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Abstract: A new method for dynamic measurement of deflections of the vertical (DOV) is 

proposed in this paper. The integration of an inertial navigation system (INS) and global 

navigation satellite system (GNSS) is constructed to measure the body’s attitude with 

respect to the astronomical coordinates. Simultaneously, the attitude with respect to the 

geodetic coordinates is initially measured by a star sensor under quasi-static condition and 

then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes 

in the INS, when the vehicle travels along survey lines. Deflections of the vertical are 

calculated by using the difference between the attitudes with respect to the geodetic 

coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend 

error of the vertical deflections is developed with the aid of Earth Gravitational Model 

2008 (EGM2008). In comparison with traditional methods, the new method required less 

accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of 

inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a 

Rauch–Tung–Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to 

improve the observability of the system errors and to restrain the inertial sensor errors. The 

proposed method is validated by Monte Carlo simulations. The results show that 

deflections of the vertical can achieve a precision of better than 1″ for a single survey line. 

The proposed method can be applied to a gravimetry system based on a ground vehicle or 

ship with a speed lower than 25 m/s.  
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1. Introduction 

High resolution and high precision gravity data are desirable in many applications, such as geodesy, 

solid earth geophysics and resource exploration. Although the global gravity disturbances can be 

measured effectively by satellite gravimetry, the detailed information of the gravity field is poorly 

determined [1]. Therefore, the moving-based gravimetry system, based either on an aircraft, ground 

vehicle or ship, serves as a good alternative for the gravity disturbance measurement in the frequency 

range from medium to high. Currently, the vertical component of the gravity disturbance vector is 

successfully measured by sea/air-borne scalar gravimetry [2–4]; however, the horizontal components 

are still difficult to measure under dynamic conditions. 

The horizontal components (with respect to the ellipsoid) of the gravity disturbance vector, can be 

determined by deflections of the vertical (DOV), which are known as the direction difference between 

the actual plumb line and the normal of the ellipsoid. The astronomic-geodetic observation with 

instrumentation, such as theodolites and digital zenith cameras [5], is a high-precision and traditional 

method to measure deflections of the vertical. Since the astronomic observation must be conducted on 

the ground statically, the method is less efficient than moving-based gravimetry. There are also other 

methods capable of providing DOV, such as the combination of GNSS and leveling measurements [6], 

the combination of GNSS and a local positioning system (LPS) [7], etc.; however, these methods have 

relatively poor accuracy.  

In comparison with the scalar gravimetry, the vector gravimetry based on the GNSS/INS integration 

is more challenging, and it can measure all three components of gravity disturbances under dynamic 

conditions. Two main methods for vector gravimetry were developed in the last four decades. 

The first method was developed by Rose and Nash [8]. In their research, the gravity disturbances 

were modeled as second-order Gauss–Markov processes [9,10] and directly estimated by a Kalman 

filter/smoother using an inertial navigation system with the aid of external position and velocity 

updates. A series of studies were subsequently carried out by a number of researchers to improve this 

method. These studies mainly focus on gravity disturbance modeling. According to Jekeli’s study [11], 

it is expected that the short-wavelength gravity components could be estimated in the presence of the stable 

uncompensated gyro drift when the gravity disturbances were modeled as low-order Gauss–Markov 

processes. However, this method is not adopted by most of the actual systems, because it is difficult to 

model the gravity disturbances accurately. 

To overcome the short-coming of the method mentioned above, Kwon and Jekeli [12] proposed a 

model-free approach for gravity vector measurement. In their study, the gravity disturbances are 

calculated by the difference between the GNSS-derived accelerations and INS-sensed specific force in 

the absence of any gravity stochastic models. This kind of method has been greatly improved and 

widely adopted by many vector gravimetry systems in the last two decades. When several types of 

error separation methods, such as wavenumber correlation filter (WCF) [13] and wavelet de-noising 

techniques [14], were applied, promising results were obtained. A typical system based on this method 
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was developed by Ohio State University in 2006. The experiment results showed that the extent of 

accuracy of this system can reach 7–8 mGal (1 mGal = 1e−5 m/s2) for horizontal components. The 

renewed airborne gravimetry of Sander Geophysics Ltd., namely AIRGrav (Airborne Gravimetry), is 

another system of this kind. The internal accuracy of the system can reach 0.5 mGal for horizontal 

components, as reported [15]. Although the model-free method can achieve high precision, there are 

still several disadvantages. First, The WCF technique, which is adopted by most systems, demands 

repeated track data for the surveys. Consequently, the cost and time requirements are burdensome. 

Second, the differential GNSS technology for calculating the kinematic accelerations is indispensable. 

Because the acceleration computation is implemented by a second-order differentiator [16], which is 

essentially a high pass filter, the GNSS noise will be enhanced. Additionally, it is necessary to 

establish GNSS reference stations around the survey routes for differential GNSS; however, the 

reference stations are difficult to setup in some regions. 

In this paper, we propose a new approach for dynamic measurement of DOV. An INS/GNSS 

integration is constructed to measure the body’s attitude with respect to the astronomical coordinates. 

Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star 

sensor and then maintained by three laser gyroscopes in INS, namely the laser gyroscope unit (LGU). 

DOVs are calculated by using the difference between the attitudes with respect to the geodetic 

coordinates and astronomical coordinates. Finally, the systematic errors are reduced with the aid of the 

global gravity model. 

The new method has three features, which are different from traditional vector gravimetry. First, an 

independent attitude reference is provided by the star sensor and LGU. Hence, the error of the attitude 

reference is not coupled with DOV. Second, the calculation of the kinetic acceleration is avoided in the 

new method, and thus, it requires less accurate GNSS measurement. Third, a single-axis indexed 

inertial navigation system is adopted to enhance the observability of the system errors and restrain the 

bias errors of the inertial sensors. Because of these three features, the errors of attitude reference, 

GNSS and INS will be well handled, respectively. 

The remainder of this paper is organized as follows. Section 2 will introduce the theoretical 

development of the new method for DOV measurement in detail. The simulation procedure and the 

preliminary results are presented in Section 3. The viability of the new method based on the detailed 

error analysis will be discussed in Section 4; the error correction algorithm will also be proposed. 

Finally, the conclusions will be given in Section 5. 

2. The Method for DOV Measurement 

Initially, we define two kinds of coordinate frames, namely the astronomical coordinates and the 

geodetic coordinates. As Figure 1 shows, the geodetic coordinates O-xyz (n-frame) are relative to the 

normal ellipsoid. The origin O-point is at the measurement site. The z-axis points toward the interior of 

the ellipsoid along the ellipsoid normal (D), which is in the direction of the normal gravity vector 

through O. The x-axis points toward north (N), and the y-axis points east (E) to complete  

the orthogonal, right-handed rectangular coordinate system. The astronomical coordinates  

O-x′y′z′(n′-frame), which are related to the actual geoid, are defined as follows: The z′-axis points 

toward the interior of the geoid along the geoid normal, which is in the direction of the actual gravity 



Sensors 2014, 14 16325 

 

 

vector through O. The x′-axis points toward north, and the y′-axis points east to complete the 

orthogonal, right-handed rectangular coordinate system. 
As shown in Figure 1, the north and east components of the gravity disturbance vector are denoted by 

Ngδ  (the positive direction is toward north) and Egδ  (the positive direction is toward east), 

respectively. The north-south and east-west angular components of DOV are denoted by ξ  and η , 

which are directly related to the horizontal components of the gravity disturbance vector and defined by: 

tan /Ng gξ δ= −  (1)

tan /Eg gη δ= −  (2)

where g is the magnitude of the normal gravity. For small angles, Equations (1) and (2) can be 

approximately written as:  

/Ng gξ δ≈ −  (3)

/Eg gη δ≈ −  (4)

Figure 1. The definition of coordinates and deflections of the vertical (DOVs). 

 

Since the n-frame and n′-frame are defined by the physical plumb line and the normal gravity, the 

signature of DOV is reflected in the coordinate transformation matrix from n-frame to n′-frame 'n
nC . 

'n
nC  is determined by Equation (5) with DOVs [17]. In essence, the key problem with DOV 

measurement is to obtain the transformation matrix 'n
nC . 

'

1

1
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n
n

δα ξ
δα η

ξ η

− 
 ≈  
 − − 

C  (5)
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where δα  represents the final rotation around the astronomical zenith axis to make the geodetic 
coordinates and astronomical coordinates coincident. According to [17], tan Lδα η= , where L  is the 

local latitude. 

2.1. INS/GNSS Integrated System for Geoid Tracking 

The system error model of INS can be expressed by a set of linear, first-order, differential  

equations [18]. The dynamics of the velocity error defined in n-frame are given by: 

(2 ) (2 )n n n n n n b n
ie en ie en bδ δ δ δ δ= × − + × − + × + ∇ +V f Φ ω ω V ω ω V C g  (6)

where V  is the velocity of INS and δV  is the velocity error of INS; nf  is the specific force in  
n-frame; Φ  is the attitude error of INS; nδ g  is the gravity disturbance vector in n-frame, which is the 

error of gravity information in the knowledge of normal gravity, and given by n n nδ = −g g γ , where ng  

and nγ  are the actual gravity vector and normal gravity vector in the n-frame, respectively; n
ieω  is the 

Earth’s rotation rate with respect to the inertial reference frame in n-frame; n
enω  is the rotation rate of 

the n-frame with respect to Earth-fixed frame (e-frame) in n-frame; n
ieδω  and n

enδω  are the errors of 
n
ieω  and n

enω , which are in terms of the position and velocity error of INS, respectively; b∇  is the 

accelerometer bias in the body frame (b-frame); n
bC  is the transformation matrix from the b-frame to 

the n-frame. 

The dynamic equation of the attitude error based on the phi-angle error model [19] is given by: 

( )n n n n n b
ie en ie en bδ δ= − + × + + −Φ ω ω Φ ω ω C ε  (7)

where bε  is the gyroscope bias in the b-frame. 

The differential equation of the position error is given as follows: 

δ δ=P V  (8)

The biases of the accelerometer and gyroscope can be modeled as random constants, which are 

respectively given by: 

0b∇ =  (9)

0b =ε  (10)

Equations (6)–(10) can be rewritten together succinctly as: 

δ δ= ⋅ +x F x Gw  (11)

where the state-space vector is given by Equation (12); F is the state transition matrix, which is readily 
constructed from Equations (6)–(10). It should be noted that the gravity disturbances nδ g  are ignored 

in the state-space equation. The gravity-induced attitude errors will be discussed later. 

, , ,[ ] ,[ ]
TT T T b T b Tδ δ δ = ∇ x V Φ P ε  (12)

The process noise [[ ] ,[ ] ]T T T
g a=w w w  is composed of the intensity of gyroscope Gaussian  

white-noise gw  and accelerometer Gaussian white-noise aw . The model error distribution matrix G is 

given by: 
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 (13)

As the GNSS can provide position and Doppler velocity information, the velocity error and position 

error of INS can be observed directly and chosen as measurements. The measurement vector is defined 
as [ , ]T T Tδ δ=z V P . The measurement model is expressed as: 

δ= +z H x v  (14)

where 
3 3 3 3 3 3 3 6

3 3 3 3 3 3 3 6

× × × ×

× × × ×

 
=  
 

I O O O
H

O O I O
, v is the GNSS position and velocity observation  

white-noise error.  

The underlying estimation algorithm for integrated navigation is the Kalman filter [20]. The 

mission objective has no demand for real-time processing; therefore, a fixed-interval smoother would 

be more appropriate. A Rauch–Tung–Striebel (RTS) smoother algorithm [21] is adopted in this paper. 

Next, we will investigate the effect of the gravity disturbances on the attitude output of INS/GNSS 

integration by using error-free inertial sensors (the gravity disturbances are the only error source). 
Equation (6) can be simplified as Equation (15) when the term n b

b∇C  is ignored. 

(2 ) (2 )n n n n n n
ie en ie enδ δ δ δ δ= × + − + × − + ×V f Φ g ω ω V ω ω V  (15)

When the INS is aided with GNSS, which can provide accurate position and velocity updates, the 
variables δV , n

ieω , n
enω , n

ieδω , n
enδω  and V can be observed directly. Equation (11) can be rewritten as: 

n nδ= × +y f Φ g  (16)

where (2 ) (2 )n n n n
ie en ie enδ δ δ δ= + + × + + ×y V ω ω V ω ω V , which is the combination of observable variables. 

The north and east components of Equation (15) can be respectively described as: 

N E D D E Ny f f gφ φ δ= − + +  (17)

E D N N D Ey f f gφ φ δ= − + +  (18)

where Ny  and Ey  are the north and east components of y ; Nφ , Eφ  and Dφ  are the north, east and 

down components of Φ ; Nf , Ef and Df  are the north, east and down components of nf . 

Assuming that the vehicle is cruising with constant velocity, which is met under most conditions 

when the survey is conducted, we have 0E Df φ ≈ , 0N Df φ ≈  and Df g≈ . Equations (17) and (18) can 

be rewritten as follows: 

/ /E N Ny g g gφ δ= −  (19)

/ /N E Eg g y gφ δ= −  (20)

The observation components of Eφ  and Nφ  are defined as ˆ /E Ny gφ =  and ˆ /N Ey gφ = − , 

respectively. Substituting Equations (3) and (4) into Equations (19) and (20), we have: 

Ê Eφ φ ξ= +  (21)
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N̂ Nφ φ η= +  (22)

The observation errors of Eφ  and Nφ  are defined as ˆ
E E Eδφ φ φ= −  and ˆ

N N Nδφ φ φ= − , which are the 

attitude measurement errors of INS/GNSS integration. According to Equations (21) and (22), we have: 

Eδφ ξ= −  (23)

Nδφ η=  (24)

In other words, the signatures of DOV can be reflected in the attitude measurement errors of 

INS/GNSS integration. 

The attitude error matrix of INS/GNSS is given by Equation (25) [18]. 

0

0

0

D E

D N

E N

δφ δφ
δφ δφ
δφ δφ

− 
 = − 
 − 

E  (25)

where Dδφ  is the observation error of Dφ . The transformation matrix from the true reference frame to 

the estimated reference is given by −I E , where I is a 3 × 3 identify matrix. Substituting for Eδφ  and 

Nδφ  with Equations (23) and (24),  

1

1

1

D

D

δφ ξ
δφ η
ξ η

 
 − = − 
 − − 

I E  (26)

Given that the ideal attitude output of the INS/GNSS integration is n
bC , the actual attitude output of 

the INS/GNSS system is ( ) n
b−I E C . It is easy to find that 'n

n− ≈I E C  when ignoring the small angular 

difference between Dδφ  and δα . It is indicated that the actual attitude output approximately equals 'n
bC . 

Therefore, the INS/GNSS integration measures the body’s attitude with respect to the n′-frame. 

2.2. An LGU to Maintain the Attitude Reference 

As shown in Figure 2, a star sensor [22] can be applied to determine the attitude with respect to the 

celestial coordinates, which is an inertial frame system (i-frame), by astronomical observation. The 

inertial frame can be transformed to the Earth-fixed frame using the Greenwich Apparent Sidereal 
Time (GAST). When the position of the measurement site is available, the attitude matrix n

bC  with 

respect to the n-frame can be obtained. The accuracy of the star sensor is typically better than 3″ [23] 

under static or quasi-static conditions, and a multiple heads star sensor or zenith camera will enhance 

the performance. In this paper, the star sensor acts as the attitude reference to determine the attitude 

error (with respect to the n-frame) of the INS/GNSS integration.  

It should be noted that the attitude of the star sensor is determined by astronomical observation; 

therefore, the DOV measurement must be carried out in the nighttime with good weather conditions. 

Moreover, the star sensor might have poor accuracy under dynamic conditions, which limits its 

application. In order to overcome these disadvantages of the star sensor, we propose to use LGU to 

maintain the attitude reference obtained by the star sensor. The LGU is composed of three laser 

gyroscopes in the INS. Thus, no additional gyroscope is need. The laser gyroscopes can measure the 
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rotation motion with respect to the inertial frame with a precision of better than 1″ per sample interval 

(typically, 0.01 s). 

Figure 2. The principal of the star sensor. 

i-frame

Celestial
Sphere

Star sensor 
image

North Celestial 
Pole

Vernal 
Equiniox

 

The attitude matrix e
bC  of LGU with respect to the Earth-fixed frame is initialized by a star sensor 

under quasi-static conditions in the nighttime. When the measurement starts and the vehicle travels 

along the survey line dynamically, the LGU can autonomously maintain the attitude reference obtained 

by star sensor. The attitude of LGU can be updated by the Equation (27). 

1 1

1 1

k k k k

k k k k

e e e b
b e b b

+ +

+ +
=C C C C  (27)

where 1k

k

e
e

+C  describes the change of the e-frame from time tk to tk+1; this can be calculated by using 

GAST. 
1

k

k

b
b +

C  describes the change of the b-frame from tk+1 to tk, which can be calculated by using the 

angular increments of the gyroscopes. The attitude with respect to the n-frame can be obtained with the 

aid of GNSS position measurement, which is written as: 

sin cos 0

sin cos sin sin cos

cos cos cos sin sin

n
e L L L

L L L

λ λ
λ λ

λ λ

− 
 = − − 
  

C  (28)

n n e
b e b=C C C  (29)

where L and λ  are the latitude and longitude of the measurement site, respectively. 
'n

nC  can be determined by the attitude output of INS/GNSS and LGU. 

' ' ( )n n n T
n b b=C C C  (30)

Finally, DOVs can be calculated according to Equation (5). 

It should be noted that the gyroscope measurements are used in two procedures, firstly in 

INS/GNSS integration and, secondly, in LGU. According to Equations (23) and (24), we can see that 

the attitude errors of INS/GNSS integration are determined by DOV, which is introduced into 
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INS/GNSS attitude measurement by accelerometers. While the attitude references provided by LGU 

are calculated by only gyroscope measurements, so that the attitude reference will not couple with 

DOV, then, the attitude errors of INS/GNSS integration can be measured. 

3. Simulation Result 

3.1. Design of Simulation 

In this section, simulations are implemented to investigate the viability of the proposed method.  

The inertial measurement unit (IMU) is assumed to be of navigation-grade, and only the bias error and 

white noise of the inertial sensor are considered. The error characteristics of the inertial sensor, GNSS 

and star sensor are listed in Table 1. 

Table 1. The performances of sensors for simulation. 

Sensors Characteristics Magnitude (1σ) 

Gyroscope 
Constant bias 0.003 °/h 
White noise 0.0004 °/√h 

Accelerometer 
Constant bias 2e−4 m/s2 
White noise 1e−5 m/s2 

GNSS velocity 
Horizontal error 0.003 m/s 

Height error 0.003 m/s 

GNSS position 
Horizontal error 0.2 m 

Height error 0.5 m 

Star sensor Attitude error 3″ 

In order to remove most system errors arising from the drifts of the inertial sensors, an INS of a 

single axis rotation tuning structure is adopted [24]. In the INS/GNSS integrated system, the 

observability of the system errors can be improved greatly by the rotation tuning. Furthermore, the 

errors of the inertial sensors will be restrained. 

The simulation is carried out with the initializations as follows: 

(1) The sample interval of the inertial sensor is 0.05 s, and the update period of GNSS is 1 s in  

the simulation. 

(2) The initial latitude is 35°; the longitude is 240° and the height is 100 m. 

(3) Suppose the vehicle remains static for 5 h at the initial time, then accelerates to 20 m/s with  

an east acceleration of 0.1 m/s2 and, finally, travels with a constant speed of 20 m/s heading east at  

a constant altitude. 

(4) Before the survey is carried out, a fine alignment procedure for the INS/GNSS integrated system 

is executed so that the system can achieve a satisfactory performance. 

The gravity disturbances used to generate the IMU data are obtained from a high-precision and 

high-resolution regional vertical deflection model of the USA, namely DEFLEC12, which is more 

accurate than the global gravity model. Figure 3 shows the gravity disturbances along the survey line. 
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Figure 3. Gravity disturbance distribution along-track. 

  

3.2. Data Processing and Preliminary Result 

The new method for the vertical deflection determination consists of three main procedures. Firstly, 

the INS/GNSS integrated system is utilized to measure the attitude with respect to the astronomical 

coordinates frame (n′-frame). An RTS smoother algorithm is adopted to fuse the data of INS and 

GNSS. Secondly, a star sensor is utilized to measure the attitude with respect to the geodetic 

coordinates frame (n-frame), and the raw gyroscope data are integrated to maintain the attitude 

reference obtained by the star sensor. The gyroscope biases estimated by the INS/GNSS integrated 

system are used to correct the raw gyroscope angular increments. Finally, DOVs are calculated by 

using the 'n
bC  measured by INS/GNSS and n

bC  measured by LGU. The attitudes of LGU are  

re-initialized by the star sensor for a period of 4 h when the star sensor’s output is available. The 

procedures of the proposed method are shown in Figure 4. 

The viability of the proposed method depends on two assumptions: firstly, the computed  

platform [19] of INS/GNSS integration is able to track the actual geoid; secondly, the LGU can 

maintain the attitude reference obtained by the star sensor. Simulations are implemented to verify these 

two assumptions, and the preliminary results of DOV estimation are also presented in this section. 
According to Equations (23) and (24), we have 0Eδφ ξ+ =  and 0Nδφ η− =  theoretically. 

Therefore, the geoid tracking error of INS/GNSS integration can be assessed by Eδφ ξ+  and Nδφ η−  

in simulation. Figure 5 shows the geoid tracking error of INS/GNSS integration. As can be seen, the 

geoid tracking errors of INS/GNSS integration are near zero, which is consistent with the theory in 

Equations (23) and (24). It is implied that the DOV signatures are reflected in Eδφ  and Nδφ . Thus, the 

key problem of DOV determination is to measure the attitude errors of INS/GNSS. The LGU attitude 

error with respect to the n-frame is shown in Figure 6. It can be seen that the LGU attitude outputs 

contain considerable systematic trend error, which will introduce significant error into the ultimate 

DOV measurement results. The attitude error of LGU is mainly caused by the error of gyroscopes and 

the initialization attitude error. The LGU attitude is initialized by the star sensor. Because the error of 
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the star sensor is considerable, the re-initialization of LGU attitude will introduce some gap errors, 

which can be seen in Figure 6. 

Figure 4. The procedure for DOV measurement. LGU, laser gyroscope unit. 
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Figure 5. Geoid tracking error for INS/GNSS integration. 
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Figure 6. Attitude errors of the LGU. 

  

Figure 7a,b depicts the preliminary estimation results of DOV. It can be seen that the estimation 

results contain considerable systematic errors. The statistical analysis of the simulation result is shown 
in Table 2, where INS

Eδφ  and INS
Nδφ  are the east and north components of the attitude error (with respect 

to the n-frame) in INS/GNSS integration; LGU
Eδφ  and LGU

Nδφ  are the east and north components of the 

attitude error (with respect to the n-frame) in LGU; the reference values of DOV are given by 
DELFEC12 model and denoted by 12DEFLECξ  and 12DEFLECη ; and the estimation values of DOV are 

denoted by Estimationξ  and Estimationη . It can be seen from Table 2 that the geoid tracking errors of 

INS/GNSS are less than 0.5″; the LGU attitude errors, which are relatively larger, can reach 2.62″ and 

1.51″ for the east and north components; the DOV estimation errors, which are mainly caused by the 

LGU attitude errors, can reach 2.62″ and 1.51″ accordingly. 

Figure 7. (a) Estimation result of η ; (b) estimation result of ξ . 
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Table 2. Statistical analysis of the simulation result (″). 

 Standard Deviation Mean 
12INS DEFLEC

Eδφ ξ+   0.30 0.00 
12INS DEFLEC

Nδφ η−  0.45 0.01 
LGU
Eδφ  2.62 3.11 
LGU
Nδφ  1.51 1.57 

12Estimation DEFLECξ ξ−  2.63 −3.11 
12Estimation DEFLECη η−  1.59 −1.56 

4. Error Analysis and Correction 

The detailed error budget and correction method will be discussed in this section. The variables of 

the error analysis include accelerometer accuracy, GNSS accuracy, gyroscope accuracy and travel 

speed of the vehicle. 

4.1. Analysis of Geoid Tracking Error 

We first investigate the ability of the tracking geoid for INS/GNSS integration with different 

accuracies for the accelerometer, gyroscope and GNSS. Figure 8a depicts the INS/GNSS geoid 

tracking error with different GNSS velocity accuracies (the GNSS position accuracy is of the same 

scale with velocity accuracy) for the given inertial sensors accuracy in Table 1. It can be seen that the 

geoid tracking error is reduced as the GNSS accuracy improves. The white-noise error of the 

accelerometer is another primary factor for INS/GNSS integration. Figure 8b shows the geoid tracking 

accuracy with respect to the accelerometer noise. The simulation results shows that high-precision 

GNSS and low-noise accelerometer are required to obtain the DOV data with 1″ accuracy. In contrast, 

the gyroscope noise has little influence on the geoid tracking error, as can be seen in Figure 8c. 

Figure 8. (a) Geoid tracking error with different GNSS accuracy; (b) the geoid tracking 

error with respect to the accelerometer noise; (c) the geoid tracking error with respect to 

the gyro noise; (d) The geoid tracking error with respect to travel speed. 
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Figure 8. Cont. 

(c) (d) 

The INS/GNSS integration is implemented by an RTS smoother based on the Kalman filter. It takes 

some time for the state estimation of the Kalman filter to converge to the true state when the DOV 

changes with positions. When the vehicle travels at a high speed, the filter has difficulty responding to 

the change of DOV, and the estimation error increases accordingly. Figure 8d shows the geoid tracking 

error of INS/GNSS integration with respect to the travel speed. It can be seen that the geoid tracking 

error increases with the travel speed of the vehicle. It should be noted that the proposed method can be 

only applied in a land vehicle or ship due to the limitation of travel speed. 

4.2. Analysis of Attitude Reference Error 

In this paper, a star sensor, which can measure the attitude with high precision, serves as an attitude 

reference to calculate the INS/GNSS attitude error, and the LGU is used to maintain the attitude 

reference when the star sensor has inaccuracies in the dynamic situation. The large standard deviations 

of DOV estimation errors are caused mostly by the LGU attitude errors, as shown in Table 2. 

Therefore, we will discuss the LGU errors induced by the attitude initialization error, the bias and 

angular random walk (ARW) error of gyroscopes and investigate the characteristics of these error 

sources by simulations. 
Despite the high precision of the initializing attitude, the LGU attitude errors are drifting during 

traveling. The dynamics of LGU attitude error can be described by Equation (7) in Section 2. 

Considering the initial error of the LGU attitude only and ignoring n
enω , which is a minor term when 

compared with n
ieω , Equation (7) can be rewritten as: 

n
ie= − ×Φ ω Φ  (31)

We can see that the attitude errors have an inherent frequency ieω . Figure 9 illustrates the growth  

of LGU attitude errors introduced by the initial alignment error when the gyroscopes are error-free.  

As can be seen, the attitude errors behave as trends during a segment of 4 h. 
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Figure 9. LGU attitude error introduced by initialization error. 

 

Then, we will discuss the gyro-induced attitude errors of the LGU. As the gyro biases are estimated 

and compensated for in the INS/GNSS integration, the ARWs are the major errors of the gyroscopes. 

The attitude accuracy of the LGU under different standard deviations of the gyroscopes ARW errors is 

investigated by simulations. The simulation time is four hours. The standard deviations of the attitude 

errors are used to evaluate the performances of attitude accuracy for each simulation trajectory.  

Figure 10 shows the mean value of 100 Monte Carlo simulations for LGU attitude error relative to 

gyro ARW accuracy. It is noted that a gyro ARW of 0.0002 °/√h is required for the DOV measurement 

with 0.5″ accuracy, and thus, it is extremely critical for the inertial sensor. 

Figure 10. LGU attitude error with respect to gyro angular random walk (ARW) accuracy. 

 

A random walk process can be described by a differential equation below: 

1k k kx x w−− =  (32)

0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Time (h)

L
G

U
 A

tti
tu

d
e

 E
rr

o
r 

(″
)

 

 

φE

φN

φ
U

2 4 6 8 10

x 10
-4

1

1.5

2

2.5

3

Gyro Random Walk (°/√h)

L
G

U
 A

tti
tu

d
e

 E
rr

o
r 

(″
)

 

 

φ
E

φN

φU



Sensors 2014, 14 16337 

 

 

where w is a Gaussian white-noise process. The transfer function of the random process can be 

calculated by z-transform: 

1

1
( )

1
H z

z−=
−

 (33)

The power spectral density (PSD) is given by: 
2

22 j( ) (e )
2 2cos

S H ω σω σ
ω

= =
−

 (34)

where 2σ  is the variance of the white-noise process. 

As shown in Figure 11, the PSD of ARW has a low-pass characteristic, and the power of the  

signal is concentrated in the relative low-frequency domain. Consequently, the LGU attitude error 

introduced by the gyroscopes’ ARWs exhibits a characteristic of trend which is similar to the  

initialization-induced error. 

Figure 11. Power spectral density (PSD) of the angular random walk. 

 

4.3. Trend Error Correction 

It is well known that the EGM2008 is the most accurate global gravity model published, which  

can provide accurate long-wavelength (which is longer than 10 km) components of gravity  

disturbances [25]. Although this long-wavelength information cannot reflect the details of the gravity 

disturbances, they can be utilized to remove the trend error in the gravimetry measurement data [26]. 

The proposed method attempts to utilize the EGM2008 to remove the trend error in DOV estimation. 

There are three steps to remove the trends error. First, the long-wavelength components of DOV are 

removed by subtracting the EGM2008 DOV data from raw DOV estimation data; thus, the residual of 

DOV contains only short-wavelength components. Second, the trend errors of the DOV residual are fit 

by a low-order polynomial. Figure 12a,b shows the trend errors extracted from the difference between 

the raw DOV estimation data and EGM2008 data. The short-wavelength components are extracted 

when the trends are removed. Third, the ultimate results of DOV can be obtained by combining the 

short-wavelength components and the EGM2008 gravity data. The final DOV results are shown in 
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Figure 13a,b. As is expected, the trend errors are mostly removed, and the ultimate result contains 

more detailed information than the EGM2008 gravity model. 

Figure 12. (a) Trend error extraction for η ; (b) trend error extraction for ξ . 

(a) (b) 

Figure 13. (a) Trend error correction for η ; (b) trend error correction for ξ . 

 

(a) (b) 

Table 3. DOV error of EGM2008 (″). 

 SD Mean 
12EGM2008 DEFLECξ ξ−  2.26 −0.76 
12EGM2008 DEFLECη η−  2.00 −0.11 

Table 3 shows the DOV error of the EGM2008, in which it is compared with the DEFLEC12 model 

along the trajectory. According to Table 3, we can see that the standard deviation (SD) of the 

EGM2008 vertical deflection errors is approximately 2″. Monte Carlo simulations are implemented to 

verify the feasibility of the trends correction method. The statistical analysis of DOV measurements in 

the simulations is listed in the following tables. It can be seen from Table 4 that the average errors  

of the preliminary estimation for ξ  and η  components (before trends correction is applied) with  
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100 Monte Carlo simulations are 1.50″ and 1.23″, respectively, and the maximum errors are 3.32″ and 

2.35″. When the trends’ correction algorithm is applied, the average errors of the ξ  and η  components 

are reduced to 0.69″ and 0.85″, and the maximum errors are reduced to 0.85″ and 1.03″, as  

Table 5 shows. 

Table 4. The statistical analysis of preliminary DOV estimation result (″). 

 Average Error Maximum Error 
12Estimation DEFLECξ ξ−  1.50 3.32 
12Estimation DEFLECη η−  1.23 2.35 

Table 5. The statistical analysis of ultimate DOV estimation result (″). 

 Average Error Maximum Error 
12Estimation DEFLECξ ξ−  0.69 0.85 
12Estimation DEFLECη η−  0.84 1.03 

According to the simulation results, we can see that that the trends’ correction algorithm can 

effectively reduce the trend errors, which are mainly caused by the initial error and the ARW-induced 

error of attitude reference. In this sense, the precision of the initial attitude has little influence on the 

DOV measurement results. As can be seen from Figure 14, the increments of DOV estimation errors 

are less than 0.02″ when the accuracy of star sensor changes from 0.1″ to 14″. 

Figure 14. The effect of star sensor accuracy on DOV estimation results after trend  

error correction. 
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extensive simulations and detailed error analysis. The preliminary results show that considerable 

systemic errors are contained in DOV components. The LGU attitude error, which is induced by the 

initializing error and gyros error, is the primary error source in the measurement. Fortunately, the 

systemic errors behave as the characteristics of trends, while the EGM2008 gravity model is 

considered to be accurate in the long-wavelength domain. Thus, an algorithm for trend error correction 

is developed with the aid of the EGM2008 gravity model. The estimation results of the ξ  and η
components are significantly improved from 1.50″ and 1.23″ to 0.69″ and 0.85″, respectively, when 

the trends error correction algorithm is applied. 

The new method has three distinct features compared to the traditional inertial vector gravimetry. 

First, DOVs are calculated by using the transformation matrix between the geodetic and astronomical 

coordinates, rather than the difference between the GNSS-derived accelerations and INS-sensed 

specific force. Therefore, the calculation of the kinetic acceleration is avoided. As the velocity 

estimation technique using differences of carrier-phase measurements can reach an accuracy at the 

mm/s level [27] and the Precise Point Position (PPP) technique enables the GNSS to position with  

0.1-m accuracy, a stand-alone GNSS receiver may meet the demands of the proposed method. Second, 

a single-axis rotation inertial navigation system is adopted in the new method. Thus, the observability 

of the system errors is improved, and the bias errors of the inertial sensors are restrained by the tuning 

structure. Third, trend errors can be removed with the survey data of a single track in the new method. 

As was mentioned in Section 1, repeated tracks of survey data are required in traditional vector 

gravimetry for the WCF technique to remove the systemic errors. This significantly increases the cost 

and time for gravity survey. In contrast, in the new method the trend errors are removed and directly 

compensated for by the EGM2008 global gravity model in a single survey line.  

The simulation result shows that the proposed method is limited by the speed of the vehicle, 

because the geoid tracking errors of INS/GNSS integration will increase when the vehicle travels at a 

high speed. Therefore, this method is not suitable for the airborne application. A ship or land vehicle 

with a speed lower than 25 m/s is recommended as the carrier for the measurement. 

As the trend errors caused by the initial error of LGU can be effectively removed by the trend error 

correction algorithm, the precision of the star sensor, which is utilized to initialize the attitude of LGU, 

has little influence on the DOV estimation results. Thus, we can improve the proposed method by 

using the attitude output of INS/GNSS integration to initialize LGU; then, there is no requirement of a 

star sensor at all. This improvement can considerably reduce the cost and improve the efficiency for 

DOV measurement. Moreover, the survey can be carried out in the daytime and has no limitation on 

weather conditions. 

It should be noted that the performance of the trend error correction depends on the accuracy of 

global gravity model in the long-wavelength domain. An improved gravity model, such as global 

gravity model plus (GGM plus) [28], may yield more advanced results. As new satellite gravimetry 

missions (e.g., Gravity and Ocean Circulation Explorer (GOCE)) can provide high precision gravity 

information, a more accurate geoid reference will be obtained. It is expected that the newly-developed 

global gravity models will be more accurate and have higher resolution when the new satellite 

gravimetry data is available. Accordingly, the accuracy of the proposed method will be further 

improved with the aide of these new global gravity models. 
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