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Abstract: Mobile security is one of the most fundamental problems in Wireless Sensor 

Networks (WSNs). The data transmission path will be compromised for some disabled 

nodes. To construct a secure and reliable network, designing an adaptive route strategy 

which optimizes energy consumption and network lifetime of the aggregation cost is of 

great importance. In this paper, we address the reliable data aggregation route problem  

for WSNs. Firstly, to ensure nodes work properly, we propose a data aggregation route 

algorithm which improves the energy efficiency in the WSN. The construction process 

achieved through discrete particle swarm optimization (DPSO) saves node energy costs. 

Then, to balance the network load and establish a reliable network, an adaptive route 

algorithm with the minimal energy and the maximum lifetime is proposed. Since it is a 

non-linear constrained multi-objective optimization problem, in this paper we propose a 

DPSO with the multi-objective fitness function combined with the phenotype sharing 

function and penalty function to find available routes. Experimental results show that 

compared with other tree routing algorithms our algorithm can effectively reduce energy 

consumption and trade off energy consumption and network lifetime. 
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1. Introduction 

Wireless Sensor Networks (WSNs) are one of the most important technologies changing the world 

in that such networks can be used in variety of applications, such as environment monitoring, military 

surveillance and object tracking, disaster area relief, industrial control and seismic monitoring. The 

basic function of a WSN is collecting and returning data from each sensor node in each respective 

monitored area where data may be highly correlated. Data gathering is a key operation for WSNs  

to extract useful information from the operating environment. Recent studies [1–5] show that data 

aggregation, a process dealing with several data to obtain what is more suitable for user needs, is 

tremendously useful in eliminating data redundancy and reducing the communication load. WSNs are 

generally energy constrained, because wireless sensor nodes are powered by batteries and usually 

deployed in some harsh environments which make it unrealistic to replace the batteries. Due to 

inherent resource and computing constraints, mobile security presents the most challenging task in 

designing secure routing protocols for WSNs. 

There some security requirements which are typically studied in WSNs: confidentiality, integrity, 

authentication and availability [6]. The order in which these security requirements are studied is 

important, because it reflects the significance that researchers place on them in achieving and 

supporting security. Studying the security requirements based on their importance will allow 

researchers to gain a better understanding of the security aspects that they should focus on.  

The availability and reliability are the most important security requirements in critical WSN 

applications. Availability refers to the fact that the services and information can be accessed at the time 

that they are required. This means that the network must provide reliable service to ensure that the data 

will be transmitted to the destination accurately. Availability is the basic requirements relative to other 

security attributes. That is to say the availability and reliability are placed at a higher rank in the 

security requirements chain for the reason that if sensor nodes get disabled or cannot exchange 

packets, any other security requirements that have been established will make no sense [7]. 

The use of dynamic routing can diminish the effect of security attacks that target the availability and 

resilience of the network. Regular data aggregation in WSNs is the operation whereby sensor nodes 

collect and transfer the data to the sink node. The aggregation typically follows a tree topology rooted 

at the sink. Each leaf node (sensor node) will deliver the data to its parent node until it reaches the sink. 

Dynamic Routing with data aggregation aims to find the optimum network topology for minimum 

energy consumption and maximum network lifetime in order to bypass some failed nodes which may 

have been attacked by an adversary and establish a reliable route to deliver the data [8]. Combined with the 

in-network processing, WSN keeps the cability of flexibility when it suffers attacks from adversaries. 

All of the above support and maintain the availability of the network and the provided services. 

In our previous work [9], we have included aggregation cost in [10,11] as another dimension to the 

space of routing optimization for correlated data, which is a multi-objective problem. Combined with 
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the Pareto method, a heuristic algorithm based on discrete particle swarm optimization (DPSO) is 

designed to find approximate solutions for it. Compared with [9], the major contributions of this study 

can be summarized as follows: 

(1)  Like [9], we also adopt the same strategy of discrete particle swarm optimization with crossover 

and mutation operators. We adopt the Purfer encoding scheme and design uniform crossover and 

random two-point exchange mutation operators to avoid generating infeasible solutions. 

(2)  We apply a phenotype sharing function of the objective space in our algorithm for the 

establishment of reliable routes (similar to the approach in [9]). Since it is a multi-objective 

optimization, a fitness function based on the phenotype sharing is designed considering both 

the Pareto dominance and the neighborhood density of the objective space. The algorithm 

based on the phenotype sharing function obtains a better approximation of a true Pareto front. 

(3)  Different from [9], in order to declare the validity of encoding scheme, we prove that the Prufer 

sequence can satisfy well the principles of non-redundancy, completeness and soundness. 

Therefore it can not only reduce the redundancy of the search space, but also improve the 

search efficiency, and thereby enhance the performance of the algorithm. 

(4)  For achieving more Pareto feasible solutions and improving the convergence speed, we further 

introduce the penalty function to convert the constrained optimization problem into a  

non-constrained one. The fitness function based on penalty mechanism is proposed. We also 

extend the analysis about the effect of penalty function on the optimal problem. We have 

conduct comprehensive comparisons with four different penalty functions to study the 

performance of penalty function in DPSO. 

The rest of this paper is organized as follows: in Section 2, the related work is presented. In Section 3, 

the system model and problem formulation are described in detail, and then we present our proposed 

methodology and strategy in Section 4. In Section 5, we compare our algorithm with other algorithms 

and evaluate their performance. Finally, concluding remarks are made in Section 6. 

2. Related Work 

Energy consumption is an essential factor as the nodes which are battery operated devices and not 

rechargeable energy ones fail easily due to the energy depletion. Therefore, energy consumption 

becomes a primary concern in most WSN applications. A WSN protocol should typically ensure that 

connectivity in a network is maintained, even in the presence of node failure (e.g., due to some security 

attack or other reason like energy depletion). In the existing literature, a number of issues relating to 

routing design and security issues have been reviewed. 

Energy-efficient routing algorithms for data gathering are a major concern in WSNs. Routing tree 

structures are adopted in many previous works [10,12–15] to collect data: a sensor node transmits its 

data and the data from its child nodes to its parent node. In [12], the authors considered the problem of 

correlated data gathering by a network with a sink node and a tree-based communication structure, and 

proved that minimum-energy data gathering problem is NP-complete and declared that the optimal 

result is between Shortest Path Tree (SPT) and Traveling Salesman Problem (TSP). In [13], the 

authors proposed an optimal algorithm called MEGA for foreign-coding and an approximate algorithm 
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called LEGA for self-coding. In MEGA, all nodes firstly send their gathered data to the sink node via 

the Minimum Spanning Tree (MST) and then each encoding node sends its respective encoded data to 

the sink node through the SPT rooted at the sink. In LEGA, the sink node broadcasts its packet to its 

neighbor nodes and each node sends its data to the sink node by the constructed Shallow Light Tree 

(SLT). By constructing the SLT, LEGA achieves a 2(1+ 2 )-approximation of the optimal data 

gathering route. Khan et al. [14] proposed a scheme, called NNT, which was a variant of using greedy 

algorithm to construct a minimum Steiner tree. NNT builds a slightly suboptimal tree with low energy 

complexity, and it is proved that NNT can be used to design a simple dynamic algorithm for 

maintaining a low-cost spanning tree. 

However, these above literatures only pay attention to transmission cost in building the routing tree, 

and neglect the cost of aggregating correlated data. In some practical applications, such as image 

aggregation, the aggregation cost may be greater than the transmission cost [16]. Therefore, in addition 

to transmission cost, aggregation costs can significantly affect routing decisions when data aggregation 

is involved. Luo et al. [10] put forward the MFST algorithm, which was applied to collect data with 

aggregation by an energy-efficient method in WSNs. MFST takes both transmission cost and 

aggregation cost into account, and chooses aggregation nodes based on the quantity of data generated 

by each node. Luo et al. [15] further proposed an improved MFST algorithm called AFST. AFST 

dynamically decides whether to proceed with data aggregation when each relay node transmits data, 

rather than merely optimizing the data transmission route. 

3. System Model and Problem Formulation 

3.1. Network Model 

In this paper, we consider a wireless sensor network composed of n nodes which are distributed 

uniformly and randomly in the areas of monitored regions as shown in Figure 1. Since the typical 

mode of communication in data aggregation involves multiple data source nodes and one sink  

node [17], without lost of generality we assume there are k (k ≤≤ n) source nodes and one sink node. 

Node u can receive the data from node v if node u is within the communication range of node v; 

otherwise, they have to communicate with each other through multi-hop wireless links [18,19]. We 

model a WSN as an undirected graph G(V,E), where V is a finite set of sensor nodes, and E is defined 

as the wireless connection between nodes [20–24]. 

Figure 1. Network model diagrams. 
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3.2. Correlation and Data Aggregation 

As mentioned previously, data from multiple child nodes along the routing tree can be aggregated 

in order to reduce the communication load of network. The aggregation process is an essential data 

compression process and the compression ratio is related to data correlation and redundancy. Due to 

the uncertainty of the ratio in different application scenarios [7], we use an abstract parameter ρ to 

denote the data reduction ratio due to aggregation. To be more specific, if node u is a child node of 

node v in the constructed routing tree and u transmits its data to v, we can summarize the aggregation 

function at node v as:  

( ) ( ) ( )( )( )1 uv uvv u v xω ω ϖ ρ= + −  (1)

where ( )vϖ  and ( )vω  denote the data amount of node v before and after aggregation respectively, and 

{ }0,1uvx ∈  denotes whether aggregation process occurs between node u and node v. That is to say, if 

node v is an aggregation point, the data amount of v after aggregating income data of node u is 
( ) ( ) ( )( )( )1 uvv u vω ω ϖ ρ= + − ; otherwise, ( ) ( ) ( )( )v u vω ω ϖ= + . 

3.3. Energy Model 

Here, we will jointly consider two aspects of costs: communication cost and aggregation cost. We 

will use the following radio communication model [25,26] to calculate the energy consumption for 

sending and receiving data. The energy model can be respectively represented by the Formula (2) and 

Formula (3): 

( ) ( ) ( )2,T uvE u v d uα β ω= + ∗ ×  (2)

( ) ( ),RE u v uα ω= ×  (3)

where α is the energy consumed by each sending node to send each bit of data, or each receiving node 

to receive each bit of data. β is the energy consumption in the amplification circuit for forwarding each 

bit of data. duv is the distance between node u and node v. ( )uω  is the data amount transmitted from 

node u, so for edge e = (u, v), the communication cost ( )t e  of edge e is given by: 

( ) ( ) ( )22uv uvt e d uα β ω= + × ×  (4)

Here we discuss two node types: aggregation points and non-aggregation points. If node v is a  

non-aggregation point, it will merely consume energy to transmit data and receive data; if not, it 

should further consume energy to aggregate its own data and the data from its child nodes. That is to 

say, besides communication cost, in this paper we also include an aggregation cost model which is 

presented in [8]. We use Equation (5) to represent the cost for fusing the data of node u and v:  

( ) ( ) ( )( )uvf e q u vω ϖ= × +  (5) 

where q indicates average unit aggregation cost and it is dependent on the type of data to be  

aggregated and data correlation. ( )uω  and ( )vϖ  are data amount from u and v own data amount  

before aggregation. 
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3.4. Lifetime Model 

Network lifetime [27] is concerned with the period in which the network can maintain its desired 

functionality. It can be defined as the time till the first node in the network dies, called nodal lifetime; 

or it can also be defined as the time till a certain proportion of the nodes die. We will use the former 

definition as sensor network lifetime in the subsequent discussions in the rest of this paper. 
For each sensor node in the network, its energy consumption may involve many factors. For 

simplicity, here we neglect the impact of other secondary factors and only attach importance to three 

main factors: transmitting data, receiving data and aggregating data. Therefore for an undirected graph 

G(V,E), the nodal lifetime of node v(v∈V) can be described as follows: 

( ) ( )
, r

T R

E v
l G v

f E E
=

+ +  
 (6)

where Er(v) indicates residual energy of node v. TE , RE  and f  are the energy of node v used to 

transmit data, receive data and aggregate data if it is a aggregation point. According to previous 

description, a network ends up with the first node depleting its energy, so we can easily formulate 

network lifetime as follows [28,29]: 

( ) ( )min ,
v V

l G l G v
∈

=  (7)

From the above formulas, it can be obviously seen what kinds of factors are significant to the 

uneven energy consumption issue, which can help us to explore a more effective algorithm to extend 

network lifetime in the right direction. 

3.5. Problem Formulation 

Given an undirected graph G(V,E), source node set S and sink node t, we assume 'G  is a connected 

subgraph of G and energy consumption of 'G  is given by: 

( ) ( ) ( )( ) ( )
' '

'
f ne E e E

E G f e t e t e
∈ ∈

= + + 
 

(8)

' fE  is an edge set where the end node of each edge is an aggregation point. 'nE  is an edge set where 

the end node of each edge is a non-aggregation point. 
Our first objective is to find a near-optimal subgraph *G  that at least contains node set S and sink 

node t such that: 

( )*
'arg min 'GG E G=

 (9)

It has been shown that the aforementioned problem is NP-hard [8]. Without considering the 

imbalance of energy consumption, the constructed routing tree may result in premature death of some 

nodes, energy hole problems [30] and so on. On the basis of (9), we further consider the remaining 

nodal energy and dynamically adjust the routing strategy to balance nodal energy, effectively 

prolonging network lifetime, so our second goal is to find a feasible subgragh 'G  considering nodal 

remaining energy such that: 
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( )min 'E G  

( )max 'l G  

( ) ( )*. . 's t E G E Gε≤  

(10) 

Notice that ε(epsilon) denotes maximal permissible times of energy consumption of 'G  to *G  and it 

is a variant that is set by us. Similar to the problem of finding an optimal subgraph *G , the above 

problem is also a NP-hard multi-objective optimization problem. 

4. Algorithm 

4.1. Basic Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based search problem where each particle is 

defined as a potential solution to a problem in a D-dimensional space. With the ith particle represented 

as Xi = (Xi1, Xi2,…,XiD), each particle adjusts its position to close to the minimum according to its own 

experience and that of neighboring particles. Each particle also maintains a memory (pbest) of its 

previous best position represented as pi = (pi1, pi2,…, piD) and a velocity along each dimension 

represented as Vi = (Vi1, Vi2,…,ViD). In each generation, the pbest vector of the particle with the best 

fitness in the local neighborhood is designated as pgd. In each generation of early PSO versions, the 

particles are manipulated according to the following equation: 

( ) ( )1
1 1 2 2      t t t t

id id id id gd idv w v c r p x c r p x+ = × + − + −  (11)

1 1t t t
id id idx x v+ += +  (12)

where t is the iteration index, d is the number of dimensions, w is inertia weight, c1 and c2 are 

acceleration factors, r1 and r2 are random numbers in the range [0…1]. 

4.2. Discrete Particle Swarm Optimization 

Since the previously mentioned optimization objectives are NP-hard discrete problems, it is obvious 

that the standard PSO is not appropriate for those above problems for its continuous nature, so some 

modifications must be done to improve the standard PSO. Since the PSO algorithm was proposed by 

Kennedy et al. in 1995, several discrete PSO algorithms have been proposed, including the discrete 

PSO algorithm [31], the discrete PSO algorithm for the traveling salesman problem [32], the discrete 

PSO algorithm for the permutation flow shop sequencing problem with makespan criteria [33]. 

Inspired by our previous work [6], a discrete PSO is designed here to achieve the two optimization 

objectives mentioned above. Moreover, the problem (10) is also a complex nonlinear constrained 

optimization problem, so in this paper the penalty function combined with the phenotype sharing 

function is introduced to convert it to a non-constrained optimization problem and applied in the 

definition of fitness function. 
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4.2.1. Representation of Particles 

Due to robustness of the PSO algorithm, it does not demand rigorous representation of particles. A 

good representation can not only reduce the redundancy of the search space, but also improve the 

search efficiency, and thereby enhance the performance of the algorithm. Generally speaking, the 

selection of particle representation should comprehensively consider the following three main 

principles: non-redundancy, completeness and soundness. 

Definition 1 (Non-redundancy): A one-to-one relationship between the particles in the encoding 

space and the potential solution in the problem space. 

Definition 2 (Completeness): Each point in the problem space (feasible solution) can become the 

phenotype of points in the particles’ encoding space. 

Definition 3 (Soundness): Each particle in the encoding space must correspond to a potential 

solution in the problem space. 

It is well known that it is difficult for an encoding scheme to meet all three principles above. In this 

paper, as our target is to construct an efficient routing tree structure, we adopt the Prufer sequence  

in [34] to represent a labeled tree T whose vertexes are numbered from 1 to n. We can easily construct 

the Prufer sequence according to the following procedure: 

Procedure: Encoding 

Step 1: Let j be the smallest labeled leaf vertex in the T. 

Step 2: Set k to be the first digit in the Prufer sequence if k is incident to j. 

Step 3: Remove j and the edge which connects j and k from T. 

Step 4: Repeat above steps until only one edge is left and produce the Prufer sequence in order. 

Procedure: Decoding 

Step 1: Let P be a Prufer sequence and Q be the set of all vertexes not included in P. 

Step 2: Let j be the vertex with smallest label in Q and k be the leftmost digit in P. Add the edge 

connecting j and k into the tree. Remove j from Q and k from P. If k does not occur 

anywhere in Q, put it into Q. 

Step 3: Repeat above steps till no digit is left in P. 

Step 4: If no digits remain in P, there are exactly two vertexes in Q. Add the edge connecting 

remaining vertexes into the tree. 

An example is given to illustrate above encoding and decoding procedures. The Prufer sequence 

corresponds to a tree on an 8-vertex complete graph which can be seen in Figure 2. 

Figure 2. A tree and its Prufer sequence. 
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Properties: The Prufer sequence that represents a spanning tree of a complete graph can satisfy the 

principles of non-redundancy and completeness, but does not meet the principle of soundness. 

Proof: Assuming that T represents a spanning tree of an n-vertex complete graph and A represents a 

non-leaf node of T. Since A is at least connected with two different nodes, the label of A must have 

appeared in the corresponding Prufer sequence when only one edge remains in the T. In reverse, the 

numbers, which appear in the Prufer sequence finally, are obviously not the leaf nodes of T, while the 

other numbers are the leaf nodes of T. Assuming that B represents the smallest number which has not 

appeared in the Prufer sequence, thus B is the leaf node which is incident to leftmost labeled vertex in 

the Prufer sequence. Then, we recursively consider following n-3 numbers and connect the remaining 

two vertexes finally. As the number of nodes not processed the rest of the code length by 2, we can 

always find out a smallest number which has not appeared in the remaining number of coding. Thus, 

any Prufer sequence can uniquely correspond to an unrooted tree. So the Prufer sequence can satisfy 

the principle of non-redundancy. 

One of the classical theorems in graphical enumeration is Cayley’s theorem which states that there 

are n(n−2) distinct labeled trees for a complete graph with n vertices. The Prufer sequence can use 

only a permutation of n−2 digits in order to uniquely represent a tree with n vertices where each digit 

is an integer between 1 and n inclusively. Moreover, we have already proved that any Prufer sequence 

can uniquely correspond to an unrooted tree, thus Prufer sequence with n−2 digits can totally 

represents n(n−2) distinct labeled trees. So the Prufer sequence can satisfy the principle of completeness. 

However, the problem (10) is a nonlinear constrained optimization problem, and there are some 

particles which may correspond to infeasible solutions, such as the actual energy consumption of some 

route trees after decoding may exceed the energy consumption constraint. So here the Prufer sequence 

cannot satisfy the principle of soundness. 

To meet the principle of soundness, the penalty function combined with the phenotype sharing 

function is introduced to convert the nonlinear constrained optimization problem to a non-constrained 

one and applied in the definition of fitness function to ensure that all particles are feasible. And it will 

be elaborated in detail in subsequent sections. 

4.2.2. Discrete Procedure of PSO 

The notion of mutation operator in GA [35,36] is incorporated into the first part of Equation (11): 

1
11

1
1

( ),
( , )

, otherwise

t
it t

i i t
i

M X r w
A F X w

X

−
−

−

 <= = 


 (13)

where F1 indicates the mutation operator with the probability of w. The second and third parts of 

Equation (11) all adopted the notion of crossover operator in GA: 

2 1

12

( ),
( , )

, otherwise

t
p it t

i i t
i

C A r c
B F A c

A

 <= = 


 (14)

3 2

23

( ),
( , )

, otherwise

t
g it t

i i t
i

C B r c
X F B c

B

 <= = 


 (15)
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where F2 and F3 indicate the crossover operators with the probability of c1 and c2 respectively. Then 

the position of the i-th particle at iteration t can be updated as follows: 
1

1 1 23 2( ( ( , ), ), )t t
i iX F F F X w c c−=  (16)

Though there are different crossover and mutation operators for different encoding schemes, in this 

paper we adopt the random two-point exchange mutation operator and the random sub-fragment 

exchange crossover operator for the Prufer sequence. The random two-point exchange mutation 

method is often used in several kinds of problems. As shown in Figure 3, two random exchange points 

are firstly selected from a particle, and then an exchange between corresponding values in two points 

will be made. 

Figure 3. Illustration of mutation operation. 

 

Similarly, the random sub-fragment exchange crossover firstly also selects two random points, and 

then exchanges corresponding values between two points from one parent particle to the other one. 

The operation is illustrated in Figure 4. 

Figure 4. Illustration of crossover operation. 

 

4.2.3. Fitness Function 

The mutation and crossover operators can not only preferably maintain the population diversity, but 

also make offspring population maintain the preferable characteristics. As in nature, the difficulty of 

DPSO is to provide the possible driving mechanism for better individuals to survive. 
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Evaluation is to associate each individual with a fitness value that reflects how good it is based 

upon its achievement of the objectives. The higher the fitness value of an individual is, the higher its 

chances of survival, reproduction and its representation in the subsequent generation are. 

As the problem (9) is a single-objective optimization one, we just use the energy consumed by the 

constructed tree, namely Equation (8), to evaluate relative merits of each particle, but the problem (10) 

is a multi-objective optimization one, so we cannot merely use single objective value like energy or 

lifetime to evaluate the particle. To our knowledge, there are a lot of methods to deal with  

multi-objective optimization problems such as the weighted-sum method, the compromise approach 

method, the utility-function method and so on. In this paper, the phenotype sharing function with 

Pareto conception [37] is adopted to comprehensively compute the fitness of the particle: 

Definition 4 (Pareto Dominance): A vector v = (v1, v2, …, vn) is said to dominate u = (u1, u2, , un) 

(denoted by u v ) if { } { }1,2, , , 1,2, ,i i i ii n u v i n u v∀ ∈ ≤ ∧ ∃ ∈ <… … ， . Based on Definition 4, a feasible 

solution v is said to be non-dominated with respect to the set Ω, if there does not exist another u∈Ω 

such that u v . Furthermore, the feasible solutions that are non-dominated within the entire search 

space are called the Pareto optimal solutions. In this paper we call the particle i j  when there 

satisfies that: 

( )( ) ( )( )l tree i l tree j≥
 

( )( ) ( )( )E tree i E tree j≤
 

( )( ) ( )( ) ( )( ) ( )( ) 0E tree i E tree j l tree i l tree j− + − ≠  

(17) 

where tree(i) represents the route tree structure decoded from the particle i. 

Definition 5 (Target Distance fdij): fdij is the distance between the two particles i and j. Supposed 

that the distance has m dimensions which are noted as f1dij, f2dij, …, fmdij respectively, and: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 2 , .i j i j i j
ij ij ij m ij m mfd f d f d f d f x f x f x f x f x f x i j= + + + = − + − + + − ≠   (18)

Definition 6 (Dominance Measure D(i)): D(i) denotes the state of domination the i-th particle with 

respect to the current population, and: 

( ) ( )
1

,
p

j

D i nd i j
=

=
 

(19)

where nd(i,j) equals to one if particle j dominates particle i, and zero otherwise. 

Definition 7 (Sharing Function sh(fdij)): 

( ) 1,

0,
ij s

ij

if fd
sh fd

otherwise

σ≤
= 
  

(20)

where σs is a sharing parameter. 

Definition 8 (The Neighbor Density Measure N(i)): N(i) associated with particle i is defined as: 

( ) ( )
1

p

ij
j

N i sh fd
=

= (21)
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Definition 9 (Fitness Function F(i)): The fitness of a given particle F(i) can be defined as follows: 

( ) ( )( ) ( )( )1 1F i D i N i= + × +  (22)

However, problem (10) is more than a nonlinear constrained multi-objective optimization problem. 

The actual energy consumption of some particles after decoding may exceed the energy consumption 

constraint, so here we further introduce the penalty function combined with the phenotype sharing 

function to convert it into a non-constrained one. 

Definition 10 (Penalty Function P(i, Q)): ( , ) = 	 ( ) + 	 × ( ), where × ( )	is a penalty 

item and Q is a penalty factor whose limit is ∞. The penalty function method is a widely used and 

effective optimization method. Its basic idea is to greatly punish those iteration points which attempt to 

violate constraints during the process of solving the constrained optimization problem, thus converting 

the constrained one to the non-constrained one. Due to the energy consumption constraint, in this 

paper we further combine the penalty function to evaluate the merits of particles. In order to achieve 

more Pareto feasible solutions and improve the convergence speed, here we propose four different  

penalty functions, indicated as follows, which are all constructed by the additional method and have  

different effect. 

Penalty Function 1 (P1): In this penalty function, as shown in Equation (23), the penalty factor  

is a 2-based exponential function, whose index is the ratio between the current solution (energy 

consumption of the particle) and the feasible solution (maximal permissible energy consumption). 

While T(i) and S(i) are both set as F(i). The more the obtained solution deviates from a  

feasible solution, the greater the degree of punishment will be. It grows exponentially with the 

intensity deviation: 

( ) ( ) ( )' 1 2 pfF i F i= + ×
 (23)

where ( ) ( ) ( )T i F i S i= = , 2pfQ = , 
( )
( )*

'E G
pf

E Gε

 
 =
  

. 

Penalty Function 2 (P2): In this penalty function, as shown in Equation (24), we directly select the 

difference between the current solution and the feasible solution as the penalty item when energy 

consumption exceeds the constraint, while T(i) is set as F(i): 

( ) 2' ( ) [max( ,0)]F i F i pf= +  (24)

where 2( ) [max( ,0)]S i pf= , ( ) ( )*'pf E G E Gε= −  and ( ) ( )T i F i= . 

Penalty Function 3 (P3): In this penalty function, as shown in Equation (25), the penalty factor is a 

quadratic function, whose cardinal number is the ratio between the current solution and the feasible 

solution. T(i) and S(i) are both set as F(i). Compared to P1, the growth trend of this kind of punishment 

is relatively stable with the degree of deviation: 

( ) ( ) ( )2' 1F i pf F i= + ×
 (25)

where ( ) ( ) ( )T i F i S i= = , 2Q pf= , 
( )
( )*

'E G
pf

E Gε

 
 =
  

. 
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Penalty Function 4 (P4): This penalty function, as shown in Equation (26), takes a logarithmic 

function method to construct the penalty factor. T(i) and S(i) are both set as F(i). What the difference 

between the P1 and P3 is the extent of punishment. The punishment to the particle grows slowly by the 

deviation of the current solution: 

( ) ( ) ( )' 1 ln(1 )F i pf F i= + + ×
 (26)

where ( ) ( )T i F i= , ( ) ( )S i F i= , ln(1 )Q pf= + and 
( )
( )*

'E G
pf

E Gε

 
 =
  

. 

Although the energy consumption of some particles after decoding exceeds the permitted range, 

they may carry some optimal information. Instead of eliminating particles that violate the constraints 

before the next iteration, the penalty-based fitness function retains these particles in order to give  

them some opportunities to have their optimal information inherited in later iterations. Thus, the  

penalty-based fitness function not only evaluates the merits of particles, but also has part of optimal 

information carried by particles preserved to allow populations to maintain a high diversity. 

The value of Equations (23)–(26) may be multi-value during the search process of multi-objective 

PSO, and particles often possess more than one global best value and personal best value which are 

preserved in an external archive in general. A proper mechanism of choosing leader particles can help 

find more Pareto solutions in shorter time, so it is important to decide how to choose the leader 

particles to direct the movement of particles. In order to avoid the external archive from growing too 

big, we adopt ε-dominance [38] to reduce the external archive. 

4.3. Algorithm Overview 

Our proposed algorithm consists of Procedure1 and Procedure 2. In Procedure 1, we propose the 

DPSO algorithm where the notions of mutation and crossover operators in genetic algorithm are 

incorporated. The integration can not only keep the diversity of population, but also make offspring 

population maintain preferable characteristics.  

Procedure 1: DPSO Algorithm for Near-optimal Subgraph G* 

Step1: Initialize network, swarm and relative parameters; 
Step2: Iteration = 1; 
Step3: Get particle Xit by operations of Mutation, SelfCross and SocialCross; 
Step4: Construct routing tree by particle Xit and compute energy consumption; 
Step5: Update pbesti and gbesti if necessary; 
Step6: Iteration++; 
Step7: If iteration < iterationMax, go to Step3; 
Step8: Output results E(G*). 

In the Procedure 2, we further take into account the nodal remaining energy combined with the 

output result E(G*) from Procedure 1. Since it is a multi-objective optimization problem, we design 

the fitness function with the phenotype sharing function. Moreover, with the purpose of achieving 

more Pareto feasible solutions and improving the convergence speed, we introduce the penalty function 

to transform the constrained optimization problem into solving unconstrained optimization problems. 
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Procedure 2: DPSO Algorithm for Optimizing Network Lifetime by Applying E(G*) 

Step1: Initialize network, swarm and relative parameters from the Procedure 1 output result.  
Step2: Runtime = 1; 
Step3: Select leader particles; 
Step4: Iteration = 1; 
Step5: Get particle Xit by operations of Mutation, SelfCross and SocialCross; 
Step6: Compute the fitness of particle Xit by using the phenotype sharing function and the  

penalty function; 
Step7: Update leader particles; 
Step8: Iteration++; 
Step9: If iteration < iterationMax, go to step5; 
Step10: Randomly select a Pareto solution to compute each node’s residual energy; 
Step11: Runtime++; 
Step12: If runtime < runtimeMax, go to step3; 
Step13: Output results; 

Lemma 1: Assume that popsize is the number of particles, and each particle's length is n. We  

set the PSO maximum generation number eval as the convergent indicator. During each round of  

the PSO iteration, the maximum number of iterations is R. The complexity of the algorithm in the 

experiment Ι is ( × ( 	 + 	 ) × ) . In experiment II, we can conclude the 

complexity is ( × ( 	 + 	 × 	 	 + 	 × × 2). 
Proof: In experiment Ι, the PSO algorithm conducted several rounds of iteration. The maximum 

number of iterations is R. In each round of the PSO iteration, the maximum number of iterations is eval. 

The complexity of decoding particles is O(nlogn). Therefore, by combining the results of two iterations it 

can be drawn the last time that the final complexity is ( × ( 	 + 	 ) × ) . In 

experiment II, the fitness function of the particles is changed. In each PSO iteration, the algorithm adds 

the way of choosing the optimal particle, so the time complexity is also changed this way. The time 

complexity of each round of the PSO iteration is 	 × ( ( ) + 2	 + ×
, so the total complexity is × 	+	 ×	 	+	 × × 2. 

5. Experimental Study 

In this section, the performances of the improved discrete PSO method applied to network 

optimization in the aspects of energy and lifetime are observed through lots of simulations, which are 

implemented in MATLAB. We compare the proposed algorithms with other previous tree routing 

algorithms, such as SPT, MST, SLT and Greed Steiner, with respect to several metrics. 

Without lost of generality, we generate 50 sensor nodes randomly distributed in a 50 m × 50 m 

region with k source nodes and one sink node. We initialize each relative parameter as listed in  

Table 1. 
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Table 1. Parameter table. 

Symbol Definition Value 

σs 
A sharing parameter whose dimensions  

equal to the number of objectives 
[0.01 0.01] 

α The energy consumed by sending each bit of data 50 nJ/bit 

β 
The energy consumption in the amplification  

circuit for forwarding each bit of data 
100 pJ/bit/m2 

w0 The data amount sent by each source node 400 bit 
rs The correlation range 50 m 

ρ 
The correlation coefficient between  

two nodes in an approximated spatial model 

ρ = 1 − d/rs while  
d < rs, ρ = 0 

otherwise 
rc The maximum communication range of each sensor node From 15 m to 50 m 
n Number of nodes 50 
k Number of source nodes 7 and 15 
q Average unit aggregation cost 20 nJ/bit and 80 nJ/bit 

ε(epsilon) Maximal permissible times of energy consumption of 'G  to *G  From 1 to 1.5 
E_r The initial energy of each relaying node 2 mJ 

5.1. Route Constructure in Consideration of Energy Consumption 

In this simulation, we consider how to construct an optimal routing tree with respect to minimum 

energy consumption. Firstly, we set k to be 7, rc to be 20 m and q to be 80 nJ/bit to simulate a network, 

and the tree structures derived by SPT, MST, SLT, Greed Steiner and our algorithm are shown in 

Figure 5. In each picture, the red solid square, black solid circles and hollow circles respectively 

represent the sink node, source nodes and other relay nodes. Data aggregation occurs where 

information streams intersect. 

From Figure 5, our algorithm outperforms STL, MST and SLT, which few nodes participate in the 

connection of network in the sense that it improves the utilization ratio of the network. What is more, 

the edges formed in the network are obviously less than in the results of other algorithms. All these 

contribute to reducing the communication energy, improving the network stability and effectively 

extending the network lifetime.  

Figure 5. Routing tree structures. 
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Figure 5. Cont. 

(c) MST (d) SLT 

(e) Greed Steiner (f) Our algorithm 

However, the routing structure of our algorithm is slightly different from the one derived by Greed 

Steiner, because Greed Steiner obtains the global optimal solution through the local optimal solution. 

What distinguishes our algorithm is that it maintains excellent global optimization ability. The detail of 

the relation can be seen in Figures 6 and 7. 

In Figure 6, we set k to be 7 and q to be 20 nJ/bit and 80 nJ/bit respectively. By varying rc from  

15 m to 50 m, we can control the connectivity of the network. In Figure 7, we change network structure 

with k to be set to 15 and q set to 20 nJ/bit and 80 nJ/bit respectively. The results are as follows: 

Figure 6. Impact of rc to energy consumption when k = 7. 
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Figure 7. Impact of rc to energy consumption when k = 15. 

(a) q = 20 nJ/bit (b) q = 80 nJ/bit 

Without considering aggregation cost in the process of tree construction, the energy consumption of 

Greed Steiner is still relatively high. As expected, our algorithm almost outperforms all other 

algorithms in different communication ranges. It can adapt itself to a variety of situations. In contrast 

to other algorithms, our algorithm can dynamically change route selection and decide to select which 

nodes to perform data aggregation according to different network structures and average unit 

aggregation costs, and it can effectively trade off multi-hop relay benefiting from high data reduction 

ratio and single-hop transmission benefiting from less unit aggregation cost. 

5.2. Route Constructure in Consideration of a Trade-off between Energy Consumption and Lifetime 

In this simulation, we further consider nodal remaining energy. We fix rc to 50 m, and set k to be  

7 and q to be 20 nJ/bit and 80 nJ/bit respectively. 

Figure 8. Pareto Front when ε = 1.5. 
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Then, in order to achieve better Pareto optimal solutions, we further conduct experiments under four 

different penalty functions proposed in this paper. The experimental results are shown in Table 2 as 

follows. The table shows the number of the feasible solution we can get under the iteration in the case 

of 100, 300 and 500, when using different penalty functions and the value of ε changing from 1.1 to 1.8. 

Table 2. The number of Pareto optimal solutions obtained by four different penalty functions. 

 
ε = 1.1 ε = 1.2 ε = 1.3 ε = 1.4 

100 300 500 100 300 500 100 300 500 100 300 500 

P1 5.61 5.65 5.87 5.82 5.82 5.95 5.38 5.61 5.88 5.61 5.78 6.10 
P2 4.17 4.88 4.89 4.32 4.56 5.00 4.16 4.61 5.03 4.41 4.51 5.23 
P3 5.23 5.73 5.82 5.54 5.86 5.88 5.43 5.71 5.95 5.36 6.02 6.11 
P4 5.16 5.49 6.65 5.64 5.80 5.96 5.31 6.21 6.22 5.58 5.75 6.26 

 
ε = 1.5 ε = 1.6 ε = 1.7 ε = 1.8 

100 300 500 100 300 500 100 300 500 100 300 500 

P1 5.83 5.90 6.11 5.65 5.80 6.01 5.71 5.85 5.96 5.66 5.72 5.95 
P2 4.43 4.66 5.40 4.48 4.74 4.86 4.33 4.55 4.80 4.37 4.68 4.69 
P3 5.73 6.09 6.13 5.64 5.85 6.03 5.77 5.86 5.90 5.64 5.81 5.86 
P4 5.50 5.63 6.35 5.62 5.68 5.78 5.54 5.80 5.99 5.63 5.77 5.97 

According to the experimental results shown in Table 2, we can see that in different iterations, the 

four different penalty functions exhibit different effects. After a relatively small number of iterations, 

for example, 100 times, the use of penalty function P1 can give more feasible solutions. As the number 

of iterations increases, P3 and P4 begin to gradually show better results. After 300 and 500 iterations, 

respectively, P3 and P4 achieve the most feasible solutions. The results illustrate well that in a 

relatively small number of iterations, in order to converge as soon as possible, we maximize the degree 

of punishment for the particles’ constraint violations. With the increase of the number of iterations, we 

should also take into account the optimal information carried by these particles, so the more the 

number of iteration increases, the smaller the intensity of the punishment is. 

Figure 9. Impact of ε on network lifetime. 

(a) q = 20 nJ/bit (b) q = 80 nJ/bit 
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We can also see that when the value of ε is 1.5, the number of the feasible solutions is the greatest. 

This occurs because as the ε value is too big, the energy consumption constraint relaxes, and the 

lifetime becomes smaller. The Pareto solution requires minimal energy consumption and maximized 

lifetime. Furthermore, we study the impact of ε on the performance of our algorithm. By varying ε 

from 1 to 1.5, we can observe the change of network lifetime obviously. As shown in Figure 9, with 

the increase of ε, the network lifetime becomes longer. 

As we see, a small increase of ε may lead to a huge lifetime extension. We further compare our 

algorithm with others. As shown in Figure 10, with the increase of ε, the lifetime ratio of our algorithm 

to other algorithms increases drastically. These algorithms include not only SPT, MST, SLT and Greed 

Steiner, but also our algorithm adopted in the first simulation. While other algorithms use consistent 

nodes throughout to transmit or aggregate data, despite the fact that some nodes possess little energy 

and other nodes have vast energy remaining, resulting in some nodes’ premature death, our algorithm 

can adjust itself to select an optimal route which can balance the total energy consumption and nodal 

remaining energy, effectively extending the network lifetime. 

Figure 10. Lifetime ratio of our algorithm to other algorithms. 

(a) q = 20 nJ/bit (b) q = 80 nJ/bit 
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In this paper, we mainly describe the impact of the energy and lifetime in WSNs on the 
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additional aspects of performance regarding other security requirements while constructing route 

structures, such as delay and fault-tolerant ability.  
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