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Abstract: In the practice of electrostatically actuated micro devices; the electrostatic force 

is implemented by sequentially actuated piecewise-electrodes which result in a traveling 

distributed electrostatic force. However; such force was modeled as a traveling 

concentrated electrostatic force in literatures. This article; for the first time; presents an 

analytical study on the stiffness variation of microstructures driven by a traveling 

piecewise electrode. The analytical model is based on the theory of shallow shell and 

uniform electrical field. The traveling electrode not only applies electrostatic force on the 

circular-ring but also alters its dynamical characteristics via the negative electrostatic 

stiffness. It is known that; when a structure is subjected to a traveling constant force; its 

natural mode will be resonated as the traveling speed approaches certain critical speeds; 

and each natural mode refers to exactly one critical speed. However; for the case of a 

traveling electrostatic force; the number of critical speeds is more than that of the natural 

modes. This is due to the fact that the traveling electrostatic force makes the resonant 

frequencies of the forward and backward traveling waves of the circular-ring different. 

Furthermore; the resonance and stability can be independently controlled by the length of 

the traveling electrode; though the driving voltage and traveling speed of the electrostatic 

force alter the dynamics and stabilities of microstructures. This paper extends the 

fundamental insights into the electromechanical behavior of microstructures driven by 

OPEN ACCESS



Sensors 2014, 14 17257 

 

 

electrostatic forces as well as the future development of MEMS/NEMS devices with 

electrostatic actuation and sensing. 
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1. Introduction 

The principle of electrostatic force is very commonly used for the micro actuating/sensing devices 

in Micro/Nano ElectroMechanical Systems (MEMS/NEMS). The electrostatic driving principle 

consists of the coupling of two energy domains: electrical and mechanical energy domains. It is very 

challenging to accurately model the electrostatic microstructures because of the nonlinear 

electromechanical coupling behavior [1–3]. Chuang et al. [4] had published a review article which 

surveyed 132 literatures about the techniques for the physical model of pull-in voltage, dynamic 

characteristic analysis, air damping effect, reliability, numerical modeling method, and application of 

electrostatic-driven MEMS devices. Furthermore, the effects of non-ideal boundary conditions, 

fringing fields, the pre-deformation induced by initial stresses, and non-homogeneous structures were 

also detailed in that review paper. Another review article written by Zhang et al. [5] surveyed 341 

literatures on various state-of-the-art approaches for the pull-in instability and further enhancing the 

performance of MEMS/NEMS devices with electrostatic actuation and sensing as well as the physical 

principles that have enabled fundamental insights into the pull-in instability. Micro-ring resonators 

play an important role in silicon photonics [6–8] and metamaterials [9,10]. After surveying the massive 

correlative literatures mentioned in the aforesaid literatures, there is no literature investigating the 

electromechanical behavior of a microstructure driven by traveling electrostatic forces. In the last 

couple of years, Hu et al. had extended his interest on the fundamental understanding of the 

electromechanical behavior of microstructures (micro-ring [11] and micro-beam [12]) driven by 

traveling electrostatic forces. In those two previous works, the traveling electrostatic force was 

modeled as a concentrated electrostatic force traveling on the microstructure. However, the model of 

concentrated traveling electrostatic force deviates somewhat from practice because the electrostatic 

force is implemented by distributed driving electrode in practice. Therefore, this paper aims to derive 

an analytical model for simulating a micro-ring driven by a traveling piecewise-electrode. The stiffness 

variation of the micro-ring affected by the traveling speed, driving voltage, and length of the 

piecewise-electrode are investigated in the present paper. 

2. Analytical Model 

An analytical model is derived for simulating the electromechanical behavior of a micro circular-ring 

around which goes an arc electrode whose width is the same as that of the circular-ring and span angle ϕ. 

The schematic diagram is shown in Figure 1. The circular-ring is isotropic, homogeneous and of 

constant thickness. The analytical model is based on the assumptions that the circular-ring is thin with 

respect to its radius and that deflection is reasonably small, and furthermore considers only the uniform 

electrical field between the circular-ring and the traveling electrode. On these three basic assumptions, 
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the circumferential inertia of the circular-ring can be assumed to be negligible because there is no 

circumferential force. If the planar dimension of the structure is much larger than the air gap between 

structure and substrate, the structure would be affected by the air damping during movement. 

However, this work focuses on the circular ring structure whose planar dimension is not much larger 

than the air gap and thus the air damping effect is negligible in this work. 

Figure 1. The schematic diagram of a micro circular-ring around which goes an  

arc-type electrode. 

 

2.1. Nomenclature 

A  The cross-sectional area of circular-ring 

b  The widths of circular-ring and traveling arc electrode 

E  The Young’s modulus of circular-ring 

E   The uniform electrical field in between circular-ring and traveling electrode 

g  The initial gap between circular-ring and traveling arc electrode 

H(θ) The unit step function of θ 

I  The area inertia moment of the cross-section of circular-ring 

[K]  The stiffness matrix 

[Kc]  The electrostatic stiffness matrix due to traveling electrostatic force 

[Ks]  The structural stiffness matrix due to circular-ring 

[Kα] The electrostatic stiffness matrix due to traveling electrostatic force 

[Kβ] The electrostatic stiffness matrix due to traveling electrostatic force 

k  The circumferential wave number of circular-ring 

{Q}  The generalized force vector 

r  The radius of circular-ring 

T  A time-scale, EIAaT 4ρ=  

T   The period of the periodically time-varying stiffness 

t  The dimensionless time, Ttt ˆ=  

t̂   Time 
),( tu θ  The dimensionless deflection of circular-ring, guu ˆ=  

)ˆ,(ˆ tu θ  The deflection of circular-ring, which is a function of position and time 
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V The dimensionless electrical potential difference between circular-ring and traveling arc 

electrode, 2242 ˆ EIgVbrV ε=  

V̂   The electrical potential difference between circular-ring and traveling arc electrode 

{X}  The generalized coordinates vector 

α  The generalized coordinate 

β  The generalized coordinate 

δ(θ)  The Dirac delta function of θ 

ε  The permittivity of the medium in between circular-ring and traveling arc electrode 

θ  The position of circular-ring in polar coordinate 

ρ  The density of circular-ring 

ϕ  The span angle of traveling arc electrode 

Ω   The dimensionless angular speed of traveling arc electrode, TΩ=Ω ˆ  

Ω̂   The angular speed of traveling arc electrode 

crΩ   The intrinsic critical speed of a traveling constant force acting on circular ring 

2.2. Equations of Motion 

As shown in Figure 1, a uniform electrical field E  exists along the radial direction when there is an 

electrical potential difference V̂  between the circular-ring and the traveling electrode. The uniform 

electrical field results in a uniform distributed electrostatic force along the radial direction between the 

circular-ring and the traveling electrode. The uniform distributed electrostatic force traveling around 

the circular-ring is expressed in terms of unit step functions 
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with negligible circumferential inertia [13], the equation of motion of the circular-ring subjected to the 

traveling distributed force, Equation (1), is 
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In terms of the dimensionless parameters defined in the Subsection 2.1, the equation of motion (2) 

is expressed in the dimensionless form 
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According to the basic assumption of small deflection mentioned in the beginning of this section, 

expand the electrostatic force term in Equation (3) by Taylor series with respect to the initial 

equilibrium position (u = 0), and neglect the second and higher-order terms, that is 

2

2
1 2

(1 )

V
u

u
≈ +

−
 (4) 

As a result, the equation of motion (3) can be linearized as 
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 (5) 

The linearized equation of motion (5) is a linear partial differential equation with a time-varying 

coefficient. Apparently, the traveling electrical field not only provides external electrostatic force but 

also alters the dynamical characteristic of the micro circular-ring. 

2.3. Discrete Equation of Motion 

For the geometrical periodicity of the circular-ring, one can make an inspired guess of the  

deflection function, 

[ ]
2
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= +  (6) 

where k is the circumferential wave number, αk(t) and βk(t) are the generalized coordinates to be 

determine functions of time. The term of k = 1 is omitted in Equation (6) because it is a rigid-body 

mode [11,13]. In a mathematical sense, the guessed deflection functions, coskθ and sinkθ, represent 

orthogonal vectors that satisfy the boundary conditions of the circular-ring. In the cases of  

finite-degree-of-freedom systems, the vector space is of finite dimension and the number of vectors or 

natural modes is equal to the number of degrees of freedom. For continuous systems, such as a 

circular-ring, the number of degrees of freedom is infinite. This means that the general solution will be 

an infinite series. Substituting Equation (6) into Equation (5) gives 
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Since coskθ and sinkθ are orthogonal, like Fourier analysis, we multiply Equation (7) by cosmθ and 

sinmθ (m = 2, 3, 4, …, n) respectively, and integrate them over the circular-ring’s circumference gives 
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By the orthogonalities of cosmθ and sinmθ [13], Equations (8) and (9) can be simplified in the 

matrix form, 

2( 1) 1 2( 1) 2( 1) 2( 1) 1 2( 1) 1{ } [ ] { } { }n n n n n− × − × − − × − ×+ =X K X Q  (10) 

where {X}, [K], and {Q} are generalized coordinates vector, stiffness matrix, and generalized force 

vector, respectively. The expressions of {X}, [K], and {Q} are 
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The symmetrical stiffness matrix [K] is partitioned into four partitions named as α-partition,  

β-partition, c-partition, and the cT-partition that is the transverse of c-partition. The four partitions are 

composed of four sub-matrices [Ks], [Kα], [Kβ], and [Kc]. The diagonal matrix [Ks] is the structural 

stiffness-matrix due to the elasticity of the circular-ring. The symmetrical matrices [Kα] and [Kβ] are 

the electrostatic stiffness-matrices due to the traveling electrical field. The α-partition is the sum of 

[Ks] and [Kα] while the β-partition is the sum of [Ks] and [Kβ]. The c-partition contains only [Kc] 

while the cT-partition is the transverse of [Kc]. The matrix [Kc] is also the electrostatic stiffness-matrix 

due to the traveling electrical field, which couples the generalized coordinates αk(t) and βk(t). 

Apparently, the traveling electrical field not only applies electrostatic force on the circular ring but also 

alter its dynamical characteristics via the electrostatic stiffness-matrices. The generalized coordinates 

αk(t) and βk(t) are inherently uncoupling if there is no electrical field, and could be solved 

independently. However, the traveling electrical field, due to [Kc], makes the generalized coordinates 

αk(t) and βk(t) coupling and therefore not only alter the dynamical characteristic of the structure but 

also further complicate the mathematical solving problem. The expressions of the elements of {X}, 

[K], and {Q} are shown in Equations (14)–(18) where i, j = 2, 3, 4, …, n. 
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Take a look at the elements of the three electrostatic stiffness-matrices, Equations (15)–(17), the 

traveling electrical field results in periodically time-varying negative stiffness and thus soften the 

circular-ring; this means that the issue of stabilities must be considered in design. The diagonal 

elements of [Kα] and [Kβ] oscillate with respect to a value of π2V−  in the same period Ωiπ  and 

same fluctuation range φπφ iiV )sin(2  but with a phase-angle difference of π. The non-diagonal 

elements of [Kα] and [Kβ] are composed of two similar periodically time-varying functions; the first 
ones oscillate in phase with respect to 0 in the period Ω− jiπ2  and the fluctuation range 

2)(

2)(sin2

φ
φ

π ji

jiV

−
−

, the second ones oscillate out of phase (the phase-angle difference π) with respect to 

0 in the period Ω+ )(2 jiπ  and the fluctuation range 
2)(

2)(sin2

φ
φ

π ji

jiV

+
+

. The diagonal elements of 

[Kc] oscillate with respect to 0 in the same period and amplitude as those of [Kα] and [Kβ] but a  
phase-angle difference of 23π  with respect to those of [Kα]. The non-diagonal elements of [Kc] are 

composed of two periodically time-varying functions; the first one oscillates with respect to 0 in the 
same period and same amplitude as those of [Kα] and [Kβ] but a phase-angle difference of 2π  with 

respect to those of [Kα]; the second one oscillates with respect to 0 in the same period and the same 
amplitude as those of [Kα] and [Kβ] but a phase-angle difference of 23π  with respect to those of 

[Kα]. In summary, the fluctuation-periods (or frequencies) of the periodically time-varying 

electrostatic stiffness are dependent on the traveling speed Ω of the electrode, while the fluctuation 
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ranges are not only proportional to the square of driving voltage V2 but also dependent on the span 

angle ϕ of the arc electrode; the dynamics and stabilities of the circular-ring can thus be tuned by the 

traveling speed Ω, span angle ϕ, and driving voltage V of the traveling arc electrode. 
Equation (18) shows that the generalized forces α

iQ  and β
iQ  oscillate with respect to 0 in the same 

period Ωiπ2  and same fluctuation-range 
2

)2sin(2

φπ
φ

i

iV
 but a phase-angle difference of 23π . In 

other words, the generalized forces, Equation (18), are harmonic forces whose frequencies are 

dependent on the traveling speed Ω of the electrode; this means that the circular-ring will resonate if Ω 

approaches some critical values, which are named as critical speed Ωcr. However, the amplitudes 

(fluctuation-ranges) 
2

)2sin(2

φπ
φ

i

iV
 of the generalized forces are not only proportional to the square of 

the driving voltage V2 but also dependent on the span angle ϕ of the arc electrode. 

2.4. Forced Response 

Equation (10) is a second-order linear ordinary differential equation system with periodical  

time-varying coefficients, and therefore the forced response of the circular-ring must be obtained by 

numerical integration. The order of Equation (10) must be reduced in advance by being transformed 

into state space. Here, we define the state vector as 
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where [I] is unit matrix and [0] is null matrix. Eventually, Equation (10) is transformed into a  

first-order state equation, 

{ } [ ]{ } [ ]{ }= +Y A Y B F  (21) 

For a given initial condition {Y(0)}, the forced response of the circular-ring with respect to the 

distributed traveling electrostatic force is 

[ ( )] [ ( )]

0
{ ( )} { (0)} [ ]{ ( )}

tt tt e e dτ τ τ−= + A AY Y B F  (22) 

2.5. Stability Analysis 

For a periodically time-varying system, the stability must be considered. Let us consider the 

homogeneous part of Equation (21), namely 

}]{[}{ YAY =  (23) 

where [A] is a periodically time-varying matrix with the period of T . For the given 4(n−1) linear 

independent initial conditions, 
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one can obtain 4(n-1)’s linear independent homogeneous solutions of Equation (23) in one period T  
by numerical integration, namely { }1)(TY , { }2)(TY , …, { } )1(4)( −nTY . These linear independent 

homogeneous solutions compose the monodromy matrix [C] which is also known as state transition 

matrix, i.e., 

4( 1) 4( 1) 1 2 4( 1)[ ] { ( )} { ( )} { ( )}n n nT T T− × − − =  C Y Y Y  (25) 

The stability is determined by the nature of the eigenvalues λ’s of the monodromy matrix [14,15]. 
The system is stable if all the eigenvalues have the magnitudes less than unity, i.e., λ <1, unstable if at 

least one eigenvalue greater than unity, i.e., λ >1, and marginally stable if at least one eigenvalue with 

unit magnitude and multiplicity less than unity. 

3. Numerical Demonstration and Discussion 

We adopt the first three flexural modes (k = 2, 3, 4) in the following numerical demonstrations 

because the lower-frequency modes dominate the dynamical characteristic in practice, i.e., 
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( , ) ( )cos ( )sink k
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u t t k t kθ α θ β θ
=

= +  (26) 

The first mode (k = 1) is omitted because it is rigid-body mode [11,13]. The numerical integration is 

conducted by the commercial software MATLAB. In a mathematical sense, the natural modes 

represent orthogonal vectors that satisfy the boundary conditions of the ring. In cases of finite-degree-

of-freedom systems, the vector space is of finite dimension and the number of vectors or natural modes 

is equal to the number of degrees of freedom. For continuous systems, such as ring, the number of 

degrees of freedom is infinite. However, in practice, the lower-frequency modes dominate the 

characteristics of micro devices. Therefore, three terms of modal expansion is enough for most cases. 

3.1. Modal Analysis of the Circular-Ring 

Consider the case of no electrical field, namely when the driving voltage is zero (V = 0) and thus 

[Kα] = [Kβ] = [Kc] = [0], then Equation (10) is simplified to 
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where k = 2, 3, 4. Assume 
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where kα  and kβ  are the amplitudes of )(tkα  and )(tkβ  respectively. Substituting Equation (28) into 

Equation (27) gives 

2 2
2

2 2

( 1) 0

0 ( 1)
k k

k
k k

k

k

α α
ω

β β
 −    

=    −     
 (29) 

The eigenvalues of Equation (29) are the square of the natural frequencies of the circular-ring, 
namely 222 )1( −= kkω , and the corresponding eigenvectors (coskθ + sinkθ) are the natural modes of the 

circular-ring. Figure 2 shows the first three flexural modes of the circular-ring. 

Figure 2. The first three flexural modes of the circular-ring. 

 

3.2. The Critical Speeds of Traveling Constant Force 

Consider another case of a circular-ring driven by a constant concentrated-force Fc traveling around 

its circumference [14]. The equation of motion is 

2 4 2

2 4 2
2 ( ) c

u u u
u t F

t
δ θ

θ θ
∂ ∂ ∂+ + + = − Ω
∂ ∂ ∂

 (30) 

and Equation (10) is simplified to 
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  (31) 

The particular solution of Equation (31) is 

2 2 2 2 2 2

cos sin
( ) , ( )

( 1) ( ) ( 1) ( )
c c

k k

F k t F k t
t t

k k k k
α β

π π
Ω Ω= =

− − Ω − − Ω
 (32) 

By equating the denominators in Equation (32) to zero, one can obtain the critical speeds 

corresponding to each mode, 

2 2 2
2 2 2 2

2 2

( 1)
( 1) ( ) 0 k

cr cr

k
k k

k k

ω−− − Ω = Ω = =  (33) 
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where ωk is natural frequencies of the circular-ring. For a circular-ring driven by a constant force 

traveling around its circumference, it will resonates when the traveling speed Ω approaches to the  

one-kth of the natural frequency of the kth mode. There are two square roots in (33), namely 

kkcr
2ω±=Ω , one for the forward traveling wave and another the backward traveling wave; both are 

the same critical speed (or frequency) but have opposite wave propagation directions. The authors 

name the Ωcrs as the intrinsic critical speeds for traveling forces. 

3.3. The Electrostatic Stiffness 

By the use of three-term expansion, Equation (26), the equation of motion (10), becomes 
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(34) 

The elements of the stiffness matrix and generalized force vector are calculated by Equations (14)–(18); 

all of those have a periodically time-varying function. Figures 3–5 show the numerical results of some 

feature elements of the stiffness matrices in the α-partition, β-partition, and c-partition, respectively. 

Figure 6 shows the numerical result of a feature element of the generalized force vector. 

Figure 3 shows the numerical results of 2
22 VKα , 2

23 VKα , and 2
24 VKα . The value of 2

22 VKα  

fluctuates in the period 2π=Ωt  and amplitude 
φ

φ
π 2

2sin1
, and furthermore its amplitude is 0 as 

πκπφ 22 ≤=  where κ is any positive integers, namely ϕ = π/2, π, 3π/2, 2π. The value of 2
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. Furthermore, the amplitude of 2
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πκπφ 22 ≤=  and πξπφ 252 ≤=  where κ and ξ are any positive integers, namely ϕ = 2π for the 

present case. The value of 2
24 VK α  is composed of two periodic functions, one fluctuates in the period 

of ππ =−=Ω 422t  and amplitude 
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. Furthermore, the 

amplitude of 2
24 VK α  is 0 as πκπφ 2≤=  and πξπφ 23 ≤=  where κ and ξ are any positive integers, 

namely ϕ =π, 2π for the present case. 
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Figure 3. The numerical results of some feature elements ( 2
22 VKα , 2

23 VKα , and 2
24 VKα ) 

of the α-partition of stiffness matrix. The graphs at the right-hand side are the projections 

of the graphs at the left-hand side on the plane containing ϕ-axis and K-axis. 

 

 

 

Figure 4 shows the numerical results of 2
22 VK β , 2

23 VK β , and 2
24 VKβ . The value of 2

22 VK β  

fluctuates in a period of 2π=Ωt  and amplitude 
φ

φ
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2sin1
, and furthermore the amplitude is 0 as 

πκπφ 22 ≤=  where κ is any positive integers, namely ϕ = π/2, π, 3π/2, 2π. The value of 2
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23 VK β  is 0 as πκπφ 22 ≤=  and πξπφ 252 ≤=  where κ and ξ are positive integers, namely ϕ = 2π 
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for the present case. The value of 2
24 VK α  is composed of two periodic functions, one fluctuates in the 
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+ . Furthermore, the 

amplitude of 2
24 VK α  is 0 as πκπφ 2≤=  and πξπφ 23 ≤=  where κ and ξ are any positive integers, 

namely ϕ = π, 2π for the present case. 

Figure 4. The numerical results of some feature elements ( 2
22 VK β , 2

23 VK β , and 2
24 VKβ ) 

of the β-partition of stiffness matrix. The graphs at the right-hand side are the projections 

of the graphs at the left-hand side on the plane containing ϕ-axis and K-axis. 
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Figure 5. The numerical results of some feature elements ( 2
22 VKc , 2

23 VKc , and 2
24 VKc ) 

of the c-partition of stiffness matrix. The graphs at the right-hand side are the projections 

of the graphs at the left-hand side on the plane containing ϕ-axis and K-axis. 
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2
23 VK c  is 0 as πκπφ 22 ≤=  and πξπφ 252 ≤=  where κ and ξ are positive integers, namely ϕ = 2π 

for the present case. The value of 2
24 VK c  is composed of two periodic functions, the one fluctuates in 

the period of ππ =−=Ω 422t  and amplitude 
φ

φ
πφ

φ
π
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−
, and another one 

fluctuates in the period of 3)42(2 ππ =+=Ωt  and amplitude 
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φ
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φ
π 3
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+
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Furthermore, the amplitude of 2
24 VK c  is 0 as πκπφ 2≤=  and πξπφ 23 ≤=  where κ and ξ are any 

positive integers, namely ϕ = π, 2π for the present case. Figure 6 shows the numerical results of 

2
2 VQα , it fluctuates in the period of π=Ωt  and amplitude 

φ
φ

π
sin1

, and furthermore the amplitude 

is 0 as πκπφ 2≤=  where κ is any positive integer, namely ϕ = π, 2π for the present case. 

Figure 6. The numerical results of a feature element of generalized force vector ( 2
2 VQα ). 

The graph at the right-hand side are the projections of the graphs at the left-hand side on 

the plane containing ϕ-axis and Q-axis. 

 

In summary, the traveling electrostatic force not only applies a harmonic force on the circular ring 

but also induces periodically time-varying electrostatic stiffness; the periodicities are dependent on the 

speed of the traveling electrode, while the fluctuation ranges are dependent on the driving voltage and 

span angle of the arc electrode, and furthermore, by tuning the span angle of the arc electrode, one can 

eliminate the fluctuations of some specific electrostatic stiffness. 

3.4. Forced Response 

By the use of Equations (22), (26), (34), and zero initial condition, namely {Y(0)} = {0}, one has 

the forced response of the circular-ring at the central location of the traveling distributed electrostatic force 
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Ω = Ω + Ω  (35) 
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Figure 7 shows the maximum response for different traveling speeds Ω and electrode span angles ϕ, 

in which there appears more peaks other than the intrinsic critical speeds Ωcrs. Review on the case of 

traveling constant force (Subsection 3.2), the forward and backward traveling waves of the circular-ring 

are with the same critical speed (or resonant frequency). However, for the case of traveling 

electrostatic force (Figure 7), there are more peaks (critical speeds) other than the intrinsic critical 

speeds; this phenomenon is due to the fact that the electrostatic force makes the generalized 

coordinates αk(t) and βk(t) coupling (view on the c-partition of the stiffness matrix in Equation (34)). 

The coupling of the generalized coordinates results in different critical speeds (or frequencies) for the 

forward and backward traveling waves of the circular-ring. Another interesting phenomenon is that the 

number of peaks is not the same for different electrode span-angle ϕ. This phenomenon is in agreement 

with the results in the Section 3.3; one can eliminate the fluctuations of some specific electrostatic 

stiffness by tuning the span angle of the arc electrode; especially for the case of ϕ = π, only three peaks 

appear at the intrinsic critical speeds (Ωcr2, Ωcr3, and Ωcr4,) because the electrostatic stiffness is eliminated. 

Figure 7. The maximum responses of the circular ring at the central point of the distributed 

traveling electrostatic force (V = 1). 

 

3.5. Stability 

By using the stability analysis method in Subsection 2.5 and the three-term modal expansion, 

Equation (26), Figure 8a–f shows the forced response (the upper one) and instable regions (the lower 

one) of the circular-ring driven by the traveling electrodes with different electrode span-angles ϕ (π/6, 

π/4, π/3, π/2, 2π/3, π, etc.). The instable regions appear near the critical speeds and furthermore expand 

with increasing driving voltage. The instable regions can be eliminated by tuning the electrode span 

angle ϕ. 
  

Ωcr2

Ωcr3

Ωcr4
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Figure 8. The stabilities of the circular-ring with respect to driving voltage V and traveling 

speed Ω for different electrode span angle ϕ. The upper parts of Figure (a)–(f) is the 

maximum responses of the circular ring at the central point of the distributed traveling 

electrostatic force (V = 1), while the lower part of each figure shows the instable region of 

the circular-ring with respect to driving voltage V and traveling speed Ω. 
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4. Conclusions 

An analytical model is derived for simulating the electromechanical behavior of a micro circular-ring 

around which goes an arc electrode. Some interesting phenomena are addressed. The traveling 

electrode not only applies electrostatic force on the circular-ring but also alters its dynamical 

characteristics via the electrostatic stiffness-matrices. The traveling electrical field results in 

periodically time-varying negative stiffness and thus softens the circular-ring structure. It is known 

that, when a structure is subjected to a traveling constant force, its natural mode will be resonated as 

the speed of the traveling constant force approaches a critical value—namely the critical speed—and 

each natural mode refers to exactly one critical speed. However, for the case of a traveling electrostatic 

force, the number of critical speeds is more than that of the natural modes. This is due to the fact that 

the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling 

waves of the circular-ring different. Another interesting phenomenon is that the resonance and stability 

can be controlled by the span-angle of the traveling electrode though the electrostatic force alters the 

dynamics and stabilities of microstructures. This paper derives an analytical model for simulating a 

micro-ring driven by a traveling piecewise-electrode, which extends the fundamental insights into the 

electromechanical behavior of microstructures driven by electrostatic forces as well as the future 

development of MEMS/NEMS devices with electrostatic actuation and sensing. 
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