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Abstract: Changing the position of the Center of Gravity (CoG) for an aerial vehicle  

is a challenging part in navigation, and control of such vehicles. In this paper, an  

all-accelerometers-based inertial measurement unit is presented, with a proposed method 

for on-line estimation of the position of the CoG. The accelerometers’ readings are used to 

find and correct the vehicle’s angular velocity and acceleration using an Extended Kalman 

Filter. Next, the accelerometers’ readings along with the estimated angular velocity and 

acceleration are used in an identification scheme to estimate the position of the CoG  

and the vehicle’s linear acceleration. The estimated position of the CoG and motion 

measurements can then be used to update the control rules to achieve better trim conditions 

for the air vehicle. 

Keywords: in-flight; center of gravity determination; all-accelerometers; IMU 

 

1. Introduction 

The dynamic equations of an aircraft vehicle are normally derived under the assumption of known 

and stationary Center of Gravity (CoG). Variations in loads due to picking up/dropping off loads or 

consuming fuel could result in a change in both the vehicle’s mass and position of CoG. This 

immigration in the position of CoG introduces undesirable couplings in the flight dynamics [1]. This 

OPEN ACCESS



Sensors 2014, 14 17568 

 

 

dynamic coupling may appear in the angular, as well as the linear, acceleration and in the lateral and 

longitudinal motions [2]. According to United States Federal Aviation Administration (FAA) [3], a 

CoG limits envelope is determined for each aircraft, within which a safe and good flight conditions can 

be maintained even under CoG position changes. Different approaches to estimate the position of CoG 

have been reported in literatures. For example, in [2], an adaptive weighted data fusion, based on 

optimal weight distribution, and an identification technique based on neural network were utilized to 

improve the effectiveness of such estimation. In [1], the change in CoG position was modeled to find 

its effect on an aircraft under heavy load airdrop. In [4], both static and dynamic measurements were 

used to estimate the position of CoG of a helicopter on ground and in-flight respectively. The dynamic 

approach of [4] depends on finding the modal frequencies by solving an eigenvalue problem, where 

any change in a certain modal frequency will be an indication of a CoG position. The change in the 

position of the CoG can then be determined through monitoring the affected frequencies. Changing 

position of CoG in helicopters was also the main concern of [5], in which an estimation algorithm, 

based on Extended Kalman Filter (EKF), consists of a rigid body aircraft motion feedback and an 

internal model of the helicopter. This estimation algorithm was successful in estimating the CoG 

position within 1 s and its weight within 10 s provided that sufficient motion is present to ensure the 

observability of the parameters. Different ways of finding CoG position and the moment of inertia of a 

spacecraft on the ground were also reported in [6]. 

Having an estimate of CoG position, it can then be transferred to a vehicle management system, 

such as Active Center of Gravity, that could transfer fuel among the fuel tanks to adjust the position of 

CoG as required during flight [2], or to update the control approach. In [7], different controllers, 

namely linear Proportional-Derivative controller (PD), feedback linearization, and adaptive controllers, 

were tested in controlling a Quadrotor subjected to various disturbances including the change in CoG 

position where the first two controllers failed to achieve the desired responses. 

In both [1] and [2], the estimation of the CoG position depends on the position and mass of the 

individual objects causing the variations in the mass and CoG, such as cargo and passengers. This 

knowledge, if possible to have, may lack accuracy and could cause poor estimation accuracy in both 

the mass and CoG position of the aircraft. 

In [5], a dynamic model of the helicopter was used along its weight and balance, i.e., CoG position, 

to build an EKF that was used to estimate both the gross weight and CoG location of the helicopter. 

Unlike the previously mentioned methods, the proposed Inertial Measurement Unit (IMU) herein 

does not need the aircraft dynamic model. As such, it can be used in a broader range of applications. 

In [8], a spacecraft center of mass was estimated online using multi-accelerometers under the 

assumption of zero linear acceleration when the spacecraft is in steady mode. Under such particular 

condition, the kinematic equations are very much simplified and the position of the CoG can be 

estimated using a recursive least squares method. 

In this paper, a new approach to estimate the CoG position based on an all-accelerometers IMU, as 

proposed in [9], is evaluated. In [9], the accelerometers are arranged in two or more rings. Two 

alternative ring versions will be analyzed, simulated, and evaluated. This paper is organized as follows: 

Section 2 contains the description of the proposed IMUs. Section 3 contains the mathematical derivation. 

Section 4 contains the simulation results and discussion. A summary is presented in the last section. 
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2. IMU Description 

The feasibility of designing all-accelerometers based IMU to compute the linear/angular accelerations, 

and the angular velocity of a rigid body was investigated in [10]. It is possible to use different number 

of accelerometers to design all-accelerometers IMU, where the issue of possible singularity must be 

taken into consideration when finding the optimum number of linear accelerometers arranged in a 

specific structure [11]. The accelerometers’ measurements can be used to determine the angular 

velocity/acceleration and the linear acceleration of a rigid body using different approaches, such as 

simple matrix operation [12], or by using filters such as Unscented Kalman Filter (UKF) [13]. It is 

worth mentioning that IMUs, based on both rate gyros and linear accelerometers, are still under 

research, see [14]. 

Using linear accelerometers in certain configurations enables finding the angular acceleration of the 

body when their outputs are connected in the differential mode. One of those configurations is the 

diamond configuration by which three pairs of linear accelerometers are separated equally about a 

point in three perpendicular directions, i.e., one pair per axis. The differential output can then be  

fed into a Kalman Filter (KF) or the like to estimate the body angular velocities from the  

noisy linear accelerometers’ measurements. Redundant sensors are used to consolidate the 

accelerometers’ measurements. In the proposed IMU found in [9], only two pairs of linear tri-axial 

accelerometers were used in the Y and Z directions which make a total number of 12 accelerometers. 

The available accelerometers’ channels in each tri-axial accelerometer can be used for fault detection 

and isolation [9].  

The basic form of the proposed IMU, as found in [9], is shown in Figure 1, in which accelerometers are 

arranged in the form of two rings. The proposed IMU helps in improving navigation and control of 

aerial vehicles, and more particularly in tracking the changes in the position of CoG of a moving 

vehicle due to fuel consumption or changes in its payload. Redundancy is available at the IMU intra 

ring level and at the inter rings level to increase the reliability of such instrument. The distribution of 

these rings can be made flexible to overcome possible installation constraints in real vehicles. 

Figure 1. Two-Ring approach based on the proposed IMU using 12-accelerometer/Ring 

version [9]. 
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In Figure 1, assume all the accelerometers to be placed symmetrically around a point m at a distance 

μ where ௜ܲ is a tri-axial linear accelerometer’s position, ܱ௕ is the position of CoG, ௡ܱ is the origin of the 
inertial coordinate system, ܴூ	 is the vector from inertial frame origin ௡ܱ to CoG, and ܴ௩௝ is the vector 

from the CoG ܱ௕ to origin of Ring (j), where j = 1, 2, 3, ... The Ring’s coordinate system (݉ܺ௠ ௠ܻܼ௠) 

is assumed to be perfectly aligned with the vehicle’s body coordinate system (ܱ௕ܺ௕ ௕ܻܼ௕). 

The first step in estimating the position of the CoG, using the proposed IMUs, is the derivation of 

the body angular velocities from the accelerometers’ measurements. Several methods were proposed 

for estimating the angular velocities using all-accelerometers systems, see [1,2] for example. 

In the following section, the mathematical derivation of the angular velocities, linear/angular 

accelerations, and CoG position estimation for two versions of the proposed IMU is presented  

briefly, where the first version uses 12 accelerometers per Ring, while the second version uses 18 

accelerometers per Ring.  

3. Mathematical Derivation 

Adopting a flat non-rotating Earth model, the measurements of an accelerometer located at point P 

are given by, see Figure 2: ܣറூ = 	 ሬܴറሷ ூ + 	Ωሬሬሬറሶ × ሬܴറ௩ +	 ሬܴറሷ ௩ + 2Ωሬሬሬറ × ሬܴറሶ௩ + Ωሬሬሬറ × (Ωሬሬሬറ × ሬܴറ௩) − റ݃ (1) 

where: ܣറூ, is the inertial acceleration of arbitrary point P measured in body coordinate system (ܱ௕ܺ௕ ௕ܻܼ௕). ሬܴറሷ ூ, is the linear acceleration of the origin of the body coordinate system with respect to inertial 

space ( ௡ܱܺ௡ ௡ܻܼ௡). ሬܴറ௩, is the vector from the origin of the body coordinate system (ܱ௕) to point P. Ωሬሬറ, is the angular velocity of the body system. Ωሬሬറሶ , is the angular acceleration of the body system. ×, denotes the cross product between two vectors. റ݃, is the gravitational acceleration. 

Figure 2. Inertial ( ௡ܱܺ௡ ௡ܻܼ௡) and body (ܱ௕ܺ௕ ௕ܻܼ௕) frames. 
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Now, if the CoG is stationary, i.e., 	 ሬܴറሷ ௩ = 	 ሬܴറሶ ௩ = 0ሬറ, then the accelerometer’s measurements at a point 

P is given by: ܣറூ = 	 ሬܴറሷ ூ + 	Ωሬሬറሶ × ሬܴറ௩ + Ωሬሬറ × (Ωሬሬറ × ሬܴറ௩) − റ݃ (2)

3.1. Estimating the Angular Velocities and Accelerations 

Referring to Figure 1, the accelerometers’ measurements at points P1, P2, P3, and P4 can be 

expressed as: ܣറଵ = ሬܴറሷ ூ + ሬܴറሷ௩ଵ +Ωሬሬሬറሶ × ൫ ሬܴറ௩ଵ + µଔറ൯ + 2Ωሬሬሬറ × ሬܴറሶ௩ଵ +Ωሬሬሬറ × ቀΩሬሬሬറ × ൫ ሬܴറ௩ଵ + µଔറ൯ቁ − റ݃ ܣറଶ = ሬܴറሷ ூ + ሬܴറሷ௩ଵ +Ωሬሬሬറሶ × ൫ ሬܴറ௩ଵ − µଔറ൯ + 2Ωሬሬሬറ × ሬܴറሶ௩ଵ +Ωሬሬሬറ × ቀΩሬሬሬറ × ൫ ሬܴറ௩ଵ − µଔറ൯ቁ − റ݃ ܣറଷ = ሬܴറሷ ூ + ሬܴറሷ௩ଵ +Ωሬሬሬറሶ × ൫ ሬܴറ௩ଵ + µ ሬ݇റ൯ + 2Ωሬሬሬറ × ሬܴറሶ௩ଵ +Ωሬሬሬറ × ቀΩሬሬሬറ × ൫ ሬܴറ௩ଵ + µ ሬ݇റ൯ቁ − റ݃ ܣറସ = ሬܴറሷ ூ + ሬܴറሷ ௩ଵ +Ωሬሬሬറሶ × ൫ ሬܴറ௩ଵ − µ ሬ݇റ൯ + 2Ωሬሬሬറ × ሬܴറሶ௩ଵ +Ωሬሬሬറ × (Ωሬሬሬറ × ( ሬܴറ௩ଵ − µ ሬ݇റ)) − റ݃ 
(3)

Or, by using the skew-symmetric matrix notation instead of the cross product, the accelerometer’s 

measurements at P1 can be given as: 

቎ܣଵ௫ܣଵ௬ܣଵ௭቏ = ൥ܽ௫ܽ௬ܽ௭൩ + ቎ݎሷ௩ଵ௫ݎሷ௩ଵ௬ݎሷ௩ଵ௭቏ + 2 ቎ 0 −Ω௭ Ω௬Ω௭ 0 −Ω௫−Ω௬ Ω௫ 0 ቏ ቎ݎሶ௩ଵ௫ݎሶ௩ଵ௬ݎሶ௩ଵ௭቏ + ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ ൥ ௩ଵ௬ݎ௩ଵ௫ݎ + μݎ௩ଵ௭ ൩
+ ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ ൥

௩ଵ௬ݎ௩ଵ௫ݎ + μݎ௩ଵ௭ ൩ − റ݃ (4)

where, 	ܣറଵ = 	 ,ଵ௫ܣ] ,ଵ௬ܣ 	 ,்[ଵ௭ܣ ሬܴറሷ ூ = [ܽ௫, ܽ௬, ܽ௭]், 	 ሬܴറ௩ଵ = ,௩ଵ௫ݎ] ,௩ଵ௬ݎ ௩ଵ௭]், and Ωሬሬറݎ = [Ω࢞, Ω࢟, Ωࢠ]். 

Similarly, the acceleration as measured at P2 is given by: 

቎ܣଶ௫ܣଶ௬ܣଶ௭቏ = ൥ܽ௫ܽ௬ܽ௭൩ + ቎ݎሷ௩ଵ௫ݎሷ௩ଵ௬ݎሷ௩ଵ௭቏ + 2 ቎ 0 −Ω௭ Ω௬Ω௭ 0 −Ω௫−Ω௬ Ω௫ 0 ቏ ቎ݎሶ௩ଵ௫ݎሶ௩ଵ௬ݎሶ௩ଵ௭቏ + ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ ൥ ௩ଵ௬ݎ௩ଵ௫ݎ − μݎ௩ଵ௭ ൩
+ ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ ൥

ଵ௩௬ݎ௩ଵ௫ݎ − μݎ௩ଵ௭ ൩ − റ݃	 (5)

The differential output of the accelerometers at points P1 and P2 is given by: 

቎ܣଵ௫ܣଵ௬ܣଵ௭቏ − ቎ܣଶ௫ܣଶ௬ܣଶ௭቏ = ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ ൥ 02μ0 ൩ + ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ ൥ 02μ0 ൩ (6)
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Similarly, the differential output of the accelerometers at points P3 and P4 is given by: 

቎ܣଷ௫ܣଷ௬ܣଷ௭቏ − ቎ܣସ௫ܣସ௬ܣସ௭቏ = ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ ൥ 002μ൩ + ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ ൥
002μ൩ (7)

Similarly, the differential output between points P1 and P5 is given by: 

቎ܣଵ௫ܣଵ௬ܣଵ௭቏ − ቎ܣହ௫ܣହ௬ܣହ௭቏ = ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ ൥00ܮ൩ + ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ ൥00ܮ൩ (8)

where, (ܮ) is the separation between the two Rings along the vehicle’s X-axis. 

The usage of the differential output helps in canceling out the gravity effect when estimating the 

angular velocities in the proposed IMUs. 

Equations (6)–(8) can be stacked as follows:  

ቈܣറଵ − ܮറହܣ റଵܣ − റଶ2μܣ റଷܣ − റସ2μܣ ቉ = ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ + ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ (9)

where 	൫	ܣറ௟ = ௟௫ܣ] ௟௬ܣ 	.൯, and (݈) is the accelerometer index	௟௭]்ܣ
Using Equation (9), the first new set of equations can be obtained as summarized in Table 1. It is 

worth noting that Equation (9) can be used to derive other measurement models that can be used 

alternatively in this setup.  

Table 1. Equations of first version. 

State Equations (First Version) Measurements Equations 

Ωሶ ௫ = 14µ
ଵ௭ܣ) − ଶ௭ܣ − ଷ௬ܣ + ܮସ௬) 1ܣ ହ௫ܣ) − (ଵ௫ܣ = Ω௭ଶ +Ω௬ଶ  

Ωሶ ௬ = ܮ12− ଵ௭ܣ) − (ହ௭ܣ + 14µ
ଷ௫ܣ) − ସ௫) 12µܣ

൫ܣଶ௬ − ଵ௬൯ܣ = Ω௭ଶ +Ω௫ଶ 

Ωሶ ௭ = ܮ12 ൫ܣଵ௬ − ହ௬൯ܣ − 14µ
ଵ௫ܣ) − ଶ௫) 12µܣ

ସ௭ܣ) − (ଷ௭ܣ = Ω௬ଶ +Ω௫ଶ 

The set of equations summarized in Table 1 are used with Ring 1, and it can also be used with  

Ring 2 by simply replacing (ܮ) with (−ܮ). 

It is clear that this approach requires information from two rings, and, thus, demands exchange of 

data between the distributed rings, see Figure 3. On the other hand, the second version requires 

installation of accelerometers along the longitudinal axis of the aircraft, which may not be physically 

possible in some cases. Figure 4 shows the second version of the proposed IMU, where the additional 

tri-axial linear accelerometers pair is introduced onto the X-axis. The second version can be used 

separately without the need of additional rings, see Figure 5. 
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Figure 3. Estimate Angular Velocity using first version of 12-accelerometers/Ring. 

 

Figure 4. Two-Ring approach, based on the proposed IMU using 18-accelerometer/Ring version. 

 

Figure 5. Estimate Angular Velocity using the second version of 18-accelerometers/Ring. 
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Using the same approach, the second version can be modeled using the following set of equations. 

Equation (10) can be split into state equations and measurement equations as can be found in Table 2. 

ቈܣറଵ − റଶ2μܣ റଷܣ − റସ2μܣ റହܣ − റ଺2μܣ ቉ = ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ + ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ (10)

Table 2. Equations of second version. 

State Equations (Second Version) Measurements Equations 

Ωሶ ௫ = 14µ
ଷ௭ܣ) − ସ௭ܣ − ହ௬ܣ + ଺௬) 12µܣ

ଶ௫ܣ) − (ଵ௫ܣ = Ω௭ଶ +Ω௬ଶ  

Ωሶ ௬ = 14µ
ହ௫ܣ) − ଺௫ܣ − ଵ௭ܣ + ଶ௭) 12µܣ

൫ܣସ௬ − ଷ௬൯ܣ = Ω௭ଶ +Ω௫ଶ 

Ωሶ ௭ = 14µ
ଵ௬ܣ) − ଶ௬ܣ − ଷ௫ܣ + ସ௫) 12µܣ

଺௭ܣ) − (ହ௭ܣ = Ω௬ଶ +Ω௫ଶ 

Since the dynamical systems presented in Tables 1 and 2 are having non-linear measurements 

equations, Extended Kalman Filters (EKF) can be used to implement these equations and to retrieve 

the angular velocity. The angular acceleration can be directly obtained by solving the state equations. 

Equations (11) and (12) show the matrices and the main equations used in designing the EKF for the 

proposed IMUs. Further details can be found in [15,16]. 

௜ܣ = ൥1 0 00 1 00 0 1൩,	ܪ௜ = 2 ∗ ቎ 0 Ω௬ Ω௭Ω௫ 0 Ω௭Ω௫ Ω௬ 0 ቏ , ℎ௜ = ቎Ω௭ଶ + Ω௬ଶΩ௭ଶ + Ω௫ଶΩ௬ଶ + Ω௫ଶ቏	ܳ௜ = ொଶߪ ∗ ܴ௜	 ଷ×ଷ,ܫ = ோଶߪ ∗ 	ଷ×ଷܫ
ଵܤ = ێێۏ

ۍێ ଵସஜ ଵ௭ܣ) − ଶ௭ܣ − ଷ௬ܣ + ସ௬)ିଵଶ௅ܣ ଵ௭ܣ) − (ହ௭ܣ + ଵସஜ ଷ௫ܣ) − ସ௫)ଵଶ௅ܣ ൫ܣଵ௬ − ହ௬൯ܣ − ଵସஜ ଵ௫ܣ) − ۑۑے(ଶ௫ܣ
ଶܤ	,ېۑ = ଵସஜ ቎(ܣଷ௭ − ସ௭ܣ − ହ௬ܣ + ହ௫ܣ)(଺௬ܣ − ଺௫ܣ − ଵ௭ܣ + ଵ௬ܣ)(ଶ௭ܣ − ଶ௬ܣ − ଷ௫ܣ + 	ସ௫)቏ܣ

(11)

௞ܲ௜ି = (ܲ௞ିଵ)௜ା + ܳ௜ ݔො௞௜ି = ො(௞ିଵ)௜ାݔ௜ܣ + ௞௜ܭ ௞௜ܤ = ௞ܲ௜ିܪ௞௜்(ܪ௞௜ ௞ܲ௜ିܪ௞௜் + ܴ௜)ିଵ ݔො௞௜ା = ො௞௜ିݔ + ௞௜ݕ]௞௜ܭ − ℎ௞௜(ݔො௞௜ି, 0)] ௞ܲ௜ା = ଷ×ଷܫ) − (௞௜ܪ௞௜ܭ ௞ܲ௜ି 
(12) 

where, (݅) denotes the Ring index, i.e., ݅ = 1, 2	, for Two-Ring case, ݇ is the sample time. ܫଷ×ଷ is the  
3 × 3 identity matrix, ߪொଶ is the value of the process noise covariance taken to be 0.01, and ߪோଶ is the 

value of the measurement noise covariance taken to be 0.001. 
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3.2. Estimating the Body Linear Acceleration and the Position of the CoG Using the First Version 

The angular accelerations and velocities, found previously, will be used to estimate the position of 

the CoG and the vehicle’s linear acceleration; focus will be on Ring 1. 

Referring to Equation (3), adding the accelerometers’ measurements at points P1 to P4 will result in 

the following Equation: 14 റଵܣ) + റଶܣ + റଷܣ + (റସܣ = ሬܴറሷ ூ + ሬܴറሷ௩ଵ + Ωሬሬറሶ × ሬܴറ௩ଵ + 2Ωሬሬറ × ሬܴറሶ ௩ଵ + Ωሬሬറ × ൫Ωሬሬറ × ሬܴറ௩ଵ൯ − റ݃ (13)

assuming a stationary CoG, i.e., 	 ሬܴറሷ ௩ଵ = 	 ሬܴറሶ ௩ଵ = 0ሬറ, and a known gravitational acceleration ( റ݃), then 

Equation (13) can be given as follows: റ݂ = ሬܴറሷ ூ + ܤ ሬܴറ௩ଵ 

where: റ݂ = 14 ൫ܣറଵ + റଶܣ + റଷܣ + റସ൯ܣ + റ݃ 
ܤ = ൥ܾଵଵ ܾଵଶ ܾଵଷܾଶଵ ܾଶଶ ܾଶଷܾଷଵ ܾଷଶ ܾଷଷ൩ = ൦ 0 −Ωሶ ௭ Ωሶ ௬Ωሶ ௭ 0 −Ωሶ ௫−Ωሶ ௬ Ωሶ ௫ 0 ൪ + ൦−Ω௭ଶ − Ω௬ଶ Ω௫Ω௬ Ω௫Ω௭Ω௫Ω௬ −Ω௭ଶ − Ω௫ଶ Ω௭Ω௬Ω௫Ω௭ Ω௭Ω௬ −Ω௬ଶ − Ω௫ଶ൪ 

(14)

Equation (14) can be solved using a QR-Decomposition based Weighted Recursive Least Squares 

(QR-D based WRLS) with Forgetting Factor (FF) and covariance matrix resetting threshold (TH). 
Using a Forgetting Factor helps in enhancing the performance when tracking time-varying systems, 

however sometimes it may cause instability of the identification method if its value is not selected 

properly. Another way to enhance the performance is by introducing a conditional covariance matrix 

resetting procedure by which the tracking capability of such method is drastically increased [17]. 

Actually, the method used here was incorporated with this procedure taking the trace of the covariance 

matrix as the condition upon which the decision to reset the covariance matrix is made.  

The identification problem is solved as follows: 

Rearrange (14) in the form of: റ݂ =  റݔܦ
where: ݔറ = ,௩ଵ௫ݎൣ ,௩ଵ௬ݎ ,௩ଵ௭ݎ ܽ௫, ܽ௬, ܽ௭൧் 

ܦ = ቎ܾଵଵ ܾଵଶ ܾଵଷ 1 0 0ܾଶଵ ܾଶଶ ܾଶଷ 0 1 0ܾଷଵ ܾଷଶ ܾଷଷ 0 0 1቏ 
(15)

Equation (15) is implemented within a QR-D based WRLS scheme as follows: 

1. Find the QR-Decomposition of matrix ܦ to enhance its condition number. This can be done 

using different methods, such as Householder or Givens Rotations. In this work, the (ݎݍ) 

MATLAB function was used. 

2. Update the Regression Expression found in Equation (15) as follows: 
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റ݂ = റݔܦ = ܳ ∗ ܴ ∗ റݔ → ்ܳ ∗ റ݂ = ܴ ∗ ்ܳ റݔ ∗ റ݂ = ܴ ∗ റݔ → ሬሬറݓ = ܴ ∗ റ (16)ݔ

3. Now, use the modified Regression Expression in a WRLS scheme as follows [18]: 

௞௜ܭ = ܲ(௞ିଵ)௜ܴ௞௜்ܨܨ + (݇)൫ܴ௞௜ܲ(௞ିଵ)௜ܴ௞௜்൯ റ݁௞௜݁ܿܽݎݐ = (݇)ሬሬറݓ − ܴ௞௜ݔොറ௜(݇ − (݇)ොറ௞௜ݔ (1 = ݇)ොറ௞௜ݔ − 1) + ௞௜ܭ റ݁௞௜(݇) 
௞ܲ௜ = ܨܨ1 ܫ) −  ௞௜ܴ௞௜)ܲ(௞ିଵ)௜ܭ

(17)

The following expression will help in keeping the covariance matrix positive [16]: ࢏࢑ࡼ = ૙. ૞ ∗ ࢀ࢏࢑ࡼ) +  (࢏࢑ࡼ
where, (݅) denotes the Ring index, i.e., ݅ = 1, 2	, for Two-Ring case, and ݇ is the sample time. 

4. Now, check the trace of the covariance matrix as follows: ݂݅	(ܶ݁ܿܽݎ( ௞ܲ௜) > (ܪܶ  ℎ݁݊ݐ

௞ܲ௜ = ߚ ∗ ଺×଺ܫ (18)

where, ܫ଺×଺ is the 6 × 6 identity matrix, and the used parameters’ values were found through trial and 

error and were as follows: 	ܨܨ = 0.75, ܪܶ = 10ହ, and		ߚ = 1000. 

The same calculations are done independently for all rings. As in the case of estimated angular 

velocities and accelerations, see [9], the best estimate of the position of CoG with respect to say,  

Ring 1, is given for the Two-Ring case by: തܴ෠௩ଵ = 12 ቀ ሬܴറ෠௩ଵଵ + ሬܴറ෠௩ଵଶቁ = 12 ( ሬܴറ෠௩ଵ + ሬܴറ෠௩ଶ + ଓറ) (19)ܮ

where, ሬܴറ෠௩ଵଵ = ሬܴറ෠௩ଵ	 is the estimation of the CoG position relative to the first Ring calculated using the 

measurements of the first ring, while ሬܴറ෠௩ଵଶ = ሬܴറ෠௩ଶ +  ଓറ is the estimation of the CoG position relative toܮ

the first Ring calculated using the measurements of the second Ring, and ܮ is the distance between the 

two rings in the X direction. Finding the position of CoG relative to the air vehicle datum is also 

possible, provided that the equations are updated accordingly. 

3.3. Estimating the Body Acceleration and the Position of the CoG Using the Second Version 

The same procedure used with the first version can be used here with the modification: റ݂ = റଵܣ) + റଶܣ + റଷܣ + റସܣ + റହܣ + റ଺)/6ܣ + റ݃ (20)

Using more rings can improve further the reliability of the measurements and the estimation of the 

navigation parameters along with the position of CoG. For the second version, each ring can be placed 

anywhere within the airframe. All that is needed, in this case, is the relative distances between the 
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rings (ܮଵଶ, ,ଶଷܮ  ଷଵ) and the position of each ring with respect to the vehicle datum. Figure 6 reflectsܮ

the flexibility of installing the second version within an airframe.  

Figure 6. A jet fighter with three-Ring configuration using the second version. 

 

In the next section, the simulation results of the two IMU versions are presented. The usage of 

SimMechanics Library found in Simulink facilitates the simulation of the proposed IMUs. 

4. Simulation Results and Discussion 

In this part, the simulation results of the proposed IMUs are presented. The SimMechanics Library 

has been used to model an arbitrary object in 3D space subjected to various Forces and Torques. 

SimMechanics blocks were used since they give more freedom in the design process as well as 

different situations can be investigated, such as misalignments and disorientation in the 

accelerometers, when they are assembled to form a ring. 

Since the proposed IMU depends heavily on the accelerometers used, a 3-Axis model for an 

accelerometer was built and completely parameterized to make it easily reconfigurable and reusable 

with minimum modification. The main objective of this section is to show how the proposed IMUs can 

be used to estimate the position of the CoG. 

3-Axis Accelerometer Modeling 

Practical accelerometers’ measurements do involve noise and also are subjected to faults; hence an 

independent noise source for each axis in the same accelerometer is implemented. Faults were modeled 

to be one of the following: None, no-outputs, and wrong-output which each axis in the same 

accelerometer can have.  

It is worth noting that the bias and cross coupling effect, and other errors, usually encountered  

in real 3-axis accelerometers were not included. Faults are not simulated in this work, see [9] for  

more information. 

The accelerometer model, shown in Figure 7, was used in the simulation to form the two rings. 

Figure 8 shows a SimMechanics machine that resembles a composite rigid body in the form of cube 

whose mass is (0.5 kg) and the length of its side is (1 m) with (1 kg) added masses at each corner 

subjected to force and moment acting at its equivalent CoG and it is allowed to move in 6-DOF motion 

in the space where no gravity force is active, i.e., റ݃ = 0ሬറ. Figure 9 clearly represents this composite 

body shape. 
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Figure 7. 3-axis accelerometer model. Acceleration measurements relative to the World 

(Ae) and body (Ab) coordinates. 

 

Figure 8. Composite rigid body SimMechanics Machine. 

 

Figure 9. SimMechanics visualization of the composite rigid body given in the example at T = 60 s. 
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It can be seen from Equation (14) that the ܤ matrix depends totally on the rotational motion of the 

body. So, it is a must to have sufficient rotational motion to obtain a good estimation of the position of 

CoG using this approach. Next, the different versions of the proposed IMU are simulated. The simulation 

results reveal the performance of each version and highlight some points to be discussed afterword.  

The CoG of the composite body was found using the following equation: ܩ݋ܥ = ∑ ݉௜ݎറ௜ௗଵ∑ ݉௜ௗଵ  (21)

where (݀) is the total number of additional masses, that is 8, (݉௜) is the value of the added mass taken 

here to be (1 kg), and (ݎറ௜) is its position relative to the cube geometric center in meters. The position of 

the composite body CoG, relative to the cube geometric center (0,0,0), was forced to change by 

dropping a number of added masses at the end of each interval, an interval equals 20 s in simulation 

time. The effect is resembled by abrupt changes in its position as can be seen in Figure 10. The new 

composite inertia is calculated by SimMechanics and the resulting dynamic equation is solved 

internally. The two Rings were located at (0.5,0,0) meters and (−0.5,0,0) meters respectively. Table 3 

shows the schedule used in dropping the additional masses and the resulting CoG position. 

Figure 10. Composite body CoG Position (m) relative to the Cube Geometric Center (0,0,0). 

 

Table 3. Simulation schedule. 

Total Mass  Composite Body CoG Position  Dropped Mass Position  Time Interval  
(kg) (m) (m) (s) 

8.5 (0,0,0) - 0–20 

5.5 (−0.2727,−0.0909,0.0909) 
(0.5,0.5,0.5) 

(0.5,−0.5,−0.5) 
(0.5,0.5,−0.5) 

20–40 

3.5 (−0.4286,−0.1429,0.1429) 
(0.5,−0.5,0.5) 

(−0.5,0.5,−0.5) 
40–60 

The dimensions and weights used in the simulation example are typical in small Unmanned Arial 

Vehicles (UAV) applications, although the example itself is for a generic body. However, it is also 

possible to estimate the CoG position in true-sized aerial vehicles using the proposed approach 

provided that sufficient angular motion is available to render the parameters observable. 
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The addition of a third Ring (or more) can be easily incorporated using the presented analysis  

in this paper. 

The simulation results of the first version are shown next assuming ideal sensor network and by 

taking (ܮ = 1	m, μ = 0.1	m). 

In the period of (30–40) s when the linear acceleration is constant and the CoG is not moving from 

its new position, the algorithm estimates both of them with reasonable accuracy. However, further 

testing for the algorithm under time varying acceleration in period (50–60) s showed an excellent 

tracking of linear acceleration and the CoG with reasonable accuracy. The artifacts of Figures 11 and 13 

will fade out in the steady state. As a matter of fact, the artifacts happen at the corner change of the 

linear acceleration as depicted in Figures 12 and 14. The gaps in CoG position estimation as found in 

Figures 11 and 13 were due to the fact of insufficient angular motion, i.e., angular velocity and/or 

acceleration. This was designed to reflect the importance of the angular motion existence on the 

performance of the presented algorithm. 

Figure 11. Estimation of the composite body CoG position (m) using the first version in 

Two-Ring Configuration. 

 

Figure 12. Estimation of the composite body acceleration (m/s2) using the first version in 

Two-Ring Configuration. 

 

The simulation results of the second version are shown next and by taking (μ = 0.1	m	). 
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Figure 13. Estimation of the composite body CoG position (m) using the second version in 

Two-Ring Configuration. 

 

Figure 14. Estimation of the composite body acceleration (m/s2) using the second version 

in Two-Ring Configuration. 

 

Tables 4 and 5 show the errors in linear acceleration and CoG position estimations using the two 

versions after 10 seconds from the first CoG position change. This was designed to reflect the fact that 

further investigation of the identification technique along with a quantitative description of the 

minimum angular motion and a better filter are needed which will be a subject of future work. 

Table 4. CoG Position and linear acceleration estimations MPE in the period (30–40 s). 

Axis 
CoG Position Linear Acceleration 

First Version Second Version First Version Second Version 

X 0.2572 0.1643 --* --* 
Y 0.4069 0.1508 1.0212 0.8527 
Z 0.6265 0.3978 0.4451 0.4620 

* The MPE of the X-axis linear acceleration was undefined in this interval; since its true value was zero. 
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Table 5. CoG Position and linear acceleration estimations NMSE in the period (30–40 s). 

Axis 
CoG Position Linear Acceleration 

First Version Second Version First Version Second Version 
X 2.4252e−06 1.0008e−06 --* --* 
Y 1.3992e−05 1.3390e−05 6.3191e−06 5.1146e−06 
Z 1.5306e−05 4.4980e−06 2.7849e−06 2.3104e−06 

* The NMSE of the X-axis linear acceleration was undefined in this interval; since its true value was zero. 

Another thing that can be observed from Tables 4 and 5 is the fact that the performance of the  

QR-D based WRLS will be affected by CoG change so robust and adaptive techniques should be 

investigated. In those techniques, the relation between the filter used to retrieve the angular motion and 

the identification technique must be considered; because the performance of the latter will be affected 

by the performance of the former as can be read from Equation (14). 

Although the simulation results and the Maximum Percent Error (MPE)/Normalized Mean Square 

Error (NMSE) values do not reflect a huge difference in performance between the proposed IMUs, it is 

still obvious that each version provides attractive features that the other may not have. Table 6 presents 

a brief comparison between the two IMU versions. However, sensitivity analysis will show the effect 

of the relation between the Rings separation; i.e., (ܮ), and (μ) on the first version overall performance. 

Table 6. Brief comparison between the two IMU versions. 

Property First Version Second Version 

Size requirements  2-D 3-D 
Self-contained No Yes 

Affected by Rings separation Yes No 
Installation requirements Vehicle X-axis Any where 

Moreover, the more accelerometers’ measurements used the better the estimation will be and that 

can be done by using additional Rings (IMUs) and then fuse the estimation results obtained from the 

individual Rings. In the previous context, this was done using simply the average value although more 

sophisticated techniques can be used to fuse those estimations. 

The MPE and NMSE are given by Equations (22) and (23) respectively. ܧܲܯ = max ൬ܶ݁ݑݎ − ݁ݑݎܶ݁ݐܽ݉݅ݐݏܧ ൰ ∗ 100% (22)

ܧܵܯܰ = ∑ (݅)݁ݑݎܶ) − ଶே௜ୀଵܰ((݅)݁ݐܽ݉݅ݐݏܧ ∗ ௜ݔܽ݉ ଶ((݅)݁ݑݎܶ)ݏܾܽ) (23)

where, N is the number of samples. 

Another approach to consider when using the proposed IMUs is the Centralized estimation where 

all the accelerometers’ measurements are fed into one central estimation unit that utilizes all the 

measurements and obtain better estimation results. 

In the first version, robust estimation of the angular velocities requires measurements from at least 

two Rings. Acquisition of the measurements from the distributed sensors to a centralized processing 

unit may require additional considerations for the sensor network capacity and reliability.  
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Another important consideration is the minimum angular motion needed to ensure reliable 

estimation of the CoG. Table 7 shows a descriptive plan that helps in estimating the position of CoG 

using the proposed IMUs. This plan was obtained by examining the nature of the ܤ matrix given by 

Equation (14). This plan can be implemented in both manned and unmanned aerial vehicles. Table 7 

can be used to investigate the relation between the air vehicle’s trajectory and the CoG estimation 

using the proposed IMUs. The table indicates that to estimate the change in the position along any of 

the vehicle axis, we need angular (rotational) motion components on at least one of the other two axes. 

Table 7. Angular motions for proper estimation of the CoG. 

CoG Change Ω࢞ Ω࢟ Ωࢠ 
X-Axis    

Y-Axis    

Z-Axis    

X-Y Plane    

X-Z Plane    

Y-Z Plane    

X-Y-Z    

X-Y-Z    

X-Y-Z    

 

 AND  OR 

A final point to mention is that the quality of CoG position estimation is affected by the filter used 

to retrieve the angular velocity from the accelerometers’ measurements, the identification technique 

used, and the available angular motion. 

5. Conclusions 

The paper presented an improved IMU with a method for tracking the changes in the position of the 

Center of Gravity of an air vehicle due to fuel consumption or changes in payload. The proposed IMU 

is based on an all-accelerometers design for low cost and reliable design. The proposed IMU comes in 

two versions to accommodate installations constraints. Table 6 provided additional information on the 

differences between the two versions. The simulation example showed how the proposed IMU can be 

used in estimating the position of the Center of Gravity, and showed the importance of the presence of 

the angular motion to have robust estimation. The Maximum Percent Absolute Error was less than  

1 percent in both versions in estimating the position of the Center of Gravity, where the second version 

showed a slightly better performance. The performance of the first version is also influenced by the 

Rings’ separation; i.e., (L), as well as (μ). 

New measurement models can be obtained from Equations (9) and (10) to explore other Kalman 

filter techniques to estimate the angular velocities. Similarly, other on-line systems identification 

methods could also be explored for estimation of the position of the Center of Gravity. Since the 

proposed IMU estimates the linear/angular accelerations, the angular velocities, and the position of 

Center of Gravity, it can then be used in building an improved Inertial Navigation System. The 

available accelerometers’ measurements can also be used within the proposed IMU in fault detection 
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and isolation, and, at the same time, to increase the precision of the measurements. The proposed IMU 

has many potential applications, since knowledge of the position of the Center of Gravity is essential 

for proper calculation of the various aerodynamic forces and torques on an aircraft or missile body, for 

selection of the proper control strategy, and for ensuring vehicle stability and effective guidance.  
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