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Abstract: In this paper, we review recent advances in on-chip sensors integrated with 

microfluidics for biological applications. Since the 1990s, much research has concentrated 

on developing a sensing system using optical phenomena such as surface plasmon 

resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity 

of the device. The sensing performance can be significantly enhanced with the use of 

microfluidic chips to provide effective liquid manipulation and greater flexibility. We 

describe an optical image sensor with a simpler platform for better performance over a 

larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review 

consumer electronics such as smart phones, tablets, Google glasses, etc. which are being 

incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the 

current optical sensing system integrated with a microfluidic chip. 
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1. Introduction 

Microfluidics has great potential to develop miniaturized systems for modern biology and chemistry 

by providing the ability to effectively control and measure small amounts of samples due to a need for 

high-throughput systems. In the conventional way in chemistry, most of the research has been 

performed in various glassware at milliliter scale for separation, reaction, and synthesis, which results 

OPEN ACCESS



Sensors 2014, 14 17009 
 

 

in increased formation of products and lower yield, compared to a miniaturized system [1–4]. 

Therefore, the microfluidic approaches have been more attractive than their macroscale counterparts. 

Due to the advancements in manipulation of fluids in channels, with dimensions of tens to hundreds of 

micrometers, microfluidic systems, now more than ever, have the potential to provide a number of 

useful capabilities: the ability to manipulate reagent and sample volumes ranging from nano- to  

pico-liters range; to create higher degree of control for separations and detections; and to enable low 

cost and short time for analysis [5–7]. Therefore, the integration of a sensor in a microfluidic device 

can have great potential in developing total analysis systems for various applications such as the 

analysis of DNA, cells, and protein.  

One of the most useful optical approaches consists of measuring refractive index changes by surface 

plasmon resonance (SPR) phenomenon [8]. Since the 1990s, optical sensors based on the SPR 

phenomenon have been seen as a useful technology thanks to their ability to detect sensitively 

variation in the refractive index caused by interactions on a thin metal surface [9]. SPR is an 

electromagnetic wave, propagating along the interface between dielectric and metallic materials by 

means of a charge density oscillation when satisfying a set of experimental conditions such as the 

thickness of metal film, the wavelength and the angle of an excitation light. An evanescent wave is 

also generated on the surface of dielectric material, linking the positively and negatively charged 

regions [10]. In general, the configuration of an SPR sensor consists of a glass prism coated with a 

metallic thin film [11]. When light is induced onto the metallic thin film, the charge density oscillation 

occurs by coupling between the excited light and the film, resulting in decreasing reflected light at a 

certain incident angle of the light.  

Over the past few years, surface-enhanced Raman spectroscopy (SERS) has increased researchers’ 

interest in developing sensing systems for molecular detection and recognition because of its high 

sensitivity. Intense signal amplification can be achieved when the molecules are immobilized on a 

metallic nanostructure. In addition, SERS reveals a spectral fingerprint for specific molecules since 

each molecule produces its own spectral signal [12,13]. SERS can be generated when light illuminates 

the nanostructure and the light is scattered from the nanostructures, which can be detected with an 

amplified intensity signal. Therefore, SERS can provide chemical and structural information on 

molecules without labeling target reagents [14]. This is one of the major reasons why there has been 

extensive research involving SERS in the fields of physical and analytical chemistry [15–18]. Another 

advantage of SERS is that structural information of molecules can be identified from a sample 

solution, which enables the SERS-based detection system to be useful in various analytical chemistry 

applications. The growth of nanotechnology has produced various nanostructures modified as probes 

to enhance the intensity signal and allow a highly sensitive response to small target materials [19]. As 

a result, the modification of nanostructures has been an important issue in SERS studies [10]. Recent 

progress has been made in designing an efficient system for transport of sample molecules to 

nanostructures and modifying the nanostructures to increase sensitivity thus realizing an optimized 

SERS-based detection system [20]. In this system, a simple microfluidic channel for a delivery of 

reagent is integrated on a flat silver surface and a 633 nm laser is illuminated through nanoholes on the 

silver surface which yields significant light amplification for SERS signal.  

Optical imaging means using light to capture the data of an object’s physical properties [21]. The 

ability to image nano/micro-sized structures and provide real-time and high-resolution physical 
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information on samples makes optical imaging very useful in many biological applications (especially 

in diagnosis of diseases) and nanotechnology [22]. Although nano-scale imaging is very important in 

biology and nanotechnology, the conventional optical bright-field microscopy has limitations in terms 

of resolution and contrast because of the diffraction of light. Current techniques for overcoming these 

problems include electron microscopy, transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM) [23]. Furthermore, to enhance image resolution, super-resolution optical techniques 

such as structured illumination microscopy and photo-activated localization microscopy (PALM) have 

been invented [24,25]. However, the conventional techniques suffer from complexity, high cost, and 

low throughput caused by small FOV and DOF. Hence, high throughput and the ability to detect  

nano-sized structure are desired. Additionally, recent academic interest has focused on developing 

more compact and miniaturized optical imaging devices for on-chip applications as this reduces the 

cost considerably and enables portability [26–30]. Currently, several approaches are being studied in 

order to achieve simple, compact, cost-efficient imaging sensors and overcome limitations in resolution, 

FOV and DOF. The in-line based lens-free integrated on-chip microscope [31–35] and on-chip 

fluorescent detection system [36–40] have proven to be promising approaches. Their ability to 

miniaturize a conventional optical system with maintained or improved performance is expected to 

have applications mainly in on-chip point-of-care or on-chip microscopic systems. 

In the current age of consumer electronics (e.g., smart phones, tablets, Google glasses), new trends 

in point-of-care (POC) are expected to be based on a combination of microfluidics and consumer 

electronics for  simplified readout, probably only electronic readouts, to eliminate the need for any 

imaging or optical equipment that would normally require advanced laboratory instruments. Driven by 

the massive numbers of mobile phone users, this fast evolving trend will change the way POC, 

including imaging, biosensing and diagnostics, is used [41]. 

Here, we review the recent progress made in terms of sensing technologies in microfluidic chips for 

various applications. First, we describe plasmonic-based technologies such as SPR and SERS 

integrated with microfluidic chips. Recent optical sensing technologies are reviewed for lensless 

microscopy and fluorescent detection system using CCD. Next, we discuss a new trend of sensing 

technologies based on the smart phone in POC. Finally, we describe a future trend of sensing 

technologies in biological applications. 

2. Sensor Based on Plasmonics with Microfluidics 

2.1. Surface Plasmon Resonance Sensor 

The new design concept based on SPR beyond the conventional Kretschmann configuration [42] is 

the transmission of collinear light beams to a specially designed geometry, which allows for simple 

optical components and cost-effective design, as shown in Figure 1 [43]. It is capable of performing 

massive multi-sensing for high-throughput systems. The capability can be significantly improved by 

integrating a microfluidic device in the sensing system because, in the microfluidic system, various 

liquid handling techniques have already been developed for a concentration gradient through the 

mixing of different reagents and can be easily adapted to the SPR sensor by means of collinear 

transmission. Many platforms considered previously, such as conventional LSPR and nanohole array 
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sensors, pose a significant challenge because of broad spectral line widths, which can cause damping 

effect and absorption loss in a metal nanostructure [44–47]. Therefore, spectral signal shaping is 

critical for better performance of the sensors. In order to overcome the technical challenge, Gao and 

colleagues devised a novel approach based on optical interferometry for an array of circular shaped 

nanostructures [43]. The main advantage of the SPR system is that the spectral signal shape can be 

tuned by controlling the nanostructure to optimize the system. As a result, the sensitivity of the sensor 

is significantly increased up to 0.4 pg/mm2, which is comparable to a commercial SPR instrument  

(0.1 pg/ mm2). Additionally, a high FOM value of 146 was realized with the intensity detection method 

by varying the refractive index on the surface of the sensing area. The FOM is defined as ( / )/ . 

There is potential to increase the capability of sensitivity by tuning the sensing structure. Hence, an 

intensity-based sensing strategy for the interferometric device, based on SPR with CCD imaging 

technique to enable a miniaturized high-throughput system for point-of-care applications, has been realized.  

Figure 1. (a) Schematic of the interferometer. The interferometer consists of a 300 nm 

gold film with a nanoaperture surrounded by groove patterns onto a glass slide. (b) Side 

view and working principle. The groove patterns act as an efficient surface plasmonic wave 

coupler and then focus them to the central aperture (Reproduced with permission from [43]). 

 

Practical understanding of reagent transport in a microfluidic channel is developed to determine 

how a biosensor system based on sensing surface reaction behaves by scaling the channel dimensions. 

Recently, the applicability of this scaling behavior was evidenced by decreasing the channel height for 

SPR sensor with the detection of ssDNA as shown in Figure 2 [48]. There have been efforts to find an 

optimized geometrical dimension of microfluidic channel on an affinity-based SPR sensor. Two 

parameters, channel aspect ratio (η = / ) and mass transfer Peclet number structure, play a major 

role. The Peclet number is defined as Pe = / , where Q is volumetric flow rate, W is the width of 

the sensing chamber, and D is the diffusion coefficient of molecules. Both the experiment and the 

numerical simulation were conducted with the assumption Pe > η, and a scaling behavior of analyte 

flux (J) was demonstrated as ≈  with constant volumetric flow rate and ≈  with constant 
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average fluid velocity. As a result, reducing the channel height from 47 μm to 7 μm significantly 

improved the sensitivity by a factor of four. 

Figure 2. (a) The flow cells are fabricated on CR-39 substrate where 600 μm holes were 

drilled for a fluidic input and output. The top layer is then sealed by an SU-8 gasket to the 

sensing surface. The sensor chip is optically matched to a coupling prism with the  

gold-film. (b) Geometry of the sensing chamber for a delivery of ssDNA oligometers. 

Capture probes (biotinylated 20-mer ssDNA oligomers) are immobilized on the gold film 

which acts as the sensing surface (Reproduced with permission from [48]). 

 

Localized Surface Plasmon Resonance (LSPR) is another resonance phenomenon of waves 

localized in a metal nanostructure such as nanoparticles or nanowires that are small with respect to the 

wavelength of the optical wave [49]. Unlike an SPR based on a metal film, an LSPR of metal 

nanostructures has a distinction which means localized fields are tightly confined into the 

nanostructure, resulting in strongly enhanced fields [50–52]. The resonance condition of LSPR is also 

sensitive to the refractive index changes of the surrounding liquid medium on the sensing surface and 

the biological binding events on the metallic nanostructure [53]. The LSPR sensor has advantages as a 

detection system because of its high sensitivity and no pretreatment of sample for an enhanced 

detection is needed to allow fast qualitative discrimination of enantiomers. Gold nanoparticles and 

nanorods have been used as sensing material and the characteristics of gold nanorods were investigated 

by controlling the density of nanorods in a microchannel [54]. Recent work reported on LSPR sensors 

used single nanoparticle tracking to measure a peak shift based on a dark field microscope to allow for 

a multi-sensing platform. In addition, a normalization technique has been developed to avoid variations 

between particles in LSPR signals to realize a single nanoparticle sensor [55]. Generally, the LSPR 

sensor has been used to detect binding events [56], molecular reactions [57], and conformational 

changes [58]. Instead of chromatographic techniques that have typically been used for the analysis of 

chiral compounds, Guo and colleagues verified a biosensor integrated with microfluidic device using 

the LSPR to selectively recognize enantiomers of chiral compounds as shown in Figure 3 [59]. They 

achieved the first LSPR sensor on a microfluidic device where dense gold nanorods were formed on a 

self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) inside the microfluidic channel 

walls for promising drug–protein interactions. The preformed self-assembled monolayer on the surface 

of microfluidic channel allows for a simple approach to deposit the nanorods by attractive forces 

between them. The microfluidic channel was fabricated on a glass substrate where light passing 

through an optical fiber was induced into the channel for LSPR by a tungsten halogen light source and 

the LSPR signal was detected by a UV spectrometer. To form the gold nanorods on the surface of the 
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channel, the self-assembled monolayers of APTES were immobilized. After that, the solution of gold 

nanorods was injected into the channel and incubated for five hours. The LSPR signal was detected by 

measuring the peak shift at resonance condition before and after binding events. As a result, a highly 

selective sensor was developed for an RS-melagatran with concentration ranging from 0.9 nM to  

150 nM, whereas 10,000-fold amounts of SR-melagatran presented, which can interfere with the 

detection of RS-melagatran. The proposed method can be applied other enantiomers by modified 

receptors on the sensing material. 

Figure 3. (a) Schematic of the LSPR sensing system with the microfluidic device 

fabricated on the glass substrate. The top image shows an assembled LSPR sensor chip and 

the bottom three glass slices with through holes and a fluidic channel. (b) Scanning 

electron microscopy (SEM) image of gold nanorods on the inner wall of the fluidic 

channel. The particle density is estimated to be ~324 particles/μm2 based on 15 SEM 

images (Reproduced with permission from [59]).  

 

Recently, one of the practical applications was demonstrated in the detection of reactive oxygen 

species (ROS) caused by cigarette smoke on an electrophoresis device using the LSPR as shown in 

Figure 4 [60].  

Figure 4. Schematic of the detection system with high sensitivity enhanced by LSPR. The 

DCHF are loaded into a sample inlet and the ROS is trapped from puffs of cigarette smoke 

mainstream. The generated DCF is quantified using the microfluidic electrophoresis 

system after the trapping process. A laser-induced fluorescence (LIF) detection system is 

used to detect fluorescent signal (Reproduced with permission from [60]).  

 

(a) (b)
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Detecting ROS in cigarette smoke conventionally requires a large amount of cigarette smoke and 

takes tens of minutes. The integration of a microfluidic chip for electrophoresis in the sensing system 

can be useful for minimizing sample consumption and saving time. Sensitive determination of reactive 

oxygen species in cigarette smoke using microchip electrophoresis-localized surface plasmon 

resonance enhances fluorescence detection. The working principle is to measure a fluorescence 

intensity variation enhanced by LSPR when fluorophores get close to metallic nanoparticles which lead 

to changed spectral signals [61]. The sensitivity of the signal depends on the size,  

shape, and formation of nanoparticles [62]. Therefore, optimal sensitivity can be achieved thanks  

to nanoparticle properties. The electrophoresis device was used to quantify ROS by detecting 

dichlorofluorescein (DCF) produced by the reaction between dichlorodihydrofluorescein (DCHF) and 

ROS. Polyacrylonitrile (PAN) nanofibers coated with DCHF were used to facilitate the ROS trapping 

efficiency. A detection system integrated with an electrophoresis device increased the fluorescent 

signal threefold. A highly sensitive detection system was thus demonstrated and the limit of detection 

for DCF solution was 5.5 × 10−11M.  

For better resolution in terms of microscopic techniques, a new technique called Surface Plasmon 

Resonance Imaging (SPRi) has evolved, which is used to quantify binding affinities and concentrations 

for various target molecules [63,64]. SPRi is a high-throughput optical detection approach similar to 

the SPR in principle, and senses multiple interaction spots at once by using a parallel detector such as a 

CCD camera [65]. Because of a refractive index change on the sensing surface caused by binding 

events, reflected light intensity is changed, resulting in different intensity of reflected light at sensing 

spots. Observing change in the intensity of the reflected light through an image captured by a CCD 

camera permits spatial monitoring of binding events.  

Recently, SPR imaging has been used as an attractive sensing platform for simultaneous  

multi-reagent recognition and quantification of binding events because of the demand for a  

high-throughput system [65–67]. Despite the promising SPR phenomenon in conventional 

configurations, the challenge of multiple reagent or ligand detection remains since the SPR signal 

measurement should be repeated, which can be a labor-intensive process [68]. Generally, microarrays 

are functionalized to capture reagents or ligands on metallic sensing surfaces. For example, a sample 

solution can be introduced into the microarray to allow biological binding events on the sensing 

surface in which light is illuminated to excite the SPR. The SPR signal is very sensitive to refractive 

index changes caused by binding events on the microarray. The reflected light intensity from the 

microarray will be decreased as much as the excitation of SPR, resulting in different spatial intensity. 

Thus, the captured images of the sensing surface can be analyzed to monitor the surface binding events 

in real time, which allows for highly sensitive detection systems [69]. Intensity-based SPR imaging 

recognition has been widely used as microarrays can have very high density of sensing spots, which 

enable high-throughput experiments. Recent advances in SPR imaging systems have been described by 

Lee and colleagues, who report full spectral imaging with 50 microfluidic channels capable of 

analyzing multiple detections on large nanohole arrays [68]. As shown in Figure 5, the microfluidic 

channels are bonded to the sensor, and then the tungsten halogen lamp is shone on the sensing surface 

to excite SPR. The transmitted light is introduced into a 50 μm wide slit and spectrally dispersed by a 

grating. The reflected light from the grating and imaging mirror is recorded on the CCD camera in real 

time. The spectral resolution of the proposed SPR imaging system is 7.7 × 10−6 RIU. As a result, 
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spectral images are highly uniform over all channels which isolate sample solutions without  

cross-contamination. As proof of concept, binding reaction between cholera toxin b subunit (CTX-b) 

and ganglioside (GM1) was performed and the calculated limit of detection was 8.4 nM, which is 

comparable to the minimum concentration of other spectral peak shift detection systems.  

Figure 5. (a) Schematic of SPR imaging setup using nanohole arrays and parallel 

microfluidic channels. (b) Sample date measured by a captured CCD image. Spectral 

signal along a horizontal line on the sensing area shows the transmission spectrum for a 

single microfluidic channel (Reproduced with permission from [68]). 

 

Current commercial instruments lack multiple detections because they have only a single fluid flow 

channel. One of the main advantages of the SPR imaging technique is its ability to detect various 

reagents or ligands simultaneously with high sensitivity [70]. To avoid time-consuming and  

labor-intensive experiments in binding events, an SPR imaging system with a microfluidic array has 

been used to generate output signals in a high throughput fashion [71–73]. The integrated microfluidic 

device will allow for manipulation of fluid effectively and quickly to create a concentration gradient on 

a sensing surface. To address this concern, a microfluidic array was integrated with an SPR imaging 

system by Ouellet and colleagues, who reported that a device consisting of 264 chambers with 700 pL 

reaction volume isolated by 1132 microvalves is capable of investigating 264 different samples in a 

single experiment, as shown in Figure 6 [65]. This microfluidic device is used to generate six different 

concentrations via a serial dilution channel network. The valves integrated in the microfluidic device 

consist of two layers; the top layer is a flow channel and the bottom one is a control channel to deflect 

thin membranes in both upward and downward directions pneumatically. The system showed detection 

of human α-thrombin on the sensing surface immobilized with anti-human α -thrombin IgG. The 

sensing surface of the array of 25 × 25 mm and 12.6 μL/h was used as a volumetric flow rate to 

decrease reagent consumption. The serial dilution network was designed and tested with 45 mM 

fluorescein for the different concentrations where a 1:1 mixing ratio was successfully obtained at each 
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junction, resulting in relative standard deviation of 0.092. Dissociation constant (Kd) equal to  

5.0 ±1.9 nM was achieved and the value is comparable to a commercial product.  

Figure 6. (a) Real image of the microfluidic device on a glass slide with gold patterns as a 

sensing surface. The inset shows a close-up region of the microarrays. (b) Top: Dilution 

channel network for a chaotic advection micromixer between 45 mM fluorescein and 

ddH2O, Bottom: image of fluorescent intensity to show six different concentrations of the 

fluorescein generated by the dilution network (Reproduced with permission from [65]). 

 

Figure 7. (a) The conventional configuration for SPR imaging system. A collimated laser 

beam (λ = 625nm) is passed through a prism and illuminated on the gold spots. The 

reflected beam is collected by a digital imaging device. All binding events on the gold spot 

in the microfluidic channel are monitored in real-time. (b) Image of the microfluidic device 

in which valves and channels are integrated. To visualize the valves and channels, a food 

color dye is injected (Reproduced with permission from [67]).  

 

Luo and colleagues used SPR imaging techniques to develop a microscale platform for binding 

events as shown in Figure 7 [67]. The binding events between antibody and antigen were monitored on 

an SPR imaging setup for about 10 min. The microfluidic device integrated consisted of two layers to 

control a sample reagent as described above. The two sets of channels fabricated were 100 μm wide 

and ~10 μm high, to allow four sets of the same experiment for the immunoassay. As a sensing 

material, a circular-shaped gold pattern array was used with a diameter of 250 μm and a thickness of 

~50 μm which was exposed to sample reagents for binding reactions. All liquid flows were pumped by 

pressure generated by nitrogen gas. For SPR imaging, the prism-based Kretschmann configuration was 

(a) (b)

(a) (b)
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employed and an HeNe laser (λ = 625 nm) p-polarized was shone on the sensing surface. Afterwards, 

the reflected laser beam was detected by a digital imaging device. To test the binding events between 

biotin-BSA and anti-biotin Ab a single-step binding was realized on the setup in 10 min and the 

performance of the system with a sub-nanomolar detection limit was demonstrated. In two-step 

binding, a signal amplification was achieved by using gold nanoparticles conjugated with anti-goat 

IgG antibody. As a result, the enhanced limit of detection was brought down to ~40 pM.  

2.2. Surface-Enhanced Raman Scattering Sensor 

There are two conventional methods for combining SERS systems with a microfluidic device: one 

is to manipulate nanostructures in liquid samples, and the other is to define the SERS sensing region 

by using nanostructures [74]. Despite its huge potential, it is difficult to achieve uniform mixing of 

samples through a sensing region. To overcome the technical challenge, research has focused on 

microfluidic platforms which can enable uniform mixing of samples and form well-controlled 

aggregation of nanostructures to detect target samples [75]. A droplet-based microfluidic device has 

also been used for online SERS signal detection for high throughput systems [76]. An important SERS 

advance recently reported on-demand creation of SERS sensing spots using a microfluidic device 

where an alternating current was applied to allow metallic nanostructures to be concentrated for 

dynamic and highly sensitive spectral signal detection [77]. In the dynamic and active SERS platform, 

the aggregation of metal nanoparticles can be easily controlled, which provides the high sensitivity 

since the nanoparticles act as the SERS signal enhancers. For the platform, a conventional SERS 

sensing system is used and the microfluidic device is fabricated with a glass slide coated by a 

photoconductive layer which can produce virtual electrode patterns on the region of interest, as shown 

in Figure 8. Only a single 5 mW HeNe laser source was used both to create the SERS signal and to 

concentrate nanostructures at the region of interest with a small amount of sample volume. The 

working principle is to manipulate particles and fluids with an optically induced electric field [78]. The 

most common method for electrokinetic motion is an optoelectronic tweezer (OET) device constructed 

with a photoconductive layer on a plate electrode. When a laser beam illuminates the photoconductive 

layer, the current can be generated creating a non-uniform electric field in a chamber to control the 

particles or fluids. The non-uniform electric field can exert forces to concentrate particles or  

fluids [79,80]. The frequency of the applied electric field was investigated from 100 kHz to 100 Hz 

with fluorescence intensity of rhodamine 6G. It was found that the fluorescent intensity of rhodamine 

6G decreased with decreasing frequency. Although the mechanism of this phenomenon is not clear, the 

intensity change was not significant at 100 kHz. When the gold nanoparticles were concentrated in the 

sensing region by applying 20 Vpp at 100 kHz, an increased SERS signal was observed. For practical 

applications, a target sample of 250 μM adenine was detected on the SERS system. With a  

well-controlled active SERS system, the highly sensitive detection system was demonstrated 

successfully. It requires a small amount of sample volume (~500 nL) without operating components 

such as a microvalve or micropump.  
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Figure 8. Schematic of the OET-based SERS sensing system, allowing on-demand 

generation of SERS-active sites and in situ measurement of the enhanced SERS signal 

(Reproduced with permission from [78]). 

 

Recently, new silver nanoparticles on nanowalls were synthesized in a microfluidic channel to 

enhance the sensitivity of the SERS signal significantly, as shown in Figure 9 [81]. To fabricate the 

silver nanoparticles-deposited nanowall structures, an electrodeposition method and silver galvanic 

replacement reaction method were used for copper-core/carbon-sheath nanowalls and for silver 

nanoparticles, respectively. The sensitivity was affected by several factors: (1) large surface area of 

silver particles on nanowalls for effective absorption; (2) many nanocavities caused by nanowalls for 

surface plasmon coupling with the incident laser; and (3) “hot spot” chemical effect [81,82]. To verify 

the performance of the novel nanostructure for the SERS signal, crystal violet was employed as a 

model compound and an Ag-ion laser illuminated the sample. The enhancement factor for the SERS 

signal in the given system was calculated to be 1.1 ×109. The factor is given by the following equation: EF = //   

where, ISERS and INR are the intensity of SERS and the intensity on a substrate, respectively and CSERS 

and CNR are the concentration of molecules contributing these intensities, respectively. As a result, an 

ultra-sensitive SERS-based system was achieved successfully with the microfluidic device.  

Figure 9. (a) The image of silver nanoparticles decorated on the copper-core/carbon-sheath 

nanowalls (b) The image of microfluidic device with three electrodes (counter, working, 

and reference electrodes that are ordered from left to right) to synthesize the nanostructures 

on the working electrode by the electrodeposition method. A constant potential of – 2.7 V 

is applied to the working electrode against reference electrode for 60 s. The counter 

electrode is used to allow a current to flow (Reproduced with permission from [81]).  

 

(a) (b)
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A microfluidic device for generating a concentration gradient with gold nanospheres and microarray 

wells demonstrated advanced progress in terms of the SERS sensing system, as shown in Figure 10.  

It can produce a simple and reproducible platform for cancer biomarkers in a high throughput fashion 

without a manual dilution process. For proof of concept, an alpha-fetoprotein (AFP) marker was 

detected quantitatively. In addition, the total analysis time was under 60 min and the limit of detection 

of 1 ng/mL was obtained for rabbit AFP antigen on the proposed SERS based system [83]. Another 

important application for SERS was reported by Choi and colleagues, who demonstrated a very useful 

technique for two different types of DNA oligomer at the same time [84]. In DNA analysis, 

polymerase chain Reaction (PCR) is typically required to amplify the DNA because of very low 

concentration. To detect the amplified DNA samples, an optical method such as fluorescent or 

chemiluminescent detection has been used. However, the SERS system developed does not need any 

amplification and enables the detection of various DNA oligomer mixtures simultaneously. Therefore, 

the system has great potential for use as an analytical tool for detection of multiplex DNA.  

Figure 10. (a) Microfluidic channel for mixing of (1) DNA oligomer mixtures and  

(2) silver nanoparticles. The (3) groove structure is designed to increase the efficiency of 

the mixing on the microfluidic channel and SERS signal is detected in the (4) downstream 

region (b) SERS signal coming from DNA oligomer on silver nanoparticles when hot spots 

are generated between them (Reproduced with permission from [83]).  

 

3. On-Chip Optical Image Sensor 

3.1. In-Line Holography Based on Optical Lensless Microscopy 

Removing the lens in microscopy, and then using holography and pixel super-resolution to 

construct images could achieve a simpler platform with better performance over larger FOV and DOF. 

Limitations in diffraction and resolution are the greatest challenge concerning performance of 

conventional optical microscopy and could be overcome with a lensless optical imaging technique, 

holography and pixel super-resolution. Holography is constructing image using scattering and 

interference of light and pixel super-resolution is the technique of enhancing optical image which has 

limitation in resolution (low resolution images) by combining multiple pictures. 

Illumination of incoherent or partially coherent light is scattered by the presence of a sample, and 

unscattered light is detected by sensory array. With the received optical information, hologram images 

are constructed by converting phase information to intensity oscillation. Multiple hologram images are 

(a) (b)
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taken and merged together to improve the image of the sample. This approach could provide an image 

of a sub-100 nm sized nanoparticle or virus with a large FOV, >20 mm2, and simple platform [31]. 

Furthermore, the integration of a microfluidic channel could provide real-time detection. In 2010, 

Mudanyali and colleagues demonstrated a lens-free on-chip imaging device as shown in Figure 11 for 

telemedicine application. The device weighed 46 g with dimensions of 4.2 cm × 4.2 cm × 5.8 cm and 

could achieve 1–2	μm resolution (about a 10-fold improvement compared with a lens imaging device). 

First, LED was used as a source of incoherent light and the light was initially filtered to pass through a 

large pinhole of 50–100	μm diameter. Use of LED as light source could suppress coherent speckle 

noise and additionally, the hole had eliminated the need of coupling and focusing of light [31]. Then, 

the light was propagated in air over a distance of 3 to 4 cm and interacted with the sample. The 

presence of the sample induced scattering, absorption and refraction of light depending on the physical 

property of the sample (for example, size, 3D morphology and refractive index). The interference of 

the light waves had further propagated through the sample with unscattered light propagated and 

created a hologram of the sample by CMOS sensor array.  

Figure 11. (a) A lensless on-chip microscope based on holography powered by USB 

connection which utilized LED sources and CMOS sensor array. (b) Schematics of the 

microscopy. The size of the hole is 50 to 100 μm and it is 3 to 4 cm above the sample. This 

allowed to cover FOV of ~24 mm2 (Reproduced with permission from [31]). 

 

The device was able to provide images of various cells and particles such as blood cells, platelets, 

focused-ion beam (FIB) fabricated objects, and 3, 7 and 10	μm polystyrene particles. Furthermore, the 

hologram image could be reconstructed via differential interference contrast microscopy (DIC) to 

provide a clearer image of the sample. In DIC microscopy, a thin birefringent crystal was placed 

between two cross-polarizers and two waves were generated which were spaced 1.1 μm and polarized 

orthogonally. Two waves had generated two holograms which consequently creating a new hologram 

as they were interfere at the sensor plane. Consequently, a new hologram is generated. Its FOV was  

24 mm2 when bench-top optical microscopes had an FOV of 4 mm2 with a 10× objective lens; 

therefore a new platform could capture an image of larger volume. Moreover, it was a lensless 

platform which used a CMOS imager chip for a simpler and more cost-effective approach in 

biomedical sensing [32]. A digital hologram of cells provides a simple cell signature which varies 

slowly with time and position and is very useful in cell tracking. A demonstration of the tracking 

motion of 3T3 cells over 20 h on ECM-coated hydrogel plate was performed (sampling period was  
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one minute) in high temperature and humidity conditions [32]. It was shown that more stiffness causes 

more motility of cells and the death of cells causes loss of tracking. Because of the short distance 

between the sample and light source (pinhole or aperture), the device could achieve greater FOV and 

throughput and was simpler and cheaper to make. Moreover, the shorter sample-to-sensor distance 

increased the light collection efficiency and allowed sub-pixel resolution imaging.   

Figure 12. An image (left) and a schematic image (right) of the field-portable lensless 

tomographic microscope. It weight ~110 g which employed 24 LEDs  as light source and 

the LEDs were mounted along arc structure for providing images at different angle (~50°). 

It could achieve resolution of < 7 μm which can cover ~20 mm2 (Reproduced with 

permission from [33]). 

 

Another type of on-chip Lens-free microscope, a portable lensless tomographic microscope device, 

was developed by Isikman and colleagues, as shown in Figure 12 [33]. The device can achieve 

comparably enhanced 3D resolution, sub-micron resolution (<7 μm) with an FOV of 20 mm2 and DOF 

of 1 mm. Because the device employs varying illumination angles for tomographic imaging (allowing 

imaging sections of sample by different angle of illumination), it is possible to capture multiple digital 

in-line holograms of the sample and achieve electromagnetic actuation for pixel super-resolution to 

improve the lateral resolution of lensless holograms. In the experiment, 24 LEDs of coherent light 

source were used and each LED was coupled with an array of optical fibers (the diameter of each 

optical fiber was 0.1 mm and thus no focusing lens was required). The optical fibers were connected to 

a plastic bridge with neodymium magnets at both ends and electro-coils were mounted to shift the 

optical fibers along both x and y directions by electromagnetic actuation of magnets. As the fibers 

were shifted to a new position, new 2D holograms were captured by the sensor array under the sample 

tray. At different fiber angles, multiple images were taken and digitally reconstructed to create 

projection images of the samples. Then the images were merged together to compute tomograms of the 

samples. The device has high-throughput with long DOV (1–4 mm) and wide FOV (20 mm2) and it 

can reconstruct holographic projection at any depth; additionally, tomograms can be computed without 

introducing spatial errors. Hence 3D imaging of any area within the DOV was achieved, demonstrated 

by imaging a multilayer chamber (separated by 1 mm) composed of 10		μm size beads and imaging a 

40		μm Hymenolepis nana egg. In order to do pixel super-resolution tomographic imaging of thick 

layers, extra signal processing was required and in the demonstration a newly developed algorithm was 

used to calculate the given depth of the layer. Consequently, the device provided images of samples at 

different depths. The results of demonstration showed that the device could achieve large FOV (by 
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placing a LED far from the sample) and increase spatial resolution without reducing FOV. Moreover, 

pixel super-resolution and computed tomography improved the lateral resolution of lensless 

microscopy significantly. Also, the possibility of integrating the device with a microfluidic platform 

which carries samples into the device could enable real-time imaging and detection (2D images could 

be taken as the samples flow within the microfluidic channel and reconstruct high-resolution 

holograms).  

Figure 13. (a) Schematic image of on-chip lensless microscopy with nanolenses. The 

distance from light source to sample is 8–12 cm and the light source can move 300 μm 

along the plane which could cover area of ~20.5 mm2 (b) SEM image of nanolenses with 

(top) and without (bottom) nanolense (Reproduced with permission from [34]).  

 

Furthermore, a new approach for achieving large FOV lens-free on-chip microscopy by employing 

self-assembled nanolenses as shown in Figure 13 was developed for wide-field nanoparticle imaging. 

Implementing self-assembled nanolenses in nanoparticle imaging could achieve compact, cost-efficient 

and high-throughput platforms and detection of sub-100 nm nanoparticles across FOV of > 20 mm2 by 

improving SNR and contrast over large FOV (not by enhancing spatial resolution). Integration of two 

techniques, self-assembled liquid nanolenses and on-chip lensless computational microscopy, is the 

key to progress. In spite of using nanolenses, the overall concept of the device relied on lensless  

on-chip microscopes because the nanolenses were not for focusing light but they were installed on 

each pixel of the sensor array. Nanolenses are biocompatible buffers and are mainly used for spatial 

phase masking to improve lensless diffraction and prevent aggregation of nanoparticles [34]. Before 

the use of liquid nanolenses, the effect of wetting film on the performance of lensless on-chip 

microscopes was studied and demonstration proved that wetting film enhances SNR and contrast 

significantly because wet-thin film could reduce noise. In this system, nanoparticles were mixed with 

buffer solution, 0.1 M Tris-HCl and 19% PEG 600, then nanolense were formed around sample 

particles by applying mechanical vibration for creating and the performance of the approach was tested 

by improced imaged of improved images of E. coli, Giardia lamblia trophozoites and human  

RBCs [35]. The same buffer was used for liquid nanolenses, but treated with plasma for creating 

nanolenses around sample particles, with pixel super-resolution (implemented by source shifting) in a 

later demonstration. A quasi-monochromatic fiber-coupled light source was used to illuminate the 

sample 8 to 12 cm away from the plate and pixel super-resolution was achieved by shifting the position 

(a) (b)
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of the light source. This allowed imaging of the H1N1 virus and sub-100 nm adenovirus which had 

greater SNR and contrast than ×100 oil-immersion objective lens microscopy over 20.5 mm2 FOV. 

Lensless optical microscopy based on holography is expected to be applied in telemedicine since it is 

cost-efficient, simple, and gives better performance over a larger volume. Nevertheless, it suffers from 

high SNR because of weak scattering of sub-micron cells. Also, it has low selectivity which means it 

cannot be directly used in on-chip fluorescence imaging. 

3.2. CCD Sensor for Fluorescent Detection 

An on-chip fluorescent detection device enabling high-throughput imaging of whole blood  

by structured illumination, as shown in Figure 14, was developed by Arpali and colleagues [37]. A 

whole-blood sample was injected into a microfluidic chip (maximum volume 0.3 to 0.7 mL), on an 

optoelectronic sensory array which was then scanned by a digital spatial light modulator (generating a 

2D array of Gaussian excitation spots). A lens-free fluorescent image of the sample was captured at 

each spot and as a result a sequence of 144 images was constructed from the same sample (the images 

were merged digitally to enhance the SNR and contrast to construct better image). The approach was 

demonstrated by imaging an undiluted whole-blood sample. A large microfluidic channel (22 mm ×  

32 mm ×0.4 mm) was placed on an optical fiber faceplate [38] (composed of many optical fibers) 

coupled to a sensor array (CMOS or CCD) and fluorescent dyed samples in the channel were excited 

through structure illumination setup (light generated by SLM). The structured illumination used lenses 

to cover the large area and SLM generated 28 × 21 Gaussian spots. Then, 36 × 36 SLM pixels were 

assigned to each Gaussian spot for imaging (the size of each pixel was 19	μm). As a result, both the 

structure illumination setup and sensory array could cover a large imaging area of 7 to 18 cm2 [31]. To 

evaluate the approach, two different images, each using different illumination systems, were taken. One 

image was taken by plane wave illumination and another by structured illumination and they were 

compared. The images taken by structured illumination showed hidden fluorescent dyes at flow rates 

ranging from 50 particles/mL to 1500 particles/mL. The result showed that the fluorescent detection 

platform with a structured illumination system could achieve more sensitive and accurate detection at 

high flow rates even with whole-blood samples. In conventional fluorescent detection, a large volume of 

whole blood cannot be used (it is limited to less than 0.2 to 0.3	μL) because of the high-scattering and 

absorbent nature of whole blood and the limitations of DOV and FOV. Therefore this new approach with 

larger volume accessibility is a good solution to the current challenges in fluorescent detection.  

A new fluorescent detection mechanism was developed by Balsam and colleagues using 

micromachined optical Söller collimators with a CCD sensor array, as shown in Figure 15 [40]. A 

collimator is an optical element which can be used in uniform spatial distribution of light and it filters 

a beam of parallel rays by allowing light to pass in a specific direction; as a result, the blurriness of the 

image is removed. A Söller collimator is a sheet of acrylic opaque material with tiny holes which allow 

rays parallel to the hole and is used for aligning incoming light. Using a Söller collimator instead of a 

lens allowed filtering of fluorescent emission (by filter) by imaging the decoupling of the sensor array 

and the surface, and enabled separation of the microfluidic channel from the sensor array. Consequently, 

fluorescent detection can be achieved by using a simple, low-cost, low-power, compact and portable 

but multifunctional device. 
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Figure 14. Schematic image of high-throughput on-chip fluorescent detection platform. 

CCD, structured illumination array is integrated together for generating image of 

fluorescent sample in microfluidic chip size of ~22 × 32 × 0.4 mm. This could capture  

144 lensfree images within 36s (Reproduced with permission from [37]).  

 

Figure 15. (A) Photograph of elements of on-chip fluorescent detection platform using 

Söller collimators. (B) Schematic image of elements of device. The image 1 is the main 

element which contained multi-wavelength LEDs. Image 2 and 5 are filters (blue and green 

emission filter respectively), and image 4 and 6 are light collimators. The microfluidic 

channels were shown in image 3 and 7 is the CCD camera. (C) Photograph of assembled 

device (Reproduced with permission from [40]).  

 

As described in Figure 15, illumination of RGB LEDs excited fluorescent dye in a 16-well-like 

microfluidic device after passing through an excitation filter. The emitted fluorescent light traveled 

through two stages of Söller collimator (removing unwanted rays which can create blurry images) and 

was recorded by a CCD sensor array [33]. Demonstration of the device was done through detection of 

botulinum toxic activity by means of a FRET-based peptide assay for observing activity of the  

BoTN-A light chain. A sample of 10 μM BoTN-A bound with FITC fluorescent was prepared and 

diluted for demonstration (from 0.0195 to 20 nM). A minimum of 1.25 nM could be detected. With a 

Söller collimator, the use of an interchangeable filter and sample were enabled because of the 

separation of the CCD and microfluidic chip; additionally, the emitted fluorescent light was directed 

towards the CCD, which minimized undesirable scattering of light. A low-cost and simple platform 
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with high selectivity and sensitivity as well as the ability to detect large volume is one of the 

advantages of the on-chip fluorescent detection system. However, the need for sample preparation 

increases the operating time and some approaches, such as Söller collimator-integrated fluorescence 

detection, require more time in order to muster sufficient intensity for detection and need to manage 

background noise carefully. 

4. Imaging, Biosensing and Diagnostics Based on Smart Phone Platform  

4.1. Microscope Based on Smart Phone 

Tseng and colleagues designed a customized add-on component which can be attached to the 

camera of the cellphone, as illustrated by Figure 16 [85]. The aim of this study was to realize lens-free 

digital microscopy with a cellphone by means of partially coherent digital in-line holography and to 

offer a cost-effective tool for telemedicine applications without any lenses, lasers or other bulky optical 

components. As the LED source is far away from the sample plate (~4 cm) and the relatively large size 

of the aperture (~100 µm), it means that partially coherent holography of the sample is generated and 

recorded by the cellphone. Based on the image processing algorithms, microscopic images can be 

reconstructed from diffraction patterns. Therefore, by taking holograph pictures and image processing 

software, they successfully imaged variously sized micro-particles, as well as micro-sized cells and 

bacteria. They reported a lens-free microscopy with a sub-pixel resolution of ~1.5–2 µm on a 

cellphone camera with ~2.2 µm pixel size at the CMOS sensor. Moreover, the reconstruction of the 

microscopic image can be done in a central hospital with powerful GPU. Therefore, the end-users only 

need to take pictures with their cellphones and send them to the hospital for image processing and 

analysis. Because of the restricted size of the camera pixels, the resolution of the reconstructed 

microscopy images is limited. 

As mentioned previously, because of the pixel-size limitation of lens-free on-chip microscopy, the 

spatial resolution is restricted. Greenbaum and colleagues proposed a mechanism to circumvent this 

restriction by employing pixel-super-resolution techniques to synthesize a smaller effective pixel 

compared with the actual one [86]. Pixel-super-resolution techniques are based on computational 

methods to overcome undersampling of an image owed to pixel-size limitation by generating a  

high-resolution image from a series of lower-resolution images of the same objects taken by sub-pixel 

shifts of the LED light source (Figure 17). They achieved an effective pixel count of 2.52 billion with a 

monochrome CCD image sensor of 6.8 µm pitch and obtained an effective pixel count of 1.64 billion 

with a color CMOS image sensor of 1.12-µm pitch. The combination of pixel super-resolution and 

hologram de-convolution enabled an NA improvement factor of ~3 to be realized. They demonstrated 

that by employing a short wavelength LED (=372 nm), their proposed method can resolve periodic 

grating lines with a line width of 225 nm and can capture wide-field on-chip imaging of multi-walled 

carbon nanotubes with a diameter of ~160 nm based on two different sensor arrays that are very 

different in terms of pixel size, circuit architecture and readout mechanisms. Though a higher 

resolution is achieved compared with previous lens-free on-chip microscopy methods, the control of 

sub-pixel shifts is not easy and very hard to integrate in a compact setup. 
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Figure 16. (a) A lensfree cellphone microscope which operates based on incoherent in-line 

holography is shown. The additional hardware installed on the cellphone weighs  

~38 g (<1.4 ounces) and is composed of an inexpensive light emitting diode (at 587 nm) 

with an aperture of ~100 mm in front of the source. This cellphone microscope does not 

utilize any lenses or other bulky optical components and operates with a unit fringe 

magnification to claim the entire active area of the sensor as its imaging field of view. The 

samples to be imaged are loaded from the side through a mechanical sample holder.  

(b) Schematic diagram of the microscope attachment shown in (a) is illustrated (Reproduced 

with permission from [85]). 

 

Figure 17. Lensfree on-chip microscopy setup. (a) Schematic of the lensfree holographic 

microscopy setup. The close-up of (a) shows that the scattered wave from the object 

interferes with the unperturbed reference wave and forms an in-line hologram, which is 

then sampled by the image sensor chip. The pixel structures exhibit large variability in 

terms of pixel pitch and morphology as can be seen in (b) and (c). (b) Shows an optical 

microscope image (20× objective, NA = 0.5) of a 6.8 mm monochrome CCD image sensor 

chip. (c) Shows an optical microscope image (100× Water immersion objective, NA = 1) 

of a 1.12 µm color CMOS image sensor chip, where the Bayer pattern can be readily  

seen (Reproduced with permission from [86]). 

 

Navruz and colleagues proposed an opto-mechanical add-on which can be attached to the camera of 

the cellphone, as illustrated by Figure 18 [87]. The purpose of this study was to realize a portable and 

compact cellphone-based contact microscopy platform, or contact scope, which could image highly 

dense or connected samples in transmission mode with a relatively higher spatial resolution. Inside this 
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add-on, an incoherent light source shines through the inserted sample slide directly. Then the 

transmitted light is collected and sampled by the top part of the glass-based tapered fiber array. As the 

top part of the taper has ~9-fold higher density of fiber optic cables compared with the bottom part, the 

transmitted light is magnified ~3× in each direction after the light passes through the taper, which is 

then focused by two parallel lenses on the camera of the cellphone. Meanwhile, a series of images 

needs to be captured when the taper is manually rotated with discrete angular increments of one or two 

degrees. By means of a customized Android application running on the smart phone, the series of 

images can be processed to produce the final microscopic image of the sample, which can be shown on 

the cellphone screen. The authors demonstrated a smart phone-based computational transmission 

microscope, which can image dense and connected samples with a spatial resolution of ~1.6 µm over a 

field-of-view (FOV) of > 1.5 mm2. Moreover, the reconstruction of the microscopic image can be done 

directly by a customized Android application running on the smart phone and be shown on the 

cellphone screen. 

Figure 18. (a–c) Photographs of the Contact Scope installed on an Android cellphone from 

different views are shown. (d) Schematic diagram of the cellphone attachment of the 

Contact Scope is demonstrated, where the planar samples of interest are positioned in 

contact with the top facet of a tapered fiber-optic array (i.e., denoted as taper) and are 

illuminated by an incoherent light source (e.g., a simple LED). The transmission patterns 

of the micro-objects are magnified by the taper (T) and then imaged onto the cellphone 

CMOS chip (C) through an additional lens (L1) and the built-in cellphone lens (L2). 

Keeping the sample at a fixed position, the taper is rotated with discrete angular increments 

of e.g., 1–2 degrees, creating a sequence of raw contact images (e.g., ~10–40 frames) of the 

same sample. These raw images are then combined to create a higher resolution final 

contact image, visualized through the smartphone screen (Reproduced with permission 

from [87]).  
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4.2. Electrochemical Detection Based on Smart Phone 

In order to realize a point-of-care diagnostic platform, a compact mobile phone platform integrated 

embedded circuit with disposable microfluidic chips was designed and tested [88]. As shown by  

Figure 19, a customized embedded circuit is connected to a smart phone through a universal USB 

connection to measure the electric signal from the biosensor on the microfluidic chip. The smart phone 

not only gives a user-friendly interface to guide the test but also functions as a chip reader with 

telecommunication capabilities. As regards the microfluidic chip part, capillary force is employed for 

power-free fluidic pumping. As captured antibodies are coated on the biosensors, an ELISA test takes 

place at the bio-sensing area, resulting in a change of the current. Therefore, if the value of the current 

is measured, the concentration of specific antigen in the sample can be calculated. A smart  

phone-based platform is presented for rapid electrochemical detection. For proof of concept, P. 

falciparum HRP2 antigen was detected in human serum at 16 ng·mL−1, which gave a five-fold greater 

intensity of SNR signal compared with those of irrelevant proteins. 

Figure 19. (A) Photograph of the assembled prototype device. (B) Photograph of the chip 

and a mobile phone SIM card for comparison. (C) An enlarged image of the chip with 

labeled components. The channels are filled with dye for improved visualization of the 

fluidic network (Reproduced with permission from [88]).  

 

4.3. Spectrometer Based on Smart Phone  

Apart from taking pictures, a cellphone camera can also be used as a spectrometer, a detection 

instrument for a label-free photonic crystal biosensor to achieve point-of-care sensing. To this end, a 

cradle was designed in [81] to hold the cellphone in fixed alignment, including all the optical 

components, to achieve precise and repeatable measurements of shifts in the resonance wavelength of 

biosensors during biomedical tests (Figure 20) [89]. A broadband light from the light source was 

filtered, collimated and linearly polarized by the pinhole, collimator and polarizer respectively before it 

reached the photonic crystal biosensor. As the biosensor resonantly reflected just a narrow band of 

wavelengths, a diffraction grating spread the remaining wavelengths to the cellphone camera to record 

images.  In a customized Android application, the images from the cellphone’s camera were converted 

into the biosensor’s transmission spectrum in the visible wavelength range, including curve-fitting 
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analysis with very high accuracy (0.009 nm). The biosensor was achieved by the detection of an 

immobilized protein monolayer and selective detection of concentration-dependent antibody binding. 

Figure 20. (A) Schematic of the optical components within the smartphone cradle. 

Broadband light from an external source (such as an incandescent lamp or LED) is 

collimated by the combination of an entrance pinhole and a collimating lens. After passing 

through a linear polarizing filter, light passes through the photonic crystal, which 

resonantly reflects one narrow band of wavelengths. The cylindrical lens increases  

the amount of light that is collected by the camera. (B) Photo of the cradle with a  

photonic crystal biosensor slide inserted into the detection slot (Reproduced with 

permission from [89]). 

 

5. Conclusions 

We have described the recent advances in sensors integrated with microfluidic chips. First, SPR 

technology is advantageous for various reasons in developing the binding events on the sensing region 

with high sensitivity. Second, it is possible to detect bio-reactions in real time without a label or bio 

marker. In addition, integrating a microfluidic chip in the optical sensor enables effective control of 

small amounts of the sample, resulting in an automated high-throughput system. The approach is 

attractive since it is cheap and requires only brief analysis. SERS has been used for molecular 

detection and recognition with high sensitivity. Its sensitivity has been improved with the growth of 

nanotechnology as a sensing material. The main advantage of a SERS system is that the spectral signal 

reveals the fingerprint of specific molecules. Therefore, SERS can provide chemical and structural 

information of molecules without a label on the target sample.  

In spite of the applicability of the SPR phenomenon to biosensing systems, it is necessary to adapt 

the existing microfluidic device for integration in a portable platform since many microfluidic systems 

need bulky and complicated operational equipment. Power consumption can be a critical issue in 

point-of-care clinical applications. It is clear that nanotechnology can affect the LSPR sensing system 

similarly to the way in which microfabrication technology enables revolution in microfluidic devices. 

Recent advances in nanotechnology have huge potential in terms of developing highly sensitive  

LSPR-based clinical devices. There is a limitation in terms of using nanohole or periodic nanoarray 

platforms since they require expensive fabrication techniques like electron beam lithography, and the 

throughput is not high. To overcome this challenge, a chemical reaction method to deposit gold 
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nanoparticles on self-assembled monolayers would provide a possible solution. Additionally, it is 

worth noting that the LSPR sensing device is cost-effective and can constitute a portable commercial 

platform. Some of the recent literature about LSPR has reported the approach to be compatible with 

microfluidic platforms. The technology is promising with regard to developing a medical diagnosis 

system through the detection of specific molecules.  

We described the miniaturized conventional optical system with maintained or improved 

performance which is expected to have applications mainly in on-chip point-of-care or on-chip 

microscopic systems. The effort of minimizing the optical image sensing is mainly focused on 

removing lens and overcome limitation of resolution which recently achieved better quality image over 

larger FOV, >20 mm2 with more compact and cost-efficient platform. The recent studies were 

including lens-less holographic microscopy which employed simple LED as light source and other 

techniques such as nanolense. These approaches were very sensitive which could achieve sub-100nm 

resolution. Another study which had been introduced is fluorescent imaging which employed 

microfluidic chip and illumination platform. These were able to provide real-time and very sensitive 

detection with simpler structure. These two approaches had proven through the demonstration that it 

had overcome the limitation of resolution which conventional optical microscopy had and also enabled 

real-time and sensitive detection by employing compact and cost-efficient platform. This allowed the 

future perspective of these two recent studies is providing images of micro-organism causing diseases 

in on-chip telemedicine and on-chip point-of-care. Current result is not available in market because the 

images are not still very clear for more detail observation and the size is still too large for on-chip 

point-of-care. Therefore more approaches are being studied for enhancing images with simpler 

structure of device. 

For Imaging, biosensing and diagnostics based on smart phone platform, the trend for point-of-care 

diagnostics is the combination of consumer electronics with microfluidics. As mentioned previously, 

one way to achieve this goal is the optical method, which directly converts the camera of a cellphone 

into a lens-free microscope or a spectrometer to detect the biosignal from the add-on microfluidics 

part. An alternative method is the electrical method, which converts the biosignal into an electric signal 

without the need for optical sensing. Both approaches could utilize the increasingly powerful 

computational power and communication function of the cellphone. Moreover, assisted by customized 

software, both approaches would be user-friendly and no experience would be required to perform 

biochemical tests. Despite the promising advantages, there are also limitations and future developed is 

needed to solve those limitations: (1) Large demand for graphic process power. In order to get the high 

resolution image from the cellphone’s camera, multiple pictures need to be taken, de-convoluted and 

reconstructed to form the final image. Currently this can only be done by a server computer. Thus, the 

cellphone cannot display real time images. (2) Cumbersome Add-ons. To realize detection by 

cellphones, a customized part is always needed to add on the cellphone. Integration of those parts into 

the cellphone is highly desired. 
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