
Sensors 2014, 14, 16766-16784; doi:10.3390/s140916766 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

WSNs Data Acquisition by Combining Hierarchical Routing 
Method and Compressive Sensing 

Zhiqiang Zou 1,2,3,*, Cunchen Hu 1,†, Fei Zhang 1,†, Hao Zhao 1 and Shu Shen 1,2,3 

1 Nanjing University of Posts and Telecommunications, Nanjing 210003, China;  

E-Mails: duihuhu@163.com (C.H.); zfcsat@126.com (F.Z.); wjzhh815@163.com (H.Z.); 

shens@njupt.edu.cn (S.S.) 
2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,  

Nanjing 210003, China  
3 Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA  

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: zouzq@njupt.edu.cn;  

Tel.: +608-422-9099; Fax: +86-25-8586-6433. 

Received: 8 June 2014; in revised form: 22 August 2014 / Accepted: 26 August 2014 /  

Published: 9 September 2014 

 

Abstract: We address the problem of data acquisition in large distributed wireless sensor 

networks (WSNs). We propose a method for data acquisition using the hierarchical routing 

method and compressive sensing for WSNs. Only a few samples are needed to recover the 

original signal with high probability since sparse representation technology is exploited to 

capture the similarities and differences of the original signal. To collect samples effectively 

in WSNs, a framework for the use of the hierarchical routing method and compressive 

sensing is proposed, using a randomized rotation of cluster-heads to evenly distribute the 

energy load among the sensors in the network. Furthermore, L1-minimization and 

Bayesian compressed sensing are used to approximate the recovery of the original signal 

from the smaller number of samples with a lower signal reconstruction error. We also give 

an extensive validation regarding coherence, compression rate, and lifetime, based on an 

analysis of the theory and experiments in the environment with real world signals. The 

results show that our solution is effective in a large distributed network, especially for 

energy constrained WSNs.  
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1. Introduction 

Wireless sensor networks (WSNs) are used in a variety of applications, such as environmental  

data collection, dangerous event monitoring, and disaster prevention [1,2]. However, they have some 

performance limits (e.g., energy consumption). Conventional WSNs protocols, like location-based 

protocols [3] and hierarchical protocols [4], are helpful in reducing bandwidth requirements. The 

theory of compressive sensing (CS) [5,6], a novel sensing/sampling paradigm that goes against common 

wisdom in data acquisition, can further reduce the bandwidth requirements and save more energy. 

Candès and Wakin [5] provided an introduction to compressive sampling, which is usually used in 

the field of efficient digital image compression. If a signal is known to be compressible, Donoho [6] 

found that the number of measurements M for this signal is dramatically smaller than the size of signal 

N (M << N). Note that a signal being compressible means that it can be exploited to hold the correlation 

of the data both temporally and spatially based on some sparsification bases. 

A number of papers focus on the combination of CS theory and WSNs [1,7,8]. Fazel et al. [1] 

proposed a distributed energy-efficient sensor network scheme based on random access compressed 

sensing. However, the authors in [1] do not address the scenario of multi-hop wireless networks.  

A recent survey of CS theory as applied in WSNs is given in [7], which recovers sparse data in WSNs 

by solving a convex optimization via L1 norm. The authors in [8] discussed EW-CS scheme that is 

better overall recovery quality for non-uniform compressible signals than ordinary CS schemes. 

However, it is not feasible to simply combine CS theory with WSNs since the recovery procedure 

would fail due to the coherence between measurement and sparsity matrices in a real WSN scenario as 

described later and reference [9]. 

The research group of Xiang, Luo, Vasilakos and Rosenberg has done great work in the field of 

data collection in wireless sensor networks [9–12]. Reference [9] illustrated two crucial insights: 

firstly, applying CS naively may not bring any improvement, which coincides with our viewpoint in 

this paper, such as the bad performance of L1 described in Table 1; and secondly, they put forward the 

idea that the hybrid-CS can achieve significant throughput improvements. Based on their previous 

hybrid-CS, reference [10] further proposed two solutions for data collection, i.e., the optimal solution 

and the near-optimal solution. Reference [11] proposed the Dual-lEvel Compressed Aggregation 

framework to recover the physical signal from incomplete data from WSNs, which is also able to be 

done from our HRM_CS. The amazing work of their group is the CS-based aggregation scheme, which 

achieves both recovery fidelity and energy efficiency in WSNs with arbitrary topology according to 

the reference [12]. They employed diffusion wavelets to design the sparse basis while we focus on the 

recovery method based on Bayesian Compressed Sensing and the problem of coherence in the model 

of HRM_CS, which is more practical under the environment with real world signals. 

Quer et al. [13] proposed a sparsity model that allows the use of CS theory for the online recovery 

of large data sets. While some of our work was inspired by the study reported in [13], it not only 
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extends the results given in [13] by using the hierarchical routing method, but also provides a 

mathematical analysis of sparsity and coherence. In our previous paper [2], we proposed a data fusion 

method based on CS, which was used to monitor the cyanobacteria bloom-forming in a lake using a 

single hop network.  

In the past years, considering the energy consumption in the procedure of route, reference [14] put 

forward a recurrent neural network to realize the range-free localization of WSNs while we decrease 

the energy consumption by making use of compressive sampling. These are two different methods to 

solve a similar problem. Joining CS theory with a routing free algorithm would be a worthwhile topic 

for future work. 

The main existing problems that limit widespread applications under the real WSN scenario are as 

follows: (1) lack of a suitable method for a large region covered by a multi-hop network; (2) lack on an 

effective analysis of sparsity and coherence; and (3) lack of a quantitative analysis of the lifetime of 

the whole WSN. In this paper we solve all of these issues by jointly employing the hierarchical routing 

method and compressive sensing in multi-hop networks. The main contributions of this paper are  

the following: 

 A model combining the hierarchical routing method and compressive sensing (called the 

HRM_CS) for WSN data acquisition, which includes some variant models, e.g., a model 

combining the hierarchical routing method and the Bayesian compressed sensing (BCS) based 

CS recovery algorithm (HRM_CS1), and a model combining the hierarchical routing method 

and the L1-minimization based CS recovery algorithm (HRM_CS2). 

 A quantitative mathematical analysis of the HRM_CS, which includes signal sparsity analysis, 

measurement matrix analysis, coherence analysis, and so on. 

 Design of a HRM_CS framework, being used for the online recovery of large data sets by 

collecting a small number of readings. 

 Proof of the effectiveness of our approach for the acquisition and recovery of signals measured 

in an actual WSN deployment. 

The paper is structured as follows: in Sections 2 and 3, we present our HRM_CS model for WSN 

data acquisition and the corresponding analysis in terms of signal sparsity, signal recovery, and routing 

method. In Section 4, we provide a framework for implementing the HRM_CS. In Section 5, through 

comparison with standard approaches, we prove the effectiveness of our model. Finally, we present our 

conclusions in Section 6. 

2. WSNs Data Acquisition Model  

In this section we firstly review basic CS theory from a sparse signal model and recovery model. 

Then we present the hierarchical routing method. Finally, we introduce our HRM_CS model for WSN 

data acquisition, through the joint use of the hierarchical routing method and compressive sensing. 

2.1. Compressive Sensing Theory  

Consider a grid WSN, consisting of N  ( JIN ×= ) sensors located on a two-dimensional plane for 

monitoring an environment with I and J sensors in the x- and y-directions, respectively. Each sensor in 
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the network grid independently acquires a measurement and transmits this data towards the sink along 

the routing path. We firstly transform the two-dimensional data matrix U  of the original signal into 

one-dimensional data vector X  by Equation (1): 
NT

IJJII RuuuuuuVec ∈== XUX ,]...............[)( 1212111  (1) 

Taking into account the sparsity of natural phenomena (e.g., the temporal correlation and spatial 

correlation) in the monitored environment [1,2], based on classic compressive sensing theory, we can 

create M  random projections of X , that is, MR∈Y , and obtain the following mathematical model: 
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where Φ  is the measurement matrix, which is referred to as the routing matrix since it indicates the 

way in which our sensor data is acquired and transmitted to the sink; Ψ  is an invertible transformation 
NN × matrix; NKCMN K log⋅⋅≥>  with a constant KC ; original signal X  is called K-sparse if it has 

only K significant components; χ  is the sparse representation of X ; and MR∈Z  is a vector denoting 

a noisy signal from M sensor nodes after the random measurement. Considering the computation capability 

of WSNs, we let sink node with no energy constraints and high computing capability to complete the 

complex matrix computation while let each sensing node only to sensing the physical signal. 

2.1.1. Signal Sparsity 

Various common transforms can be used in the sparse signal model, such as Haar wavelets, the 

Fourier transform, principal component analysis (PCA) [15–17], and the discrete cosine transform 

(DCT). In the following, considering a real world signal [18], we focus on the latter two transforms, 

i.e., PCA and DCT, which are used in the later model. Based on matrix algebra, in order to identify 

patterns in data and express the data in such a way as to highlight their similarities and differences in 

X , we apply PCA to find patterns in the data and compress them, i.e., by reducing the number of 

dimensions, without much loss of information. First, we calculate the eigenvectors and eigenvalues of 

the covariance matrix. Then, we choose components to form a feature vector. DCT is another 

transform [19,20], defined as Ψ NNR ×∈ , ET =ΨΨ . In our previous work, we used the observed 

chlorophyll-A data from the sensor nodes located in the Taihu Lake in China (longitude: 120.296, 

latitude: 31.387) as the original signal and applied DCT as a transform. From the results given in [2], 

almost 99% of the energy of size N = 92 is contained in only six important coefficients, i.e., K = 6. 

2.1.2. Signal Recovery 

Based on the previous work, if the original signal is sparse, it can be recovered with high 

probability using a method with some optimization techniques, such as L1-minimization [2,5,6] and 

BCS [21–23]. With a sufficient number of measurements, the sink is able to reconstruct the sensor 

readings by solving an L1-minimization problem [5,6]. By using L1-minimization technology [2], we 

reconstructed the chlorophyll-A signal from a smaller sample with higher accuracy; the mean of the 

reconstruction error for sampling point-1 was 0.17%, while that for sampling point-2 was 1.59%.  
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As for the BCS method [23], its basic idea is to maximize the posterior from a Bayesian perspective, 

estimate sparse coefficients from the Bayesian framework, and then compute the estimated value of the 

original signal. In BCS, the estimated parameters are random variables with some prior distribution. 

By learning the ith sample xi and the Bayesian rule, ( | )iP x α  can be transformed into ( | )iP xα , a 

maximum a posteriori (MAP) estimate, where α  is the estimated parameter. We employ BCS method 

in our later data acquisition model. 

2.2. Traditional Hierarchical Routing Method 

As pointed out in the previous section, a compressive sensing model can be used in most single-hop 

WSNs [1,2] or centralized environment [5,22]. In what follows, we present a method for gathering data 

for a multi-hop WSN in a distributed environment.  

To avoid confusion, it is important to note that in this section interpretation of all the variables is 
involved. Suppose N  sensors, denoted as Nxxx ,...,, 21 , form a multi-hop route to the sink and the 

original signal vector is denoted as NR∈X . Let jd  denote the readings obtained by node jx . There 

are two simple data collection schemes: the baseline and compressive methods in a multi-hop route, 

referred to as Equations (3) and (4), respectively [3]. To avoid excessive overloading in single-tier 

WSNs, a clustering method has been used in some routing approaches [23,24]. The hierarchical 

routing method utilizes randomized rotation of local cluster-head nodes to distribute the energy load 

evenly among the sensors in the network [25]: 
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2.3. Our HRM_CS Model  

Inspired by the above theory and method, we put forward our HRM_CS model, which jointly applies 

the hierarchical routing method and compressive sensing to effectively compress and recover the original 

signal by exploiting the correlation of sensor readings. Next we describe the HRM_CS model in the 

formula form. In the HRM_CS model, based on the description of Equation (2), we design a hierarchical 

routing method to get the value of MR∈Y . According to LEACH in [4], we divide the N  nodes into 

M  clusters and randomly rotate cluster-heads, where the M  cluster-head nodes, denoted by 

1 2 3{ , , ,..., }MY Y Y Y . However, in order to further reduce energy dissipation and enhance system lifetime, 

differing from LEACH, we only select a part of nodes to transmit data to the cluster head. Assume that 

1 2 3{ , , ,..., }MC C C C  corresponds to the number of nodes in each of the M  clusters and Nc
MC

Cc

=
= 1

. Note 

that the original signal is NR∈X  and the compressive signal from the M  clusters is MRY ∈ . 

In order to balance the energy cost among all the nodes, when we create the measurement  

matrix Φ , in which each row corresponds to the whole N nodes in the WSN. We introduce random 

coefficients ckw , set to 0 or 1, where k  denotes the thk  cluster ( kY ) and c  denotes the thc  node ( ckx , ) 

in this cluster. Each sensor contributes its readings to the sink with a non zero coefficient or zero 
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otherwise. And now X  can be expressed as 
11,1 1,2 1, ,1 ,2 ,{ , ,..., ,..., , ,..., }

MC M M M Cx x x x x x=X , where ckx ,  is 

the sensor value and MCcCMk ≤≤≤≤ 1,1 . In this way, a randomly chosen subset of nodes participates 

in the sensing process so that the lifetime of the whole network is prolonged as long as the energy left in 

these nodes is higher than the threshold. At first, the sink node picks a random subset of M sensors for 

sampling and broadcasts the selected set of nodes at each round. Then, the selected nodes sample the 
physical value ckx ,  from the sensor. Furthermore, HRM_CS model of jointly applying the hierarchical 

routing method and compressive sensing process can be formally expressed as Equation (5): 
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(5) 

where ckz ,  and kZ  denote white Gaussian noise from sensor node ckx ,  and cluster kY , respectively, 

and 1−β  denotes the covariance of the noise. Here kY  and Y  can act as the superposition of the signal 

on both the cluster-head node and the sink node. It is clear that the coefficients of Φ  are not fixed at 

all rounds and the measurement matrix would be changed at each round. Because we compress the data 

while we transmit the data, we reduce the number of transmissions to the sink, with a corresponding 

reduction in the energy consumed by the WSN. We provide insight into the data collection based on 

the hierarchical routing method, which differs from traditional schemes discussed in [3]. Moreover, 

using the CS technique ensures that the HRM_CS is able to support the online recovery of the original 

signal NR∈X  from its compressed signal MRY ∈  with higher accuracy at the sink. It is worth noting 

that our HRM_CS is not simply about combining the hierarchical routing method and compressive 

sensing because it is not an efficient and stable way in a real WSNs environment. Next we will analyze 

the HRM_CS further and give the optimized variant model of HRM_CS. 

3. Analysis and Optimization of HRM_CS Model 

In Section 2 we presented a data acquisition model for WSNs, called the HRM_CS, which 

combines the hierarchical routing method and compressive sensing. To determine the effectiveness of 

the HRM_CS and investigate the impact of the routing method on the compression process, we present 

a formula analysis from multiple aspects. First, without loss of generality, we assume a simple radio 
model [4], where the radio dissipates bitnJEelec /50=  to run the transmitter or receiver circuitry and 

2//100 mbitpJamp =ε  for the transmission amplifier. The formula to calculate the energy required to 

transmit a k-bit message along a distance of d, is given below: 
2***),()(),( dkkEdkEkEdkE ampelecampTxelecTxTx ε+=+= −−  (6) 

In addition, the formula to calculate the energy required to receive a message, is: 

kEkEkE elecelecRxRx *)()( == −  (7) 

Next we present an analysis of the HRM_CS model from four different aspects. 
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3.1. Sparsity Analysis  

There are some common transforms that can be used in a sparse signal model. In this paper, we 

focus on DCT and PCA. For the DCT, the sparsity depends on the corresponding coefficients with low 

and middle frequency, whereas for the PCA, the sparsity is determined by the square root of the 

eigenvalues of the covariance matrix. Note that the default transform in the following section  

is the DCT. 

3.2. Measurement Matrix Analysis  

We consider two different schemes to build the measurement matrix, i.e., random sampling (RS) 

and the hierarchical routing method (HRM). The RS scheme is used to determine in a fully distributed 

way which sensors randomly transmit their data to the sink node at any given time k. In the HRM 

scheme every sensor node first sends its data to local cluster base stations and then these data are 

transferred to the sink node by the local clusters. 

3.3. Coherence Analysis between Measurement Matrix and Sparsity Matrix 

Coherence analysis between the measurement matrix and sparsity matrix is an important metric that 

affects the accuracy and stability of information recovery. The formula to compute the coherence  

μ  [15] is given below: 

μ max ,i j
i j

Coherence H H
≠

 = < >  (8)

The values of μ  depend on a column in the CS matrix, where ii ΨH Φ= , jj ΨH Φ= , and 

j
TT

iji ΨΨHH ΦΦ>=< , . From the large number of experiments carried out, we find two methods are 

able to decrease μ and increase the stability of CS recovery: (1) Adopting the Gaussian random 

measurement matrix, i.e., the RS scheme. This is because occurrence probability of 0’s and 1’s in a 

row of the Gaussian random measurement matrix is relatively fixed so that the coherence being 

relatively stable; (2) Increasing the number of cluster-head nodes at some extent. This is because that 

the measurement matrix based on the HRM is built by setting the value of the local head node to “1” 

and that of the other nodes in this cluster to “0”. Therefore, with an increasing number of cluster-head 

nodes, both the number of non cluster-head nodes within each new cluster and the total number of 
occurrences of the value “1” in a row decrease. This leads to the coherence μ  decreasing. 

3.4. Optimization of HRM_CS Model  

The HRM_CS objective is to provide a data acquisition method with longer lifetime and higher 

recovery accuracy under the real WSN environment. In this section, three performance metrics, 

namely, recovery accuracy (Error), communication cost and compression rate are analyzed. Based on 

this analysis, the optimized model from the two variant models of HRM_CS, i.e., HRM_CS1 with 

BCS and HRM_CS2 with L1-minimization can be obtained. Detailed experimental results are shown 

in Table 1, where the raw AD values denote the values from the card of Analog signals conversion 

Digital signals in a real WSN scenario GreenOrbs [18]. 



Sensors 2014, 14 16773 

 

 

Table 1. Performance comparison for HRM_CS. 

Recovery 
Method 

Threshold 
Number of Cluster 

Heads M 
Coherence 

μ  
Success Recovery  

Rate (%) 
Error 
(%) 

Variance 

L1 50 40 1.950 20 0.262 298.748 
BCS 50 40 1.950 100 0.327 466.902 
L1 40 56 1.495 20 0.247 265.394 

BCS 40 56 1.495 100 0.329 472.804 
L1 35 68 1.085 25 0.224 218.526 

BCS 35 68 1.085 100 0.326 463.506 
L1 28 84 0.658 33 0.250 272.964 

BCS 28 84 0.658 100 0.326 463.182 
L1 25 100 0.556 60  0.209 191.134 

BCS 25 100 0.556 100 0.326 462.999 
L1 20 140 0.388 100 0.222 55.810 

BCS 20 140 0.388 100 0.326 462.787 

Error: recovery error; Variance: variance of raw AD values between original signal and recovery signal;  

L1: the recovery method based on L1-minimization; BCS: the recovery method based on BCS. 

First, we investigate recovery accuracy (Error). The max Error is less than 1%, which meets the 

system demands. Although the HRM_CS1 is a little inferior to the HRM_CS2 with respect to recovery 

accuracy, HRM_CS1 is superior to the HRM_CS2 with respect to much more stability, i.e., the 

recovery method based on BCS has greater success than L1-minimization (hereafter called L1). 

Moreover, the number M of head nodes does not have a large effect on the error and variance of 

recovery in a BCS scenario. This is because BCS estimates the most probable value by maximizing a 

posteriori without depending on the particular WSN topology considered. 
Second, we analyze communication cost. Here we compute the total number of packets in the 

HRM_CS. The main steps are as follows: (1) N − M nodes in the cluster send their own sensor 

readings to M cluster-head nodes with an associated cost O(N ‒ M); (2) Next, superposition of the 

signal is carried out at the cluster-head node. In addition, the M cluster-head nodes transmit their own 

sensor readings to the sink along a routing path that minimizes the number of transmissions. On this 

path the packet is not processed but simply forwarded with the longest path O(N½); (3) The total cost 

of delivering packets to the sink from M cluster-head nodes is O(MN½).  

Last, we consider compression rate. From a sink point of view, compression rate is defined as 

%100)1( ×−
N

M . It is related to the number M of head nodes and increases as M decreases, where N is the 

total number of sensor nodes.  

From the above analysis, it can easily been seen that the WSN based on the HRM_CS has longer 

lifetime, compared with the classic approaches given by Equations (3) and (4), where the data are not 

well compressed. In particular, it can also been seen that the HRM_CS1 with M = 40 is our optimal 

choice since the higher compression rate and stability can be gotten at a little cost of recovery error, 

compared with the HRM_CS2. 
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4. HRM_CS Framework 

In this section we present our framework for implementing the HRM_CS, which performs well for 

fully distributed compression in WSNs and centralized recovery of an N-dimensional signal from a 

compressed M-dimensional signal at the sink. We first present the HRM_CS framework from a holistic 

viewpoint, and then, we describe WSNs deployment and clustering scenarios. Finally, we introduce the 

preprocessing for monitoring data, which can optimize the HRM_CS performance. 

4.1. HRM_CS Framework for WSNs 

To implement the model in Equation (5) described in Section 2, we present our framework for 

WSNs data acquisition in detail. From Figure 1, we can see that the monitoring region is mapped with 

JIN ×=  nodes into two-dimensional matrix U in the first step. Note that U corresponding to the  

one-dimensional vector X  in Equation (1). Then, in the next step, we logically re-organize U  to build 

a clustering structure based on the hierarchical routing method, by randomly selecting cluster-heads 

and nodes within their clusters to evenly distribute the energy load among the sensors in the network. 

Each sensor node selected sends its data to local cluster base stations and then these data are 

transferred to the sink node. In the final step the superposition of the signal is completed and the 

original signal is recovered at the central sink node based on the optimization techniques. 

Figure 1. HRM_CS framework. 

Nn ≤≤1
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4.2. WSN Deployment 

We consider the deployment in GreenOrbs [18], which is a real WSN scenario set up for long-term 

monitoring of temperature and humidity in a forest without human supervision. We depict these nodes 

with their ID and location as shown in Figure 2. The operation of HRM_CS is broken up into rounds, 

where some node becomes a cluster-head for the current round while each non-cluster-head node 

decides the cluster to which it will belong for this round. Furthermore, according to the path of the 

message transmission in one round, we obtain the corresponding screen-shot of hierarchical cluster 

topology as shown in Figure 3. 
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Figure 2. Deployment in a real WSN scenario. 

 

Figure 3. Hierarchical cluster topology in a real WSN scenario. 

 

4.3. Monitored Data Preprocessing 

In this section, we discuss the preprocessing of the monitored data. As the first step, based on the 

hierarchical cluster topology as shown in Figure 3, we select the top right region with the most densely 

distributed nodes as the experimental data. Let the relative position be depicted on the X- and Y-axis 

according to the grid structure preprocessing, while the raw AD values from the sensors corresponding 

to the monitored temperature are given on the Z-axis, as displayed in 3D in Figure 4. As is known, the 

AD raw values from the sensor must be converted into a natural signal temperature by the formula: 

temperature = −39.60 + 0.01 × (AD raw value) [18]. 
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Figure 4. Real monitoring data values displayed in 3D. 

 

Figure 5. (a) Unsorted monitored data values during preprocessing; (b) sorted monitored 

data values during preprocessing. 

(a) (b) 

Then, in order to optimize the compression rate, we compared two cases: sorted and unsorted 

monitored data values during the preprocessing. The X-axis depicts the 256 nodes while the Y-axis 

gives the raw AD values from the sensors corresponding to the monitored temperature as shown in 

Figure 5. Note that the compression rate for the “Sorted” case (Figure 5b) is superior to that for the 

“Unsorted” case (Figure 5a) in the preprocessing since it is affected by a discrete signal characteristic 

in the frequency domain. To demonstrate the effectiveness of the preprocessing, we create a sparse 

representation of the “Unsorted” (Figure 6a) and “Sorted” (Figure 6b) monitored data values by DCT. 

As shown in Figure 6, the X-axis depicts the 256 nodes while the Y-axis gives the AC components of 

the DCT transformation coefficients. The “Sorted” case is superior to the “Unsorted” case with respect 

to compression rate during the preprocessing since “Sorted” case decreases the total communication 

cost, which coincides with the conclusion in reference [12]. 
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Figure 6. (a) Sparsity of unsorted monitored data values during the preprocessing;  

(b) Sparsity of sorted monitored data values during the preprocessing. 

(a) (b) 

5. Performance Comparison 

To extensively validate our HRM_CS, we focus on recovery error, energy consumption, and 

lifetime, compared with other classic WSNs [3,13,25]. As for the limited computational power and 

communication bandwidth in WSNs, the lifetime of WSNs is the most important metric. 

 Energy Consumption 

As the analysis in the previous section shows, compared with the traditional clustering method, the 

energy consumption of the HRM_CS is substantially reduced by introducing compressive sampling. 

To analyze the energy consumption, we focus on the sending and receiving phase although there are 

multiple other phases, such as the sensor computation during the data acquisition. We adopt the energy 

model given as Equations (6) and (7) in Section 3. For further details refer to [4,26]. 

 Lifetime 

Assume that each sensor is a tiny powered sensing unit with a finite amount of energy that 

determines its lifetime. According to the computation energy consumed, when the energy left is lower 

than zero, we refer to this sensor as dead; otherwise it is alive. 

 Recovery Error (err) 

Assume an original signal X NR∈ , and recovery signal X~ NR∈ , then: 
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Figure 7. Effects of preprocessing for recovery. 

 

First, let us consider the effects of preprocessing on L1-minimization recovery [27]. Figure 7a 

shows the referenced values after subtracting the minimum value from the original signal. Figure 7b 

shows the recovery effects with preprocessing and applying a DCT, while Figure 7c shows the 

recovery effects without preprocessing but applying a DCT. Figure 7d depicts the recovery effects 

without preprocessing and using PCA. From this experiment, we find that the following results: (1) the 

recovery error in Figure 7b is smaller than those in Figure 7c,d; (2) the recovery errors in Figure 7c,d 

are of the same magnitude, however, from the viewpoint of varying trends, the method using PCA in 

Figure 7d is inferior to that using DCT in Figure 7c since the DCT transform can characterize the 

original signal using more coefficients with low and middle frequency. 

Next, we consider the performance of variants of the B HRM_CS model. Figure 8 shows the 

experimental results of the HRM_CS1, i.e., jointly using CS as the recovery algorithm and LEACH as 

the hierarchical routing method. Figure 9 depicts the experimental results with high recovery accuracy 

for the HRM_CS2, i.e., combining L1-minimization as the recovery algorithm and LEACH as the 

hierarchical routing method. Under the HRM_CS2 scenario, if there are too few 1’s when creating the 

measurement matrix, i.e., there are too few nodes to participate in the measurement, it will lead to 

failure during the recovery operation since the coherence between the measurement and sparsity 

matrices increases, as shown in Figure 10. Based on the above experiments, as for the stability of 

information recovery, we find that the applying CS naively like L1-minimization may be not proper 

under the real scenario of WSNs and HRM_CS1 is superior to HRM_CS2. 
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Figure 8. Recovery based on HRM_CS1. 

 

Figure 9. Recovery based on HRM_CS2. 

 

Figure 10. Recovery failure based on HRM_CS2. 
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In Figure 11, we demonstrate the recovery accuracy by comparing the HRM_CS1 with the  

GM_CS [13] based on the same recovery method, BCS. Figure 11 depicts the experimental results for 

the original and recovered signals, for which the error is less than 1 °C. Furthermore, the mean error of 

our HRM_CS1 0.0101 is slightly greater than the mean error of the GM_CS 0.0084 while HRM_CS1 

has much longer lifetime than that of the GM_CS, as shown in Figure 13. 

Figure 11. Experimental results of the original and recovered signals with HRM_CS1 and 

GM_BCS. (a) HRM_CS1 mean error = 0.0101; (b) GM_BCS mean error = 0.0084. 

(a) (b) 

As for the number of measurements M , i.e., the number of clusters in HRM_CS model, it is a vital 

parameter and has an influence on the lifetime of WSNs. Based on the basic compressive sensing 
theory [5], we know that 4M K³ , K  is the number of significant components in original signal X  

while K  varies with the different threshold value during the process of signal, which can be seen in 

Table 2. As a result, it can be seen from the Figure 12 that the lifetime of WSNs with different number 

of clusters also take the corresponding changes and the maximal lifetime is obtained at 40M = . 

Table 2. Relationship of M, K and threshold value. 

Threshold Value 
Number of Significant 

Components K  
Number of  

Clusters M  

20 35 140 
23 30 120 
25 25 100 
29 20 80 
39 15 60 
51 10 40 

In the last graph, Figure 13, we show the impact of different data acquisition methods on the 

lifetime of WSNs. We compared four different methods, namely, HRM_CS, one_hop method [3], 

traditional LEACH [25] and GM_CS [13]. Here GM_CS means that we use the Gaussian random 

matrix as the routing matrix jointly with CS. As described in Table 1, L1-minimization is more 

unstable than BCS in this real WSN scenario. Therefore, here we use the BCS as CS recovery 
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algorithm in our experiment. As shown in Figure 13, our solution HRM_CS, is superior to the other 

methods since the HRM_CS adopts compressive sampling, which decreases the number of 

communication packets and prolongs the lifetime as a consequence. 

Figure 12. Lifetime of WSNs with different number of clusters. 

 

Figure 13. Lifetime of WSNs under different methods. 

 

6. Conclusions 

In this paper, we proposed the HRM_CS, a model for data acquisition in WSNs by jointly applying 

the hierarchical routing method and compressive sensing, which minimizes global energy usage by 

decreasing the number of samples. HRM_CS outperforms conventional LEACH by introducing the 

sparse representation technology of PCA and DCT to capture the similarities and differences of the 

original signal. We studied an approximate recovery of the original signal from this smaller number  

of WSNs samples with a lower signal reconstruction error, such as L1-minimization or Bayesian 

compressed sensing. Thereafter we compared the performance of these two signal reconstruction 
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techniques combining a different measurement matrix. The extensive validation demonstrates that our 

solution is effective in reducing energy dissipation and enhancing system lifetime, although it is not 

necessarily the most accurate. Other supervised WSNs routing algorithms, such as the multicast tree, 

even for arbitrary topology [12] and routing-free [14], also have attractive features and should be 

compared when applied jointly with CS in our future work. 
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The table of the key letters and abbreviations in the paper. 

Symbol Explanation Symbol Explanation Symbol Explanation 

HRM_CS 
Model of combining  

HRM and CS 
μ  

Coherence between the 

measurement and sparsity 

matrices 

PCA 
Principal Component 

Analysis  

L1 
Recovery algorithm L1-

minimization 
Φ   Measurement matrix BCS 

Bayesian  

Compressed Sensing 

HRM_CS1 
Model of combining the 

HRM and the BCS 
Ψ  Transform Matrix X  

One-dimensional  

data vector 

HRM_CS2 
Model of combining the 

HRM and the L1  
ckw ,  Random Coefficients of 

cth node of kth cluster 
Y  

M  random projec-tions 

vector X  

χ̂  
Estimated  

value of χ  
ckx ,  Sensor value of cth node 
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K-sparse value of the original 

signal X  
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