spalls on the 

surface of the inner or outer-race. Typically, fault-induced signals from rotating machinery involve 

periodical impulses that are masked by environmental noises, along with the high frequency dynamics 

of structural components of rotating components [1]. The spectral signatures of good and defective 

bearings have been ascertained, and widely explored in a variety of literatures. Craig et al. introduced a 

condition monitoring technique using electrostatic charge. The study uses electrostatic wear site 

sensing to identify unexpected failure of the support bearing [2]. Sugumaran and Ramachandran 

employed a decision tree to automatically extract statistical features, and different fault conditions of 

the roller bearing are classified. Also, a fuzzy classifier is developed and tested with representative 

data, using the decision tree [3]. Zhang et al. applied a genetic programming-based classification 

approach for condition monitoring of a bearing system. They showed that the selection of  

damage-sensitive features using genetic programming outperformed other methods, such as artificial 

neural network and support vector machine in conjunction with genetic algorithms [4]. In regard to 

wavelet-based approaches, Ericsson et al. compared several different vibration analysis techniques to 

detect the local faults in a bearing. The study concluded that wavelet-based methods are particularly 

well suited to monitoring the bearing system [5]. Also, Widodo and Yang used wavelet support vector 

machine for classifying fault in an induction motor, during the transient start-up stage. They employed 

five decomposition levels, to extract the difference caused by faults in some frequency ranges [6]. Jung 

and Koh [7] applied a wavelet-based vertical energy threshold technique to locate damages in a truss 

structure. The study showed that silhouette statistics could be effectively used to assess the quality of 

clustering of damage-sensitive features.  

The most critical portions of developing a successful condition monitoring technique are signal 

processing [8], feature extraction, and the interpretation of information [9]. For signal processing, 

wavelet-based de-noising and AR-based filter techniques have been widely introduced in recent years. 

Vijay et al. evaluated wavelet-based de-noising schemes for bearing condition classification [10]. 

Junsheng, Dejie and Yu proposed an AR-based fault detection method for roller bearing in conjunction 
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with EMD [11]. Dharap, Koh and Nagarajaiah investigated ARMarkov observer, to determine the 

severity of damage, and monitor the progress of damage propagation in truss structure. Unlike Kalman 

filter-based methods, ARMarkov observer does not require noise statistics, or initial conditions of the 

system [12].  

The nonlinear and non-stationary nature of a bearing signal inevitably also demands  

time-frequency analyses, such as the Hilbert-Huang transform (HHT) [13]. In particular, the empirical 

mode decomposition (EMD) process of HHT breaks a non-linear and non-stationary signal into a finite 

number of modes or intrinsic mode functions (IMF) [14]. In regard to the feature extraction, proper 

orthogonal decomposition (POD) has recently gained much attention, for its benefit in rescaling 

empirical components from a high-dimensional data set [15,16]. The underlying theory of POD is 

closely related to principal component analysis (PCA) and singular value decomposition (SVD).  

In order to characterize the presence of defect, peak-sensitive statistical indicators, such as  

root-mean-square (RMS), kurtosis [17], and crest factor, have been widely explored for bearing 

condition monitoring. The crest factor is calculated from the peak amplitude of the waveform divided 

by the RMS value of the waveform. In regard to RMS and crest factor, some studies report their 

limitation in detecting localized defects [18]. The theoretical motivation of using kurtosis is that 

statistical moments of the data, i.e., the fourth moment, which is normalized with respect to the fourth 

power of standard deviation, can be a good indicator for bearing fault. A bearing in good condition 

produces the probability density of acceleration having Gaussian distribution; the kurtosis value 

approaches 3. Thus, the kurtosis value above 3 can be a threshold for indication of fault in a bearing. 

However, for some cases, such as fully advanced damages in bearing, kurtosis could not successfully 

detect the defect [19]. 

Although an enormous amount of literature has been published in regard to condition monitoring 

techniques, it is still a challenging task to find and implement a reliable method for real-world 

problems. We investigate the fault detection problem of a roller bearing system, through monitoring 

the variation of proper orthogonal values of the covariance matrix developed from the highest 

frequency component, i.e., the IMF of signals decomposed by EMD. All the measured bearing 

vibration signals are de-noised through a wavelet-based thresholding function, before carrying out fault 

detection. For comparison, we also present the kurtosis value of a fault signal, to substantiate the 

feasibility of an IMF-based fault detection approach. 

2. Signal Processing and Feature Extraction 

2.1. Wavelet-Based De-Noising 

Recently, wavelet transforms and related signal processing algorithms have been widely 

investigated for potential application to the condition monitoring of rotating machinery [9,20]. Unlike 

a bandwidth-based low-pass filter, the wavelet de-noising scheme does not influence the fundamental 

nature of the signal, because the wavelet transform may remove the noise, according to simultaneous 

rescaling in both the frequency and time domain. Noise corrupted vibration signal, especially with 

sharp transients, can be de-noised through the thresholding function in wavelet domains [21,22]. 

Depending on properly selected threshold rules, detail coefficients of the decomposed signal are 
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selectively preserved or suppressed. Consider that an original (noise-free) signal ( )  is being 

corrupted by unwanted noise ( ), with unknown noise level statistics σ. Hence, the obvious goal of  

de-noising is to faithfully recover ( ), without jeopardizing its inherent nature, from observation y( ): y( ) = ( ) + σ ( ) (1) 

The successive steps of wavelet-based de-noising are as follows: firstly, carry out wavelet transform 

of the targeted noisy signal for N levels. Secondly, select the appropriate thresholding value (μ), to 

eliminate unwanted noise up to N levels. Finally, the de-noised signal may be reconstructed through 

inverse wavelet transform of the modified detail coefficients. The thresholding rule decides whether 

the coefficient that constitutes the original signal is to be retained or eliminated. Donoho and Johnstone 

suggest two types of thresholdings [22], i.e., hard and soft thresholding: the hard thresholding 

(Equation (2)) puts all the signal values smaller than μ to zeros, while the soft thresholding rule 

(Equation (3)) additionally retains the differences between μ and the signal value larger than μ. Here, ( ) is a thresholding function: ( ) = , | | ≥ μ0, | | <  (2) ( ) = sign( )(| | − μ), | | ≥ μ0, | | <  (3) 

2.2. Empirical Mode Decomposition (EMD) 

Recently, a generalized form of spectral analysis, the Hilbert-Huang transform (HHT), has been 

developed to tackle non-stationary and nonlinear signal. HHT-based signal processing has two 

components: the Hilbert spectral transform [13], and empirical mode decomposition (EMD). The 

major limitations of Fourier spectral analysis are the assumptions of stationarity and linearity of the 

underlying signal. It is known that the Hilbert transform of an arbitrary time series x( ) is defined as: (t) = 1 ( )−  (4) 

Note that Equation (4) is equivalent to the convolution product of ( )  and 1⁄ . The Hilbert 

transform can be used to calculate instantaneous frequencies and amplitudes, to describe the local 

nature of a signal, such as energy of frequency and time. On the other hand, EMD decomposes almost 

any form of signals into a finite set or function having instantaneous frequency value. The outcome of 

EMD is known for the intrinsic mode function (IMF). Basically, EMD belongs to a signal processing 

technique that breaks a temporal signal into empirically characterized modes, as the EMD decomposes 

the original signal into several IMFs, by subsequently removing the lower frequency components from 

the highest frequency of the residual of its ancestor, which is also known as the sifting process.  

The process of EMD is as follows: first, all the local extrema and minima of ( ) should be 

identified, and connected by cubic spline line to form upper and lower envelopes of the signal. Then, 

the original signal is subtracted by the mean value ( ) of the upper and lower envelopes, i.e., ( ) − = ℎ , which becomes ideally the first IMF (ℎ ). If ℎ  is not an IMF, ℎ  is treated as the 

original signal, and the previous steps are repeated; then ℎ − = ℎ . The iterative decomposition 

process of enveloping and subtracting toward residual value from the previous IMF is called shifting. 
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After repeated shifting up to  times, ℎ  becomes an IMF, that is ℎ ( ) − = ℎ . It is also 

denoted that = ℎ . Separating  from ( ) through = ( ) − , the procedure is repeated up to 
n times, until the  becomes a monotonic function , where no more IMFs can be extracted. While 

the first extracted IMF retains interpolation of local maxima, the last IMF, conveniently called the 

residual, represents the lowest frequency component, or simply the trend of the signal. Having being 

fully decomposed, the original signal ( ) can be perfectly reconstructed through summing up all the 
IMFs, including the final residue , as shown in Equation (5): 

( ) = +  (5) 

Note that a signal has to satisfy two assumptions to be eligible for EMD: (1) the difference between 

the number of zero-crossings and the number of extrema should be less than one for the whole data set, 

and (2) the mean value of the upper envelop and lower envelop should be zero at any point. Again, the 

observed signal for the EMD doesn’t have to be linear or stationary. Knowing that the signal from 

rotating machinery exhibits a similar nature of non-linear and non-stationary characteristics, many 

researchers have investigated HHT for diagnosing damage in rotating machinery [23–25]. 

2.3. Proper Orthogonal Decomposition (POD) 

Modeling and verification of a dynamic system demands a statistical technique that projects a 

dominant mode to its subspace, namely proper orthogonal decomposition (POD), which is also known 

as Karhunen-Loève decomposition [26]. The underlying nature of POD represents the empirical modes 

of a system, and is identical to singular value decomposition (SVD), or principal component analysis 

(PCA) [15,16]. Referring to Kerschen and Golinval [15], the fundamental goal of POD is to find the 

basis function ( ) of the following extreme value in a continuous function of  in Ω: 

	 = 1 ∑ σ( )σ( ) Ωσ( )σ( ) Ω 	 (6) 

The solution of the maximization problem of Equation (6) can be reduced to the following integral 

eigenvalue problem: ( , )σ( ) = σ( ) (7) 

Here, ( , )  is an averaged auto-correlation function. Equation (7) yields orthogonal 

eigenfunctions and eigenvalues, or equivalently proper orthogonal modes (POM) and corresponding 

proper orthogonal values (POV). In practice, given an 	 ×  matrix, i.e.,  observations of ( ), 
sampled  times, Y is shown as below: = …⋮ ⋯ ⋮…  (8) 
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The proper orthogonal value (POV) is equivalent to the singular value of the covariance matrix , 

which is an ensemble of snapshots or observations from sensors on the bearing system [27,28]: = 1
 (9) 

2.4. POV of IMF Matrix 

This study exploits the correlation of POV of the IMF matrix and the bearing fault through the 

matrix A of collected vibration measurement from a bearing system. It is also well known that the 

kurtosis value of measured signals can be an indicator for the presence of bearing fault. The kurtosis is 

normally defined as the fourth population moment, normalized with respect to the fourth power of 

standard deviation, or Equation (10), where E is the expectation operator, and μ is the mean: β = ( − μ)( ( − μ) )  (10) 

Here, we compare the condition monitoring results of a roller-bearing system, using the change of 

kurtosis value, and the POVs of an IMF covariance matrix. Figure 1 illustrates a flow chart of the 

roller bearing fault monitoring method. This describes the overall process from the original signal to 

the filtered one, and the consequent decomposition steps for calculating POVs. 

Figure 1. Flow chart of the roller bearing fault monitoring method. 

 

3. Experimental Setup and Data Collection 

To develop and validate a fault detection technique for a rotating system, it is important to design 

the apparatus to facilitate the frequent replacement of bearing modules for damaged and healthy 

conditions of the system, without disturbing the boundary conditions. Also, the dynamic signature of 

the defect in the component should be transmitted to the measurement point. Figures 2 and 3 show the 

experimental setup for monitoring the vibration signal of a roller bearing system, and its schematic 
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drawing. As shown in the figures, the driving motor and the main shaft are connected through 

mechanical coupling. The speed of the shaft is measured through an optical encoder, while a 500 mv/g 

accelerometer of PCB is mounted on the vertical direction of the bearing housing for vibration 

measurement. The data acquisition (DAQ) system, NI PXI-1042Q collects the bearing condition signal 

with a sampling speed of 50 KHz, through a LabVIEW interface. The roller-bearing type in this 

experiment is NJ 202 ECP from SKF, withstanding static loads up to 12.5 KN, at a rotating speed of 

22,000 rpm. Note that a scratch-type bearing fault is imposed on the surface of the inner race, as shown 

in Figure 4. First, the DAQ collects a set of vibration measurements of the healthy bearing, and another 

set of measurement is recorded, after having imposed the defect on the healthy bearing.  

Figure 5 shows the time history data measured from the bearing system between 0.1 and 0.2 s without 

de-noising: one without damage (Figure 5a) and the other one (Figure 5b) having the scratch damage of 

Figure 4. Figure 5 clearly exhibits the repeated peaks caused by the periodic impact between the faults in 

the race surface and rolling elements. Obviously, high frequency components are identified between the 

two repeated peaks that are considered to be an uncorrelated combination of resonance reflection and 

measurement noise. Apparently, wavelet-based de-noising capability enhances the signal-to-noise ratio 

of signals, by removing noise, without affecting high-peak stress waves caused by bearing damage. 

Figure 2. A roller bearing system with driving motor and acceleration sensor instrumentation. 

 

Figure 3. Schematic drawing of the experimental setup for the roller bearing system. 
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Figure 4. (a) Inner/outer race of roller bearing; (b) Scratch-type defect on the inner race. 

 
(a) 

 
(b) 

Figure 5. Measured bearing signals: (a) healthy condition; and (b) damaged condition. 

 

4. Fault Detection and Discussions 

Again, Figures 6 and 7 illustrate before and after performing wavelet de-noising towards the time 

series of bearing vibration. As shown in Figure 6a, irregular spikes caused by measurement noise are 

inconsistently positioned in the vibration signal, which may yield extra harmonics to the frequency 

response. Because the relative level of deviation from the baseline or healthy state of the bearing 

system is a crucial factor for feature extraction before deciding the presence of fault in the system, the 

signal-to-noise ratio has to be enhanced as much as possible. Although numerous schemes for noise 

removal exist, conventional low-pass type filters are inadequate for monitoring a bearing system. The 

impulse caused by collisions between faults and the rotating component excites the entire bearing 

system. Thus, the resulting impulse response contains high-frequency content, which becomes a 

critical evidence of damage presence, as shown in Figure 7.  

Apparently, wavelet thresholding has successfully removed fault-irrelevant low-amplitude  

high-frequency wave components. Here, the study incorporates de-noising through the wavelet 

coefficient thresholding principle of soft thresholding without rescaling. Having been de-noised, elastic 
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waves due to collision of the defect remain intact, as shown in Figure 7b. Although the overall power 

of the signal has been moderately reduced, the repeated peaks clearly remain after the wavelet  

de-noising process. After de-noising, we equally segmented both the measured healthy and damaged 

signals into 10 segments. Using these de-noised segments, we carried out EMD, to extract IMFs for 

both healthy and damaged bearing signal segments (see Figure 8). 

Figure 6. Time-history data of healthy bearing signal (a), and wavelet-based de-noised 

signal (b). 

 

Figure 7. Time-history data of damaged bearing signal (a), and wavelet-based de-noised 

signal (b). 

 

Only the first three IMFs produced by EMD for both healthy and damaged bearing signal are 

depicted in Figure 8, due to space constraints. Because higher intrinsic modes mostly incorporate  

high-amplitude peaks, resulting from repeated collisions between the fault spot and moving elements 

of the bearing system, we used the first three IMFs to develop the covariance matrix [29,30]. As shown 
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of nine sets of both healthy and damaged bearing data (each set has 10,000 data points). Figures 9 

and 10 visualize the waterfall profile of amplitude vs. data points of stacked IMFs extracted from 

healthy and damaged bearing measurements, respectively. As shown in Figure 10, the collection of the 

first IMFs from the data sets of the damaged case shows prominent high-amplitude peaks. In contrast, 

the IMF collection of the healthy case doesn’t provide any significant peak or fluctuation, and so is 

visually similar to white noise (see Figure 9). The prominent difference of the first IMFs between 

healthy and damaged bearing signals becomes the damage-indicative feature for extracting POVs of its 

covariance matrix. 

Figure 8. The first three IMFs of healthy (left), and damaged bearing (right) signals. 

 

Figure 9. Profile of the collection of the first IMFs from healthy bearing acceleration:  

10 segments. 
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Figure 10. Profile of the collection of first IMFs from damaged bearing acceleration:  

10 segments. 
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standard deviation. Also, note that the segment number 7 of case L3 provides a contrasting result of 

standard deviation, as shown in Figure 13b. 

Figure 11. Proper orthogonal values of the collected covariance matrix of the IMFs  

from segments. 

 

Figure 12. Proper orthogonal values of the collected covariance matrix of the IMFs from 

noised and wavelet-based de-noised segments (additional test set). 
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signal of interest, however, kurtosis may easily fail to indicate the presence of fault. This point is 

clearly described in Figure 15, where the 10th segment exhibits a higher value of kurtosis for the 

healthy case.  

Figure 13. Comparison of increasing ratio between (a) the proper orthogonal value of total 

segments, and (b) standard deviation of the first IMF from the wavelet-based de-noised 

segment (L1 & L2: moderate damage, L3: severe damage). 
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Figure 14. Kurtosis value of 10 segments. 

 

Figure 15. Kurtosis value of 10 segments (additional test set). 
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inner race. Before performing fault detection, we carried out wavelet-based denoising through a  

soft-thresholding scheme. Unlike the conventional low-pass filter, the wavelet-based denoising method 
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does not distort the elastic waves due to collision of the defect in bearing. After denoising, we carried 

out EMD to extract the IMFs of collected segments of vibration signals. Finally, we compared the 

POV of collected IMFs before and after the occurrence of bearing defects. The present method 

provides a simple and intuitive approach to exploit damage-sensitive features, namely the POV from 

the IMF matrix of the bearing signals. Although the kurtosis value could be used to characterize 

repeating peaks due to faulty bearing, the proposed method of using the POV produced more reliable 

fault detection results in some cases. We will extend this study in the near future to more challenging 

cases, in which multiple sources of faults co-exit, such as a bearing dismantled due to fatigue, and 

cracks in a gear tooth of a gearbox system. 
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