
Sensors 2014, 14, 15981-16002; doi:10.3390/s140915981
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Image-Based Environmental Monitoring Sensor Application
Using an Embedded Wireless Sensor Network
Jeongyeup Paek 1,*, John Hicks 2, Sharon Coe 3 and Ramesh Govindan 4

1 Department of Computer Information Communication Engineering, Hongik University,
Sejong 339-701, Korea

2 Computer Science Department, University of California, Los Angeles, CA 90095, USA;
E-Mail: johnhicks@gmail.com

3 Biology Department, University of California, Riverside, CA 92521, USA;
E-Mail: sharonicoe@gmail.com

4 Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA;
E-Mail: ramesh@usc.edu

* Author to whom correspondence should be addressed; E-Mail: jeongyeup.paek@hongik.ac.kr;
Tel.: +82-044-860-2622; Fax: +82-044-865-0460.

Received: 11 July 2014; in revised form: 14 August 2014 / Accepted: 25 August 2014 /
Published: 28 August 2014

Abstract: This article discusses the experiences from the development and deployment
of two image-based environmental monitoring sensor applications using an embedded
wireless sensor network. Our system uses low-power image sensors and the Tenet general
purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s
built-in support for reliable delivery of high rate sensing data, scalability and its flexible
scripting language, which enables mote-side image compression and the ease of deployment.
Our first deployment of a pitfall trap monitoring application at the James San Jacinto
Mountain Reserve provided us with insights and lessons learned into the deployment of and
compression schemes for these embedded wireless imaging systems. Our three month-long
deployment of a bird nest monitoring application resulted in over 100,000 images collected
from a 19-camera node network deployed over an area of 0.05 square miles, despite highly
variable environmental conditions. Our biologists found the on-line, near-real-time access to
images to be useful for obtaining data on answering their biological questions.

Sensors 2014, 14 15982

Keywords: wireless sensor networks; image sensors; sensor applications; tenet, rcrt,
cyclops, environmental monitoring

1. Introduction

Avian ecologists study the behavior of birds during the nesting season to answer biological questions
that relate to the laying, incubation and hatching of eggs and the fledging and survival of nestlings.
Studies on the breeding biology of species of birds that normally build their nests in natural holes in
trees are part of the research effort that has been taking place for several years at the James San Jacinto
Mountains Reserve [1]. For such species, researchers often place wooden boxes, called nestboxes, on
trees that birds can use for nesting, because they allow the researcher to view the contents of the nest
more readily compared to a cavity within a tree. Nestboxes have been placed around the reserve and
have been occupied by breeding birds. However, observing the day-to-day changes of breeding behavior
in these boxes is extremely labor intensive. To answer certain kinds of scientific questions, the interior
of each box must be checked daily by a biologist in the field or it must be wired with a permanent
camera for remote observation. Thirteen of the boxes at the Reserve have indeed been wired to give high
quality and high resolution images, but they have limitations. The number of wired boxes is low, as they
are restricted to locations near sources of power and Ethernet. Furthermore, in biological studies using
nestboxes, it can be hard to predict which nestboxes will be occupied by birds in each year prior to the
initiation of the bird nesting season; therefore, a system that relies on wired connections to nestboxes has
the disadvantage of being more difficult to relocate when an individual nestbox that has a buried wired
connection is found to be unoccupied in a given year. Similar challenges exist for studying the biology
of lizards and amphibians using pitfall trap arrays at James Reserve.

To address these issues, we needed an imaging system that can be deployed easily and moved flexibly
over a large area at places where wired infrastructures are less available. The system should support a
large number of cameras and should operate for long periods of time without excessive maintenance.
Furthermore, it needs to be easy to run and re-configure.

In this article, we devised and implemented a low-power, scalable, wireless imaging system using
off-the-shelf hardware and Tenet, a readily-available open-source software package for programming
tiered wireless sensor networks [2]. We also discuss two real-world deployments of image-based
environmental monitoring sensor application using this wireless sensor network system; one for pitfall
trap monitoring and another for bird nest monitoring, both deployed at James Reserve.

Low-power sensor networks are not a new theme, and there already exist various systems that can
take environmental measurements and return them in near real time. The work most close to ours
is [3], which reports a similar deployment for the bird nests at James Reserve, but does not provide a
fully end-to-end system, nor does it provide multihop capability, reliability, congestion control and many
other features explained in the following sections. Othman et al. [4] reported a complete end-to-end
wireless sensor network system for swift bird farm monitoring using a similar mote platform to ours,
but their sensors were mainly temperature and humidity and did not include a camera for image-based

Sensors 2014, 14 15983

monitoring. Lloret et al. [5] presented a WLAN-based camera sensor network for vineyard monitoring,
and Hwang et al. [6] studied an agricultural environment monitoring server system using a wireless
sensor network. Furthermore, Szewczyk et al. [7] analyzed a large-scale habitat monitoring application
using wireless sensor platforms similar to ours, and Cerpa et al. [8] discussed a communication and data
aggregation architecture for WSN-based habitat monitoring; however, neither used camera sensors.

However, there are few such systems for low-power high data rate retrieval of images, which are
also configurable and usable by those with little knowledge of embedded programming. The large size
and inherent complexity of images along with a large number of cameras over a wide area gives rise to
routing, reliability, congestion control, power and other issues not seen in lower data rate systems. One
known solution stems from a similar deployment for the bird nests at James Reserve [3]. Our deployment
uses the same hardware, including the same nestboxes and their locations, but implements a completely
revamped software system. We chose the open-source Tenet package, which gives a number of usability
and flexibility advantages, as explained in the following sections. The main contribution of this article
is in the development and real-world deployment of an end-to-end system that satisfied the requirements
of our biologist and the experiences from it.

2. Motivation

This section describes the motivations behind our deployments of two wireless imaging applications
at James Reserve.

2.1. Pitfall Trap Monitoring

Pitfall trap arrays at James Reserve are used by biologists to sample the local population of lizards
and amphibians. Biologists deploy arrays of traps in clusters, and when a lizard is caught in a trap, it is
tagged and freed. Over time, the count of trapped lizards can be used to estimate the overall population
of lizards. To avoid the mortality of lizards and amphibians or any incidentally-captured animals (e.g.,
small mammals) from a variety of causes while in the trap, the pitfall traps are visited by biologists on
a regular basis (on the order of hours) to remove captured animals. Often, however, the visits results
in the biologist finding the trap empty. When traps are deployed over a large area (e.g., several square
kilometers), the checking of traps represents a considerable investment of time. A wireless imaging
system based on a wireless sensor network using low-power cameras can reduce the amount of time that
a biologist needs to spend checking traps. Using a low-power wireless imaging system, the biologists
can visually inspect images from every trap remotely and only visit a trap when an animal is caught,
saving their time and effort.

2.2. Bird Nest Monitoring

Avian ecologists study the behavior of birds during the nesting season to answer biological questions
that relate to the laying, incubation and hatching of eggs and the fledging and survival of nestlings,
primarily during the breeding season, which can last up to three months during spring. Usually, a
minimum of 30 nests of a single species of bird is needed to provide a statistically robust analysis

Sensors 2014, 14 15984

(to achieve this, a researcher studying birds in nestboxes would typically place twice that number of
nestboxes in the field to give ample “choice” to birds in selecting nest sites, with the hope of achieving
50% occupancy). Each of these nestboxes needs to be checked manually on a regular basis to determine
which are occupied by birds and then monitored regularly (in some cases, daily) to take data on the
breeding behavior of interest. Such efforts can require a considerable investment of time and labor. The
low rate of data sampling makes answering many scientific questions infeasible. In addition, manually
opening and inspecting the nestboxes to obtain data can create a disturbance that can result in adult birds
abandoning their nest.

To this end, the goal of our deployment is to demonstrate a system that can be used by ecologists to
continuously observe the interior of nestboxes spread over a large area for the duration of the breeding
season with minimal disturbance to the breeding birds. Our work is focused on recording still images
inside nestboxes using a wireless camera system to record bird behavior. In addition, we are measuring
environmental characteristics of the immediate nesting environment (i.e., inside the nestbox), including
temperature, humidity and dew point, as well as near the nesting environment (i.e., outside of the
nestbox). The environmental data and associated nestbox images are being used to answer questions
about bird breeding behavior and breeding success. The questions fall into the following areas:

• Nestbox use during the non-breeding season;
• Environmental variation among nestboxes with respect to nest site selection and adult

breeding behavior;
• Inter-species competition for nestboxes;
• Laying patterns and behavior;
• Incubation and hatching (pattern/time, asynchrony);
• Fledging (variation among nestlings within a nest).

Biologists can gain insights into the biology of the birds based on the data that have been collected
through our system, and this data can help answer significant biological questions, as discussed below.

3. Requirements

There are several requirements for our system. First, the system should not miss important events.
This means that images should be taken at a relatively high rate, high enough to detect events, such
as trapped animals or bird presence/absence, with high accuracy. Second, the system must be scalable
enough to monitor a sufficient number of traps and nests to derive statistically robust results. This means
that the system should be capable of acquiring and managing images from a large number of sensor
nodes spread over a large area. Third is the ease of use by non-computer scientists (e.g., biologists),
both in set-up and the operation and maintenance of the deployment, with minimal dependence on
computer programmers. The system should allow the user to easily start, stop, modify and reconfigure
the application. Furthermore, we need an end-to-end system to allow the operator to monitor incoming
images and data in real time. This will allow the personnel who are maintaining the system to detect
problems as they happen and to alter various settings to maximize the data return.

Sensors 2014, 14 15985

In addition to the above requirements, the incremental cost of adding more nodes to the system should
not be too high. It should be possible to place sensor nodes at places where direct radio communication
to the server is not possible. Furthermore, each camera must be low power to reduce maintenance
costs or, with the help of solar panels, eliminate those costs during the monitoring period. All of these
requirements have implications for multihop communication, packet reliability, congestion control, mote
stability, power consumption, and image processing algorithms.

4. System Architecture

This system uses low-power image-sensors (Cyclops cameras [9]) on a tiered wireless sensor network
system called Tenet. The Tenet system includes all necessities for basic wireless sensor network
programming: drivers, routing protocol, flow control, end-to-end reliability, a two-tier network hierarchy
and a simple scripting language for easy programming of applications. These properties, in addition to
Tenet’s extensibility, make Tenet an ideal choice for our deployments.

Tenet collects images and environmental data from every sensor node and stores them on the local
server at James Reserve. Tenet applications run on a local server, and one or more Stargate(s) act as
Tenet-masters, which relay commands to and data from the Cyclops nodes. A back-end server retrieves
the data from the local server via the Internet and archives and processes the data. These components
together give a complete, real-time, end-to-end system. These factors together enabled us to reach our
goal of increasing the temporal resolution of data, providing near real-time monitoring, which saved time
and labor for the biologist, allowing a larger spatial area to be covered with sensors.

4.1. Tenet Advantages

Our wireless imaging system has several requirements, as described in Section 6.3. These
considerations have led us to adopt Tenet for our system, as Tenet already addresses most of the above
requirements and allows the easy addition of new functionality.

Tenet is a software package for flexibly programming a tiered network of sensors. The Tenet system
consists of motes and less-constrained 32-bit platforms, called masters. All applications run on the
masters and task motes using a generic tasking API that allows the user to run simple programs on the
master nodes to configure, control, sample and process data without having to reprogram the motes.
Tenet constructs seamless multi-hop routing over a tiered network of motes and masters, which enables
flexible deployment of sensors over a large area. Tenet also provides end-to-end reliable delivery of
packets with a built-in congestion control capability. Reliable delivery is an application requirement
for our system; otherwise, image quality can be severely compromised. It also allows our system to
use loss-intolerant image compression techniques to increase effective network capacity, since these
techniques require 100% packet delivery for correct decompression. Congestion control allows our
application to adapt its image transfer rate to the network scale and a wireless environment. By using
Tenet, we can reuse all of the above networking and sensor data extraction code, thereby significantly
reducing application development time.

Sensors 2014, 14 15986

4.2. Software Development

The goal of our applications is to repeatedly collect from every node a Cyclops image along with
MDA300 sensor readings as frequently as possible. Developing our imaging applications using Tenet
involved adding several new software pieces into Tenet. We ported device drivers for the Cyclops camera
and the MDA300 data acquisition board into Tenet, added Tenet tasklets and its APIs for accessing these
devices and implemented basic image compression algorithms (described in Section 5) to reduce the
image transfer latency. All of these were fairly straightforward to implement in Tenet. Finally, two new
Tenet applications, one for the pitfall trap monitoring and another for the bird nest monitoring, were
written in the Tenet scripting language [2], as we will describe in Sections 6 and 7.

4.3. Back-End Server

The back-end database and image viewer completes our system. We used a database server at CENS
(Center for Embedded Networked Sensing), which stores environmental data and images. As mentioned,
the images and environmental data are collected at a Linux server running at James Reserve. The data
were pulled from this machine and entered into the database at regular, 15-min intervals. The images
and data are finally displayed on one of two flash viewers. One allows easy image browsing, while the
other is used to monitor the status of the system in real time.

5. Image Compression

Our sensor nodes are embedded devices running on battery power. Thus, we needed to develop
algorithms that take into account the limited computational and memory resources available on these
devices, their limited radio bandwidth and the power constraints under which these devices operate.
Image compression will allow us to reduce the number of packets per image to be transmitted over
the radio, which will reduce the overall power consumption and allow us to transmit more images for
higher resolution data [10]. However, the image compression algorithm must be simple enough to be
implemented on these resource-constrained, embedded devices. Specifically, our nodes have 64 kB of
SRAM memory, out of which around 5 kB were used for infrastructure code, leaving us with only
around 59 kB for image storage and processing. Each 128 × 128 grey-scale image consumes 16 kB
of memory, which allows us to have at most three images in the memory for simple processing, like
‘C = PROCESS(A, B)’. Each 200 × 200 grey-scale image consumes 40 kB, giving us no extra room
for another image, other than the one that is being taken from the camera sensor. For these reasons,
we have employed two different compression algorithms for our pitfall trap deployment and the bird
nest deployment.

In the pitfall trap deployment, the requirement was that we need to ‘detect’ an event when an animal
is captured in the trap. If there are no events, biologist need not visit those traps for investigation and
rescue. Thus, images are not required to be transmitted when there are no events, but must be transmitted
when there are. Once the animal has been rescued, the trap can go back to the no event state. For this
reason, we used a simple “background subtraction-based object detection” [11] algorithm on 128 × 128
grey-scale images for the pitfall trap deployment. This seemed to be an ideal choice, not only because of

Sensors 2014, 14 15987

its low memory and computation requirements, but also due to the fact that the cameras are pointed at an
enclosed, unmoving background. In this algorithm, if the newly-taken image differs from the previous
one, we say ‘detected’. By ‘differ’ we mean, for the pixel with the largest gray scale value difference
greater than a threshold value ‘THRESH’, ‘M’ pixels out of ‘N’ pixels around that pixel have a gray
scale value difference greater than ’THRESH’. If ‘detected’, we transmit the image, otherwise not. A
threshold value was used to take into account minor differences in the light intensity. Figure 1 depicts
an example of this procedure. A newly taken image ‘A’ is compared with the previous image ‘B’, and
the background subtracted ‘A-B’ is used for object detection. The black and white dots in the ‘A-B’
image are due to minor (±1) differences in light intensity, which translated into 0/255 gray scale values.
Offsetting the ‘A-B’ image with a fixed constant ‘X = 100’ (‘A-B + X’) proves this, where ‘X’ can be any
positive constant large enough to mask the minor (±1∼2) differences and noise in light intensity (e.g.,
X > 4). (In other words, using any value greater than four will result in identical detection algorithm
behavior. One hundred was randomly chosen among the values that show the (‘A-B + X’) difffigure
nicely for presentation.)

Figure 1. A “background subtraction-based object detection algorithm”example.

SCOPES [12] also used a similar technique with the background updated using EWMA. However, we
found that updating the background using EWMA created an artificial background that does not represent
any real background at any instance in time and that created more false positives in our scenario. As
we will describe in more detail later in Section 6, our background subtraction-based object detection
algorithm not only detected true events, but also had several false positives, motivating improvements.
Many of the transferred images were triggered as a result of changes in the intensity of sunlight or when
the image was completely dark at night.

In the bird nest deployment, the requirements were different from the pitfall trap deployment.
First of all, background subtraction would not be useful, not only because of the sunlight changes,
but also because the birds fly in and out frequently. Second, the biologist requested for higher resolution
images (200× 200) than 128× 128 for their purposes, leaving us no memory space for running any kind
of algorithm that required additional memory. Thus, we needed to develop a new image compression
algorithm for our bird nest deployment.

For this reason, we have investigated two types of run-length encoding (RLE) on the Cyclops. One
was the simple run-length encoding, where everything is encoded in to [length][byte], and another
was the ‘PackBits’ algorithm. PackBits is a fast, simple loss-less compression scheme for run-length
encoding of data originally developed by Apple. These schemes were chosen because the encoding
operation at the mote-end is simple and can be done on-the-fly without requiring a full image size buffer.
We modified these two algorithms into lossy algorithms, so that a sequence of values within a threshold

Sensors 2014, 14 15988

range consists of a ‘run’ (in our image data, each byte represents a gray scale value ranging between
zero and 255). In other words, a ‘run’ consists of values where the difference between the minimum and
the maximum values within that run are less than the threshold. For example, if the threshold is 10 and
the original image data are {1, 2, 1, 3, 2, 3, 2, 2, 15, 20, 15, 20, 100, 110, 105, 105, 100, 110}, then this
image is compressed into {[8][2],[4][18],[6][105]} and will later be decompressed to image data {2, 2, 2,
2, 2, 2, 2, 2, 18, 18, 18, 18, 105, 105, 105, 105, 105, 105}. The threshold value trades-off image quality
for increased compression, and setting it to zero is equivalent to using the original loss-less algorithm.
Figure 2 depicts examples from our investigation where you can see that we can achieve a significant
data reduction if we can tolerate some lossiness in the images after decompressing the lossy-encoded
data. In general, PackBits has better compression performance than simple RLE.

Figure 2. Lossy version of the “simple run-length encoding” (RLE) and “PackBits”
algorithms with a threshold example.

One downside of PackBits is that it requires 100% reliable data delivery; if any packet is lost, we
cannot decompress it, whereas we can always decompress the simple RLE as long as the fragment size
is in even numbers. This is not a problem for us, since Tenet has a reliable transport protocol, but it can
cause errors if you are testing it without reliability. One concern for using reliable communication is that
it may cause extra retransmissions and, hence, energy consumption. If the images with packet losses
are readable and energy overhead is considerable, simple RLE might be a better choice. To validate
this, we have conducted an experiment to see the image quality of simple RLE with some packet losses.
Figure 3 shows the result of this experiment. The average packet delivery ratio of our deployment was
around 82%, with the worst node having 50% packet reception rate (PRR). As you can see from the
figure, images with packet losses are not of good quality; our biologist greatly preferred less frequent
100% images over more frequent 80% images. Furthermore, an image with 50% packet loss is not

Sensors 2014, 14 15989

readable. Lastly, the average PRR of 82% translates into ETXof around 1.21, which means that the
extra energy consumed by retransmissions are around 21% on average. Our decision was that it is
worth spending 21% extra energy to collect 100% images rather than compromising the image quality.
Another reason that the biologists wanted high quality images was to perform offline image processing
at the backend to automatically detect the presence/absence of birds and also to count the number of eggs
from the 100,000+ images that we have collected. This is a separate line of image processing research,
which required complete images. Thus, based on the above investigation, we have used the modified
PackBits algorithm for the bird nest deployment.

Figure 3. Simple RLE with simulated packet loss of 5%, 10%, 20% and 50%. Average
packet loss in our bird nest deployment was around 18%.

5%	 10%	 20%	 50%	

The compression algorithms that we have used in our deployments are simple, yet satisfied the
requirements of our users. Other schemes can be considered also. Lee et al. [13] explored the energy
tradeoffs involved in JPEG compression on energy-constrained platforms, but their findings show that
JPEG energy consumption is actually higher on low power platforms due to the longer times needed
for these platforms to perform the computation tasks to the desired precision. Table 1 shows the power
consumption of our mote platforms and Cyclops camera. TiBS (tiny block-size image coding) [14] and
Optimal Zonal 2 × 2 BinDCT [15] are two recently proposed image compression schemes for wireless
sensor networks that could be useful for our deployments. TiBS operates on blocks of 2 × 2 pixels
and is based on pixel removal. Furthermore, TiBS is combined with a chaotic pixel mixing scheme to
reinforce the robustness of image communication against packet losses. However, in our deployments,
the primary challenge for implementing these improved algorithms was the practical memory constraint
on our motes. The Mica2 and MicaZ motes have only 4 kB of RAM, and the Tenet software, which
includes the multihop networking stack, reliable transport protocol and the task library, consumed over
3.6 kB already. However, for example, TiBS requires 22,946 bytes of ROM and 1820 bytes of RAM [14]
to implement. There was very little room to implement these sophisticated image processing algorithms
on our devices. We agree that newer platforms with more memory can implement better compression
algorithms on top of our system. Alternatively, hardware-based image compression, such as the one
proposed in [16], can also be a solution if the cost permits.

Sensors 2014, 14 15990

Table 1. Power consumption of Mica2/MicaZ [17] and Cyclops [9].

Operation Mica2 MicaZ

Idle 9.6 mW 9.6mW
MCU Active 24.0 mW 24.0mW
MCU + Radio TX (0 dBm) 76.2 mW 63.0 mW
MCU + Radio RX 45.3 mW 69.9 mW

Operation Cyclops
Capture Image 42 mW
Extended Memory Access W = 53, R = 50 mW
MCU Active 28 mW

6. Pitfall Trap Deployment

In this section, we discuss a real-world deployment of our wireless imaging system for pitfall trap
monitoring deployed at James Reserve. This deployment has its own application and needs, but at the
same time, it was in some part an experimental deployment to investigate and gain experience for our
next larger-scale bird nest deployment.

Figure 4. Pitfall trap monitoring deployment topology at James Reserve.

trees

5

7

6

3 2 1

stargate	

Laptop

~100yd

~30ft

4

6.1. Hardware Setup

Here, we describe the specifics of the hardware and an overview of the configurations used in
the pitfall trap deployment. We deployed our system in an array of pitfall traps at James Reserve.

Sensors 2014, 14 15991

Figure 4 depicts the network topology of the deployment. One array of pitfall traps consists of seven
traps in a star configuration. We placed seven traps, each equipped with a camera sensor node, one
Stargate master near the array and a Linux laptop acting as a server at an indoor location about
100 yards away from the array (Figure 5). The laptop communicates with the Stargate via 802.11,
and they together constitute the upper tier of the network. Stargate is connected to a MicaZ mote, which
is used to communicate with nearby sensor nodes, which comprise the low power, lower tier of the
network. Some of the nodes were behind the trees with foliage, which blocked the line of sight to the
base station.

Each pitfall trap contains a pair of D cell alkaline batteries, an antenna and the embedded hardware
necessary for imaging and communication. Figure 5(right) shows the outside of a pitfall trap.
Plastic traps are all custom-made and contain a sensor node composed of a 2.4-GHz MicaZ mote for
communication and a Cyclops camera for imaging. The sensor node was enclosed in a box with a clear
plastic bottom through which the camera takes images, while protecting the hardware from dirt and
moisture. For most nodes, a pair of D cell batteries was enough to keep them running for more than
three days, and all nodes had 9 dBi omnidirectional antennas.

Figure 5. An array of pitfall traps consisting of seven traps in a star configuration (left)
and the outside of a pitfall trap. Notice the barrier walls on the sides to lead the lizards into
the trap and the legs to hold the trap lid above ground. The Cyclops node is under the lid
pointing down into the trap (right).

2 1
30ft to

~100yd to lodge

Pi#all	 trap	

5
4 6

7

3

Antenna	

Ba(ery	

Legs	

Camera/Mote	

6.2. Tenet Application for Pitfall Trap Monitoring

Our goal was to design a triggered data collection system, where each node frequently captures an
image, but only sends it to the base station when an animal is likely to be present in the trap. This
is necessary to reduce the energy consumption of the battery-powered sensor nodes and to conserve
network bandwidth, since each image is 16 kB and data communication is the most significant part of
the energy consumption. However, the object detection algorithm we use can exhibit false negatives. If
a false negative detection occurs, no image will be delivered at that instant. Even if there actually were

Sensors 2014, 14 15992

an animal in that trap, if it does not move, no image transfer will be triggered at subsequent sampling
times, as well. This might result in a missed and eventually dead animal. To avoid this, we designed our
application to take an image every 2 min and to transfer the image only if an object is detected, but also
to transfer at least one image every 30 min regardless of the detection. Here is a Tenet task that realizes
this relatively complicated logic.

Repeat(120000ms)

-> ImageDetect(TAKE_NEW, FLASH_ON, BW, 128, 128, x)

-> Count(y, 0, 1) -> Mod(y, y, ’15’) -> Eq(y, y, ’0’)

-> Or(x, x, y) -> Store(z, x) -> DeleteAllAttributeIf(x)

-> Send(E2E_ACK)

-> Retrieve(z) -> Not(z, z) -> DeleteActiveTaskIf(z)

-> DeleteAttribute(z) -> ImageDetect(RESET)

-> ImageFetch(LAST_IMAGE, 40, BW, 128, 128, out)

-> SendStr();

In this task, ImageDetect() takes a new image and invokes a background-subtraction-based
algorithm to detect noticeable differences between the new and previous image. Then, ImageFetch()
retrieves the last image stored in the memory. Thus, the preceding task takes an image every 2 min
and transfers it only if some change has been detected in the image or every 15th run (every 30 min).
If an object is not detected and it is not the 15th run, the task sends a small message (x ≡ 0) using
Send(E2E ACK), as a keep-alive. Otherwise, it transfers the last image using SendStr() and resets
the detection background. Each image is a 128-by-128 grey-scale image, whose size is 16 KB, and each
packet can contain up to 40 bytes of image fragment data; so, each image requires 410 packets.

These Image-style tasklets are different from other tasklets in that they are executed on the cameras
themselves. Image processing requires memory and MCU cycles beyond the capabilities of the current
generation of motes, and the Cyclops board was designed to provide specialized image processing tasks.
For this reason, these Image-related operations are implemented within the camera themselves. This
design allows any resource-intensive operation to be performed off-mote and can be applied to other
specialized external sensors with on-board processing. Finally, the Cyclops was powered off between
image captures to save energy. In this case, it remained powered off most of the time and was powered
on for only a short duration every 2 min.

6.3. Deployment Experience and Results

Our deployment lasted three days, and the network was operational only during the daytime hours
(7 a.m.–7 p.m.). We closed the traps during the night, since the biologists were mainly interested in
species of animals that are active during the day. Since we had an LED flash equipped on each camera
node, our system would have worked for a study at night also if that had been the purpose. We have
collected 589 images, out of which 588 were complete; there was one incomplete image from a node
that almost ran out of battery. Figure 6 plots the time when each has transferred an image on the last
day of the experiment. Unfortunately, we did not capture any animal, probably due to the cold weather.
However, there was one time period where image transfer due to object-detection was continuously
triggered. This is when we caught a spider (Figure 7). Many of the transferred images were triggered as
a result of changes in the intensity of sunlight (Figure 8), and some others were intentionally triggered
by us to test the system. Image transfer due to sunlight/shade change is a false positive for our object

Sensors 2014, 14 15993

detection algorithm that we had not anticipated in the lab environment. Furthermore, there were a couple
nodes that were continuously transferring images during the night (Figure 9). It turned out that the IR
flash was malfunctioning on those nodes, and complete darkness was also generating false positives in
our object detection algorithm. For there reasons, we have modified our image compression strategy for
our next bird nest monitoring deployment.

The main lessons learned from our pitfall trap deployment are as follows.

• It is feasible and practical to use an image-based wireless sensor network for effective pitfall trap
monitoring. Our system is flexible, supports multihop and satisfies many application requirements
described in Section .

• However, the background subtraction-based object detection algorithm may result in frequent false
positives, either due to sunlight intensity changes during the day or complete darkness when not
equipped with an IR flash.

• An IEEE 802.15.4-compliant 2.4-GHz radio does not propagate well in mountain environments
with dense foliage, and lower frequency radio may be a better choice.

Figure 6. Image-transfer vs. time plot: an image is generated every 30 min, in addition to
whenever an object is detected.

Figure 7. A spider triggered image transfers.

Sensors 2014, 14 15994

Figure 8. Sun/shade change caused image transfers.

Figure 9. Darkness without IR flash generates continuous false positives.

Node 105 Node 107

7. Bird Nest Deployment

Here, we describe the specifics of our deployment of the bird nest monitoring application at James
Reserve, including the overview of the configuration, hardware setup, our application, deployment
experiences and the results.

7.1. Hardware Setup

We have one Linux server machine running in the James Reserve server room. The server
communicates with four Stargates, which have been placed around James Reserve, and together
constitute the upper tier of the network. The server and the Stargates are connected via Ethernet or
802.11. Each Stargate is connected to a Mica2 mote, which all have 8.5 dBi omnidirectional antennas.
These Mica2s are used to communicate with nearby Cyclops nodes, which comprise the low power,
lower tier of the network. This network topology is detailed in Figure 10. The nestboxes are generally
sparse, being spread 50 to 100 m apart in areas of dense trees and foliage. Newer 2.4-GHz radios tend to
perform poorly in these environments, since they do not penetrate foliage well. This is the reason why
we used Mica2s with 433 MHz radios instead as our wireless communication hardware in the mote-tier.
This drastically limits available bandwidth, but propagates farther through the foliage. While our system
does support multihop routing (and we did log some temporary multihop paths), nestbox placement
was determined from a previous, single-hop deployment, which, when combined with the large Stargate
antennas, eliminated most multihop route formations [3].

Sensors 2014, 14 15995

Figure 10. Map of the location and topology of our deployment at James Reserve.

Figure 11. The outside of a typical nestbox. Notice the solar panel mounted at a distance
for optimal sunlight, the nestbox mounted on a pole to avoid predation and the shelf at the
top holding the hardware.

Env.	 sensors	

Bird	 Nest	

Antenna	

Camera/Mote	

Solar	 panel	

Ba8ery	

Each sensor node contains a nestbox, power infrastructure and the embedded hardware necessary
for imaging, environmental sensing and communication. Wooden nestboxes are all custom-made and
contain a removable shelf in the top of the box, which holds the Mica2 mote for communication,
a Cyclops camera for imaging and an MDA300 board for environmental sensing (internal temperature,
internal humidity, external temperature, external humidity and voltage sensors are connected to the

Sensors 2014, 14 15996

MDA300 board). Figure 11 shows the outside of a nestbox. The shelf has a clear plastic bottom through
which the camera takes images, while protecting the hardware from dirt and disturbance by nesting
birds. The camera was facing downward toward the bottom of the box. The power infrastructure is
a medium-sized 12-V sealed lead acid battery continually charged by a solar panel. For most nodes,
the solar panel provides enough power for unlimited node uptime (on a few nodes, the solar panel did
not receive enough solar radiation throughout the day, which resulted in failed nodes due to the loss of
power.). Finally, while most nodes had small 433-MHz dongle antennas mounted on the top, a few nodes
with extremely poor connectivity required 9 dBi directional antennas pointed at the nearest Stargate.

7.2. Tenet Application for Bird Nest Monitoring

The goal of our application is to repeatedly collect from every sensor node a Cyclops image along
with MDA300 sensor readings as frequently as possible. To achieve this, the following two Tenet tasks
were used;

TASK1:

ImageGetPackBits(0, 40, 100, 1, 16, 200, 200, 5, x) -> SendRcrt();

TASK2:

Wait(1000millisec)

-> MDA300(ch0, ADC1, a, 0) -> MDA300(ch0, ADC2, b, 0)

-> MDA300(ch0, ADC3, c, 0) -> MDA300(ch0, ADC0, d, 153)

-> MDA300(ch1, ADC0, e, 153) -> Send(E2E_ACK);

The first task takes a 200 × 200 resolution grey-scale image, compresses the image using modified
PackBits algorithm with a threshold of five, fragments it into 40 data bytes per packet and sends the
packets back using the RCRTprotocol [18]. The second task reads the five ADC channels on the
MDA300 board and sends the data back using the packet reliable transport protocol. Then, a simple
server-side script executes the first task, waits for all responses to arrive, executes the second task and
repeats this process indefinitely.

In this way, we are practically running the imager as soon as the image transfers for the previous
image transfer task have completed for the whole network. Due to the time-varying link and network
conditions, individual image transfer completion time will differ between nodes. Therefore, the server
side application checks whether all nodes have competed by checking whether there are any partially
decoded images and waits until all started image transfers have completed. Once complete, the
application re-issues the next task. It does not wait for an image transfer that has not started at all
(e.g., down node). Any partially-completed transfer will timeout after some time (e.g., 2 min without
any packet reception).

For compression, we have used the modified PackBits algorithm, as described in Section 5. We
chose a threshold of ‘5’ as a reasonable balance; we achieved a 16.7% reduction in image size, while
experiencing little visible degradation in image quality.

The RCRT protocol [18] performed congestion control and rate adaptation, as well as loss recovery
during the image transfers. Reliable delivery was critical, since the PackBits algorithm requires 100%
packet reception for successful decompression. Congestion control was required, since a large number of
nodes were sending images simultaneously, and rate adaptation allowed the system to dynamically adapt

Sensors 2014, 14 15997

to the network condition and deliver images as fast as possible. In our deployment, each node delivered
an image approximately every 8∼15 min depending on the network and environmental conditions.
During the three-month period, RCRT successfully delivered 99% of the images (achieved 100% packet
delivery per image for 99% of the images) while transporting approximately 83 million packets in total.

Finally, note that there was a similar deployment at James Reserve before [3] that did not use Tenet.
Our deployment not only replaced the previous system, but also improved upon that in several aspects:
multihop communication, reliable data delivery, easier-to-use end-to-end system, etc.

7.3. System Evaluation

To evaluate our system, we first discuss deployment experiences and then give an overview of
measured system metrics from two perspectives. We measure sensor node uptime and occupancy, as
well as network behavior.

7.3.1. Deployment Experience

As much of the deployment hardware was already in existence from previous deployments, most of
our work in the preparation was spent developing the software using the Tenet system. Our remaining
time was spent deploying the hardware with two additional trips to James Reserve for routine system
maintenance. We deployed eight nodes during a trial run in early May, then deployed the entire
19-node system on 9 May and brought the system up in the late afternoon. The official end date
for our deployment was exactly three months later, 9 August at 5 PM. The server machine at James
Reserve is connected to the Internet, and thus, we were able to remotely monitor and reconfigure the
deployment. We needed to do this several times when either parameter changes were made to the
application or a diagnosis of the network was required. As time went by, there were three distinctive
failure events that were observable remotely: (1) unreachable sensor node; (2) sensor node pingable,
but not returning images; and (3) rebooted Stargate. The first symptom was usually due to a depleted
battery, which, in turn, was usually due to a solar panel being in the shade for an extended amount of
time. Broken antenna connectors and malfunctioning power systems were other reasons. The second
symptom was either due to low battery (not high enough to activate the Cyclops camera) or a loose
connection between the mote and the Cyclops. We believe that one of the Stargates rebooted several
times during our deployment, due to power outages(James Reserve power is supplied from generators
and solar panels, so there are occasional brownouts and outages). We returned to James Reserve twice,
once on 4 June and again on 18 July to fix failed nodes and base stations. All repairs were minor and
consisted of replacing improperly functioning 12-V batteries, reconnecting connections that had come
loose and adding directional antennas to nodes with poor connectivity. These repairs could, in larger
deployments, be taken care of by moderately technically-aware domain experts.

In total, our system collected 102,173 images from 19 nestboxes, providing biologists with
information about nestbox occupancy and the breeding behavior of three species of birds. Figure 12 is
one subset of those images captured by a camera node during the post-hatching phase. One highlight of
the observations made from the images was that of a snake that was able to enter the nestbox and consume
nestlings on 19 May. This unusual event has been captured in a series of images in Figure 13. Without

Sensors 2014, 14 15998

these images, using traditional methods of a biologist manually checking nestbox contents daily or even
less frequently, the reason for the disappearance of nestlings from the nest would have been unknown.

Figure 12. Subset of selected images captured by a camera node during the post-hatching
phase. Biologist can detect the occupation of the nest, the type of species, the number of
eggs, hatching phases, etc., using these images.

May 9th

May 19th May 15th

May 10th, 11:52AM May 10th, 2:03PM May 10th, 3:44PM

May 10th, 7:10PM

Figure 13. A series of images captured during the post-hatching phase. Notice the snake
entering the box and leaving in under an hour, while all of the nestlings have disappeared,
an event that would be missed with manual, daily observations.

7.3.2. Node Examination

Figure 14 shows the uptime of the 19 nodes in our system. There was one major system outage
between 21 May and 5 June, which was due to power failures at James Reserve, after which the system
did not come up. On 4 June, we returned to the reserve to rectify the issue. On 18 July, we returned
a second time to further fix broken nodes. Batteries were replaced and solar panels adjusted on Nodes
1906, 904 and 709. Unfortunately, we almost immediately had a power outage with Stargate 42,873,
to which Nodes 704 and 707 connect. Not counting the two-week power outage at James Reserve, our
node uptime ranges from about 90% for our stronger nodes, which had no power issues, down to around

Sensors 2014, 14 15999

40% for our weaker nodes. Node 709 was our weakest node, returning very few images until its battery
was finally replaced.

Figure 14. Node uptime of all camera nodes over the three-month deployment period over
the season.

501

503

504

505

506

507

508

606

703

704

707

708

709

901

904

905

1702

1707

1906

Apr/26 May/10 May/24 Jun/07 Jun/21 Jul/05 Jul/19 Aug/02 Aug/16

N
o
d
eI

D

Figure 15. End-to-end packet reception rate (PRR) and received signal strength (RSSI) to
the next hop node representing the link connectivity of each node.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

501 503 504 505 506 507 508 606 703 704 707 708 709 901 904 905170217071906

-80

-75

-70

-65

-60

-55

-50

-45

-40

P
R

R
 (

%
)

R
S

S
I

(d
b
m

)

NodeID

PRR
RSSI

Sensors 2014, 14 16000

7.3.3. Network Evaluation

As there were several times when the image application was stopped for maintenance or debugging
purposes, our networking log files are discontinuous. We present the observations we have made for
one week during 21 July∼28 July. During this period, there were total of 9940 attempts to transfer
an image from a total of 19 nodes. Among these attempts, 1489 were made by three nodes when
they had low battery and, thus, were unable to turn on the camera. Out of 8453 actual image transfer
attempts, 79 attempts resulted in incomplete transfers. Hence, 8372 image transfers, which corresponds
to 99% of initiated transfers, were completed during this one-week period. For these complete images,
the average data rate achieved by the network was 1.1 packets/s per node, and the average number
of packets required to deliver one image was 833.2 (the size of each image is 40 kB, which means
1000 uncompressed packets, but the number of encoded packets differ, since the compression ratio
differs for each image), which translates to an average compression ration of 16.7%. As a result, one
image transfer took 12.6 min on average. This was achieved despite extremely poor link connectivity
(e.g., Node 905 had an end-to-end packet delivery ratio (PRR) of less than 50%). Figure 15 shows the
PRR along with their received signal strength (RSSI) readings to the nearest routing parent node for each
node during the deployment period.

7.3.4. Lessons Learned

The main lessons learned from our bird nest deployment are as follows.

• It is feasible and practical to use an image-based wireless sensor network for effective bird
nest monitoring. Our system is simple to use, scalable, flexible, supports tiered architecture
and multihop and satisfies the application requirements described in Section 3. We have
captured important biological events, and our biologist users found our system useful for their
research purposes.

• However, it is challenging to implement sophisticated image compression algorithms on the
resource-constrained sensor platforms. Simple run-length encoding or PackBits algorithms can
be effective alternatives, but their compression ratios are limited by the image quality.

• It is possible to use solar panels for providing energy to camera sensors indefinitely without
worrying about battery life. However, for long-term deployments such as ours, the growth
of foliage and their shade must be considered when placing solar panels for powering the
sensor nodes.

• Rate and congestion control is very effective, if not a must, for achieving a high image delivery
ratio in a highly dynamic network environment.

8. Conclusions

We have developed, deployed and demonstrated a complete, scalable, end-to-end image-based
sensor application for environmental monitoring to unobtrusively observe biological phenomena. Our
deployment has shown that our system design has met most of the application requirements: sufficient
image transport rate for our biological study, scalability exceeding that of wired cameras, ease of use and

Sensors 2014, 14 16001

flexibility of deployment. Tenet software made it easy to monitor, modify and reconfigure the application
behavior from a remote location without re-programming the motes. Rate-controlled reliable transport
along with the tiered architecture resulted in an image retrieval rate of approximately 3∼4 images per
node per hour. Future deployments can further improve this by using a better compression algorithm
or newer-generation radios. Finally, our system proved to be scalable. Multihop tiered routing of our
sensor network system enabled a larger network with greater spatial reach.

Acknowledgments

For Jeongyeup Paek, this work was supported by the Hongik University new faculty research
support fund.

Author Contributions

All authors have significant contributions to this article. Jeongyeup Paek, the corresponding author,
was mainly responsible for the sensor network software, deployment of the system and collection of data.
John Hicks was responsible for the hardware and the back-end server of the system, and Sharon Coe was
the biologist expert in our project who studied the biological aspect of our application and deployment.
Ramesh Govindan was responsible for managing and directing the whole project. All of the authors have
contributed equally to the preparation of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. James San Jacinto Mountains Reserve. Available online: http://www.jamesreserve.edu (accessed
on 28 August 2014).

2. Paek, J.; Greenstein, B.; Gnawali, O.; Jang, K.Y.; Joki, A.; Vieira, M.; Hicks, J.; Estrin, D.;
Govindan, R.; Kohler, E. The Tenet Architecture for Tiered Sensor Networks. ACM Trans. Sens.
Netw. 2010, 6, 34:1–34:44.

3. Ko, T.; Ahmadian, S.; Hicks, J.; Rahimi, M.; Estrin, D.; Soatto, S.; Coe, S.; Hamilton, M.P.
Heartbeat of a Nest: Using Imagers As Biological Sensors. ACM Trans. Sens. Netw. 2010, 6,
19:1–19:31.

4. Othman, A.K.; Lee, K.M.; Zen, H.; Zainal, W.; Sabri, M.F.M. Wireless sensor networks for
swift bird farms monitoring. In Proceedings of the 2009 International Conference on Ultra
Modern Telecommunications Workshops (ICUMT ’09), St. Petersburg, Russia, 12–14 October
2009; pp. 1–7.

5. Lloret, J.; Bosch, I.; Sendra, S.; Serrano, A. A Wireless Sensor Network for Vineyard Monitoring
That Uses Image Processing. Sensors 2011, 11, 6165–6196.

6. Hwang, J.; Shin, C.; Yoe, H. Study on an Agricultural Environment Monitoring Server System
Using Wireless Sensor Networks. Sensors 2010, 10, 11189–11211.

Sensors 2014, 14 16002

7. Szewczyk, R.; Mainwaring, A.; Polastre, J.; Anderson, J.; Culler, D. An analysis of a large scale
habitat monitoring application. In Proceedings of the 2nd ACM International Conference on
Embedded Networked Sensor Systems (SenSys’04), Baltimore, MD, USA, 3–5 November 2004;
pp. 214–226.

8. Cerpa, A.; Elson, J.; Estrin, D.; Girod, L.; Hamilton, M.; Zhao, J. Habitat monitoring: Application
driver for wireless communications technology. In Proceedings of ACM SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean, San Jose, Costa Rica, 3–5 April 2001.

9. Rahimi, M.; Baer, R.; Iroezi, O.I.; Garcia, J.C.; Warrior, J.; Estrin, D.; Srivastava, M. Cyclops:
In situ image sensing and interpretation in wireless sensor networks. In Proceedings of the 3rd
ACM International Conference on Embedded Networked Sensor Systems (SenSys’05), San Diego,
CA, USA, 2–4 November 2005.

10. Sadler, C.M.; Martonosi, M. Data Compression Algorithms for Energy-constrained Devices in
Delay Tolerant Networks. In Proceedings of the 4th ACM International Conference on Embedded
Networked Sensor Systems (SenSys’06), Boulder, CO, USA, 31 October–3 November 2006.

11. Cheung, S.S.; Kamath, C. Robust techniques for background subtraction in urban traffic video,
2007.

12. Kamthe, A.; Jiang, L.; Dudys, M.; Cerpa, A. SCOPES: Smart Cameras Object Position
Estimation System. In Wireless Sensor Networks; Roedig, U., Sreenan, C., Eds.; Springer-Verlag:
Berlin/Heidelberg, Germany, 2009; Volume 5432, LNCS, pp. 279–295.

13. Lee, D.U.; Kim, H.; Rahimi, M.; Estrin, D.; Villasenor, J.D. Energy-efficient Image Compression
for Resource-constrained Platforms. Trans. Image Proc. 2009, 18, 2100–2113.

14. Duran-Faundez, C.; Lecuire, V.; Lepage, F. Tiny Block-size Coding for Energy-efficient Image
Compression and Communication in Wireless Camera Sensor Networks. Image Commun. 2011,
26, 466–481.

15. Phamila , A.V.; Amutha, R. Low complexity energy efficient very low bit-rate image compression
scheme for wireless sensor network. Inf. Process. Lett. 2013, 113, 672–676.

16. Kaddachi, M.L.; Soudani, A.; Lecuire, V.; Torki, K.; Makkaoui, L.; Moureaux, J.M. Low power
hardware-based image compression solution for wireless camera sensor networks. Comput. Stand.
Interfaces 2012, 34, 14–23.

17. Polastre, J.; Szewczyk, R.; Culler, D. Telos: Enabling Ultra-Low Power Wireless Research. In
Proceedings of Fourth International Symposium on Information Processing in Sensor Networks,
Los Angeles, CA, USA, 25–27 April 2005.

18. Paek, J.; Govindan, R. RCRT: Rate-controlled Reliable Transport Protocol for Wireless Sensor
Networks. ACM Trans. Sens. Netw. 2010, 7, 20:1–20:45.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Motivation
	Pitfall Trap Monitoring
	Bird Nest Monitoring

	Requirements
	System Architecture
	Tenet Advantages
	Software Development
	Back-End Server

	Image Compression
	Pitfall Trap Deployment
	Hardware Setup
	Tenet Application for Pitfall Trap Monitoring
	Deployment Experience and Results

	Bird Nest Deployment
	Hardware Setup
	Tenet Application for Bird Nest Monitoring
	System Evaluation
	Deployment Experience
	Node Examination
	Network Evaluation
	Lessons Learned

	Conclusions
	Acknowledgments
	Author Contributions
	Conflicts of Interest

