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Abstract: This paper considers the problem of path planning for a team of unmanned
aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles
do not possess sensors with automated target recognition capability and, thus, rely on
communicating with unattended ground sensors placed on roads to detect and image
potential intruders. The problem is motivated by persistent intelligence, surveillance,
reconnaissance and base defense missions. The problem is formulated and shown to
be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during
surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles’
paths nominally. The algorithm uses detections from the sensors to predict intruders’
locations and selects the vehicles’ paths by minimizing a linear combination of missed
deadlines and the probability of not intercepting intruders. An analysis of the algorithm’s
completeness and complexity is then provided. The effectiveness of the heuristic is
illustrated through simulations in a variety of scenarios.
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1. Introduction

A team of small unmanned aerial vehicles (UAVs) is tasked with patrolling a network of roads near a
friendly base. Ground intruders (e.g., trucks) use the road network to reach the base and do not know of
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the presence of the UAVs. The UAVs patrol the roads to detect and take pictures of any intruders present
on the roads.

However, small UAVs possess limited onboard processing resources, and the current detection
capability of small aircraft using electro-optical or infrared sensors is not sufficient to ascertain whether
an intruder is present or not [1]; thus, the UAVs in this problem are assumed to not possess automated
target recognition capabilities. Instead, intruder detection is performed by unattended ground sensors
(UGSs) placed on the roads. These sensors measure a given property (e.g., weight of a vehicle driving
by), perform classification on the measurement to decide whether it corresponds to an intruder or not
and register the time of the detection if the measurement was classified as an intruder. The use of UGSs
in conjunction with UAVs enables the pursuit of an intruder along the road network, which is otherwise
not possible solely using UAVs.

To maximize the coverage of the road network, the UGSs are placed far apart. The UGSs possess
short-range communication devices, but have limited long-range communication capabilities; they
require a line of sight to a dedicated communication device with a permanent power source. Placing
communication devices to meet these requirements can be difficult depending on the terrain and
conditions (e.g., contested environment). However, this problem can be circumvented by using
mobile UAVs instead of immobile communication devices. The UAVs do not require the difficult
placement of communication devices and power sources in the area, such that the line of sight is
maintained between devices; instead, they act as mobile communication devices by querying UGSs
directly below using a short-range communication device. Thus, it is assumed that the UGSs cannot
communicate with one another, but only with UAVs directly overhead. In contrast, the UAVs are
capable of communicating between one another and a central authority (e.g., the base) via a low
bandwidth, long-range communication link. The low bandwidth link allows for the transmission of
small amounts of information, such as UGS detections or waypoints, but prohibits the transmission of
large datasets, such as images. The link is assumed to cover the entire operating area. The short-range
and long-range communication devices are assumed to transmit in the electromagnetic spectrum, and as
such, communication times are small compared to the other time constants involved in the problem.

This work is motivated by base defense scenarios within the Talisman Saber biennial U.S./Australian
military exercise [2], where UAVs are tasked with obtaining intelligence (e.g., location and imagery)
about intruders. In these base defense scenarios, the UAVs have limited onboard processing capabilities
and, thus, cannot autonomously detect intruders; the UAVs thus rely on UGSs for intruder detection,
pursuit and interception [3].

Figure 1 shows a visualization of such a scenario with two UAVs and a single intruder attempting to
reach the base. The UAV on the bottom of the figure is communicating with a UGS directly below.
Through the communication, the UAV learns of a recent detection from the UGS. The detection is
shared with the central authority and used to predict possible future locations of the intruder. The central
authority then selects destinations for the UAVs where they are likely to image the intruder.

A mission designer is assumed to have set the UGSs locations and patrol parameters before the
mission begins; optimal UGSs placement and patrol parameter selection for this base defense scenario
is treated in [4].
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Figure 1. Cooperative surveillance and pursuit scenario.

The UAVs are forced to revisit UGSs to maintain up-to-date and accurate information on the intruder;
this is enforced through the use of revisit deadlines, i.e., the maximum time that can elapse between
two consecutive visits to a UGS. Forced revisits also help mitigate the impact of false alarms by UGSs.
The UAVs cannot detect a target autonomously; hence, they loiter above a UGS and capture an image
when the UGS below detects an intruder passing.

The objective is to generate paths for the UAVs (i.e., select waypoints in real time) that satisfy the
revisit constraints of UGSs and capture images of intruders before the latter reach the base (i.e., maximize
the likelihood of a UAV and intruder being at the same location). A heuristic is provided to compute such
paths, and its completeness and complexity are assessed. While the heuristic directs the paths taken by
the UAVs, it also indirectly interacts with the UGSs used for monitoring the roads. The heuristic selects
when information from the UGSs is obtained, and the heuristic uses the information acquired from the
UGSs to predict possible intruder locations in the future. In addition, the capture of an image of the
intruder is achieved when a UGS that a UAV is loitering (as directed by the heuristic) detects an intruder.

1.1. Literature Review

The UAVs’ task consists of patrolling the road network and pursuing the intruders. A broad amount of
research exists on patrolling problems and pursuit-evasion games; as such, literature pertaining to these
topics is reviewed.

The problem of persistently monitoring a given area with one or more vehicles has been studied
extensively. The problem of finding cycles, such that all points in the patrol area are covered by the
vehicle’s sensor footprint, is treated in [5]. In [6,7], the authors investigate a patrolling problem for
multiple UAVs and maximize the minimum frequency of visitation for different partitions in the area.
In [8,9], the authors find paths with a minimized uniform frequency of visitation for all partitions. In [10],
the authors investigate the problem of finding paths for mobile agents that minimize the accumulation
of an uncertainty metric in the mission area. In [11,12], the authors investigate heuristics, such that
the time between visits to the same object of interest is minimized. The problem of patrolling multiple
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targets cooperatively is also treated in [13], where the authors provide algorithms to compute trajectories
for vehicles that minimize the weighted refresh time of the targets being visited. The dual objective of
satisfying patrolling constraints (revisit deadlines) and intercepting the intruder separates the problem
studied in the current paper from many patrolling problems investigated in the literature.

This problem also shares similarities to the traveling salesman problem (TSP), where an agent
is tasked with visiting a certain number of locations while minimizing the distance traveled. TSP
is a non-deterministic polynomial-time (NP)-complete problem, and thus, heuristics are used to find
solutions; [14] contains a survey on existing heuristics for TSP. In [15], the authors study stochastic and
dynamic variations of TSP, where the target locations are generated randomly; the authors then provide
algorithms to compute paths for the vehicles that optimize criteria, such as the length of the path or the
time between the generation of the target and its observation by the vehicle. The problem treated in the
current paper differs from vehicle routing problems and TSPs due to the added goal of capturing images
of mobile intruders.

The problem considered in this paper has several components in common with pursuit-evasion games,
where defenders are to capture an intruder. Pursuit-evasion games often occur on graphs; the defenders
win the game if the intruder is caught; otherwise, the intruder wins. The defenders and intruder move
in turns and can only travel to adjacent nodes. The pursuit-evasion problem was studied, and conditions
on the number of defenders necessary to guarantee capture were derived in [16–18]. Many variations
of the problem exist, such as the addition of constraints on the topology of the graph, the velocities of
the defenders or intruders and the amount of information held by one team about the graph or the other
team; a survey of pursuit-evasion research relevant to mobile robotics is presented in [19]. Security
games introduce targets that the defenders must protect from intruder attacks; in addition, the intruder
can observe the defenders. In [20,21], the authors study and provide algorithms to solve security games
where the intruder is attempting to infiltrate nodes in a graph, and defenders must visit the various nodes
in the graph, such that the intruder never has enough time to infiltrate. The current paper differs from the
pursuit-evasion literature, because the defenders and intruders do not move in turns.

In [22], the problem of monitoring an area with intruders using UGSs and UAVs is discussed, and
approaches to finding paths for the UAVs that maximize the number of interceptions are presented.
The related problem of designing a sensor network for surveillance of a moving target has been
studied in [23], where the authors provide methods for multi-point surveillance and demonstrate their
effectiveness with regards to tracking probability. The problem of estimating a vehicle’s position in a
graph given its velocity distribution and a previous detection at a known location and time is treated
in [24]. The authors use a histogram filter to predict the vehicle’s potential locations in a graph. The
approach used in this paper coordinates multiple UAVs (using a different method for prediction) to
intercept an intruder on a graph in a centralized fashion while handling uncertainty in the target motion.

While the current literature examines many variations of patrolling problems and pursuit problems,
no method treats a framework where the mobile agents fully rely on static sensors placed on an arbitrary
road network to track and intercept intruders and provides a path planning algorithm for the mobile
agents. The current paper concentrates on this subject. Addressing the reliance on static sensors is
important, since the proper tracking of a target by a pursuer cannot be guaranteed in a large number
of scenarios and, in some cases, may not be possible at all (as was indicated earlier with small UAVs
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currently being incapable of autonomous target recognition). In addition, not making assumptions about
the topology of the network enables the handling of cases where the environment does not permit
favorable sensor placement.

1.2. Original Contributions

The original contributions of this work are as follows: the problem of cooperative surveillance and
pursuit is formulated and shown to be NP-hard; a heuristic to solve the problem is given; and an analysis
of the heuristic’s completeness and complexity is provided.

In previous work, the persistent visitation problem was introduced in which a single vehicle
persistently visits a set of nodes, each with a revisit deadline [25]. The goal was to find a path for
the vehicle such that no revisit deadline is missed. The existence of periodic solutions was proven; the
complexity class of the problem was derived; and heuristics that could solve the problem were presented
and characterized.

A version of this problem that included fuel constraints and refueling costs was also studied, and
an algorithm that found the minimal cost path satisfying the revisit deadlines and fuel constraints was
provided [26].

The current paper differs from the authors’ previous work, which focused solely on patrolling, in
the following ways: multiple vehicles are considered; an adversary is present in the area; sensors that
provide information from which decisions need to be made are included; and the vehicles pursue the
adversary while patrolling a number of locations with revisit deadlines.

1.3. Paper Outline

The remainder of the paper is as follows. In Section 2, the model for the defenders and intruders is
presented, including the kinematics of the mobile agents and the properties of the UGS. The mathematics
for the defenders’ pursuit of the intruder are also presented in Section 2. The problem is formulated
in Section 3. The heuristic that generates the defenders’ actions to solve the problem is presented in
Section 4. Results from simulations are shown in Section 5 and discussed in Section 6. Conclusions and
future work are discussed in Section 7.

2. Modeling

In this section the model for the defenders (UAVs and UGSs) is presented, followed by a description
of the intruder model.

2.1. Defenders

There are n UGSs placed in a planar area along a road network with Cartesian coordinates (ξi, ζi),
1 ≤ i ≤ n. The UGSs and the roads that the intruder can use to travel between them are modeled as a
graph G(N,E), where ei,j ∈ E, if there exists a road connecting UGSs i and j. Let di,j be the length
of road ei,j . The road network and UGSs’ placement is assumed to remain the same over the duration of
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the mission. The UGSs can measure a continuous property in their proximity and make a classification
decision based on the measurement; this classification results in a detection if the measurement is above
a certain threshold, e.g., in [22], the UGSs use a small Doppler radar to detect intruders nearby. The
UGSs are not equipped with perfect sensors or classifiers and, thus, may emit false alarms.

In addition, m UAVs are patrolling the area each with constant velocity v, finite fuel capacity F

and fuel consumption rate ḟc. There is a single base that is capable of refueling the UAVs located at
(ξn+1, ζn+1). The UGS are assumed to be distant from one another; thus, the UAVs’ limited turn radius
is not taken into account, and the UAVs are modeled as point masses moving in straight lines [27].
If straight line travel cannot be assumed, then curvature must be accounted for; this can be done using
the results from [28], where the authors describe methods to convert paths on a graph with straight line
edges to paths on a graph with edges that satisfy the turning constraints of the UAVs.

The UAVs are equipped with a long-range communication device, which enables communication
with a central authority, and a short-range communication device, which enables the UAVs to query
the status of a UGS directly below (in [22], short-range communication is performed via WiFi radios).
The UAVs, UGSs and central authority are assumed to possess synchronized clocks; this can be achieved
by calibration before the mission and periodic UGS clock synchronization during UAV visits (it can also
be accomplished by equipping each UAV and each UGS with a clock synchronization device, such as
a GPS).

Once a UAV obtains information from a UGS, it is immediately relayed to the central authority. The
central authority decides which nodes the UAVs are to visit next once their respective destinations are
reached. There is no benefit from allowing multiple UAVs to visit the same UGSs simultaneously, since
a detection is shared immediately and only a single UAV is required to capture an image; hence, a UGS
can only be visited by a single UAV at a time.

2.1.1. Revisit Deadlines

Each UGS has a revisit deadline, ri > 0, 1 ≤ i ≤ n, set by the mission designer, which under ideal
conditions, is the maximum time that can elapse between two visits to the UGS by the defenders. The
revisit deadlines are used as a method to keep the defenders’ knowledge of intrusions up-to-date. The
revisit deadlines are also used to indicate the relative importance of the various UGSs, such that the
UAVs can prioritize their actions accordingly.

2.1.2. State Space Model

UGS queries and intruder interceptions only occur above UGSs, and as such, the arrival of a UAV
at a UGS is the event that advances the system for the defenders. Thus, a number of states evolve in
discrete time corresponding to the arrival of a UAV at a UGS, while other states (such as the amount of
fuel onboard a UAV) evolve in continuous time.

The increments (or steps) in discrete time are delimited by the arrivals of UAVs at UGSs.
τ(k) ∈ R is the total time elapsed since the beginning of the mission upon completion of step k.
Ω(k) is the set of upcoming UAV arrival times at step k. The current destination of UAV j at step
k is indicated by pj(k) ∈ 1, 2, ..., (n + 1), 1 ≤ j ≤ m. The Cartesian coordinates of UAV j at
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step k are (ξj
′(k), ζj

′(k)) ∈ R2, 1 ≤ j ≤ m. Let y(k) denote the discrete time states at step k, i.e.,
y(k) = [ τ(k) Ω(k) pj(k) (ξj(k), ζj(k)) ].

The continuous time states are linked to the discrete time states by applying impulses in their dynamics
if certain conditions are met when a step is completed. The amount of fuel UAV j is carrying at time t
is indicated by fj(t) ∈ R, 1 ≤ j ≤ m. Let xi(t) ∈ R, 1 ≤ i ≤ n be the slack time of UGS i at time t,
which indicates how much time remains before a visit to UGS i is overdue. Let the input uj(k) be the
destination of UAV j at step k.

2.1.3. Initial Conditions

The initial time is set to zero. The initial set of arrival times is initialized to the empty set. Without
loss of generality, the UAVs are assumed to start at the base with full fuel capacity, and the slack time
for each UGS is initialized to its respective revisit deadline, i.e.,

τ(0) = 0,

Ω(0) = ∅,
p1(0) = n+ 1,

(ξ1
′(0), ζ1

′(0)) = (ξn+1, ζn+1),

p2(0) = n+ 1,

(ξ2
′(0), ζ2

′(0)) = (ξn+1, ζn+1),

...

pm(0) = n+ 1,

(ξm
′(0), ζm

′(0)) = (ξn+1, ζn+1), (1)

f1(0) = F,

f2(0) = F,

...

fm(0) = F,

x1(0) = r1,

x2(0) = r2,

...

xn(0) = rn
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2.1.4. Dynamics

Let qj(i, k) be the Euclidean distance between UAV j and UGS i at step k. When a UAV arrives at its
destination, its next destination is set by the input, and the travel time to that destination is added to the
set of arrival times:

if qj(pj(k), k) = 0,

pj(k + 1) := uj(k)

Ω(k) := { qj(uj(k),k)

v
} ∪ Ω(k)

else, pj(k + 1) := pj(k) (2)

The time of the next step is set by the minimum UAV arrival time in Ω(k); that time is then removed
from Ω(k):

τ(k + 1) := minimum(Ω(k)) (3)

Ω(k + 1) := Ω(k) \ {τ(k + 1)} (4)

The amount of fuel onboard a UAV decreases as dictated by the fuel consumption rate and is reset to
full capacity whenever a visit to the base occurs:

ḟj(t) = −ḟc +
k−1∑
l=1

ḟc × (1− δpj(l)pj(l+1) × δ(n+1)pj(l))×H(t− τ(l))×H(τ(l + 1)− t)

+
k∑
l=1

δ(n+1)pj(l) × (F − fj(τ(l)))× δ(t− τ(l)), t ≤ τ(k) , 1 ≤ j ≤ m (5)

where δij is the discrete Kronecker delta function, H(t− τ(l)) is the Heaviside step function, and
δ(t− τ(j)) is the continuous Dirac delta function. The slack time of a given UGS decreases linearly
in time and is reset to its revisit deadline whenever it is visited by a UAV:

ẋi(t) = −1 +
k−1∑
l=1

m∑
j=1

(1− δpj(l)pj(l+1) × δipj(l))×H(t− τ(l))×H(τ(l + 1)− t)

+
k∑
l=1

m∑
j=1

δipj(l) × (ri − xi(τ(l)))× δ(t− τ(l)), t ≤ τ(k) , 1 ≤ j ≤ m (6)

2.2. Intruder

A single intruder is traveling on the road network at a time; but there may be multiple intruders over
the course of the mission. The intruders move inside their adversary’s territory and suspect that they are
under observation. Thus, the intruders move stochastically to reduce the predictability of their actions.
However, the intruders do not know how they are being observed and cannot perceive the UAVs flying
above [3]. If the intruders can detect the UAVs in the area, then a different intruder model is needed,
e.g., using results from the pursuit-evasion literature or Stackelberg games.

The intruder moves from one node to the next in the graph according to a first order Markov process,
i.e., the next location that it visits only depends on its current location. The central authority is assumed
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to possess the Markov model for the intruder’s movement; this model could have been obtained through
intelligence or deduced from prior observation. The intruder enters the graph at a random node according
to the initial distribution of the Markov model. Since the intruder’s movement is memoryless, the UAVs
and central authority only use the most recent intruder detection for their computations and do not keep
track of the trail of UGSs detections left by the intruder.

The distance traveled by the intruder at time t is modeled as the process Xt:

X0 = 0,

Xt −Xρ = N (µv × (t− ρ), σ2
v × (t− ρ)2), t > ρ > 0

(7)

where µv > 0, σv > 0. The fuel consumption of the intruder’s vehicle is assumed to be negligible.

2.3. Intruder Interception

To direct the UAVs, such that interception is likely to occur, the probability of the intruder passing by
a UGS that a UAV is loitering above must be calculated.

2.3.1. Probability of Intruder Passing a Node in a Given Time Window

Given a path s of UGSs, where s(i) indicates the i−thUGS visited and the fact that the intruder passed
s(1) at time zero, the probability of the intruder passing s(2) between times ti and tf (where ti > 0 and
tf > ti) is:

Pint(s(2), s, ti, tf ) =

∫ tf

ti

P [Xρ = ds(1),s(2)]dρ (8)

The probability of the intruder passing s(3) between times ti and tf is:

Pint(s(3), s, ti, tf ) =

∫ tf

ti

P [Xρ = ds(1),s(2) + ds(2),s(3)]dρ (9)

The probability of the intruder passing s(b+ 1) between times ti and tf is:

Pint(s(b+ 1), s, ti, tf ) =

∫ tf

ti

P [Xρ =
b∑

f=1

ds(f),s(f+1)]dρ (10)

Generalizing, the probability of the intruder passing node j (while traveling along the path s) between
times ti and tf is:

Pint(j, s, ti, tf ) =

|s|−1∑
b=1

δs(b+1),j

∫ tf

ti

P [Xρ =
b∑

f=1

ds(f),s(f+1)]dρ (11)

The probability that the intruder will pass node j between times ti and tf before reaching the base is:

Pint(j, s, ti, tf ) =

|s|−1∑
b=1

(1− 1s(1:b)(n+ 1))δs(b+1),j

∫ tf

ti

P [Xρ =
b∑

f=1

ds(f),s(f+1)]dρ (12)

where 1s(1:b)(n+ 1) is the indicator function.



Sensors 2015, 15 1374

A set of paths S is introduced, where S(a) indicates the ath path within the set and S(a, f) indicates
the f th node visited in the ath path within the set. P (S(a)) is the probability of the ath path occurring
in the set where

∑|S|
a=1 P (S(a)) = 1; P (S(a)) is computed using the Markov model for the intruder’s

motion along the road network. Thus, the probability that the intruder will pass node j between times ti
and tf before reaching the base given a set of paths S is:

Pint(j, S, ti, tf ) =

|S|∑
a=1

P (S(a))

|S(a)|−1∑
b=1

(1−1S(a,1:b)(n+1))δS(a,b+1),j

∫ tf

ti

P [Xρ =
b∑

f=1

dS(a,f),S(a,f+1)]dρ

(13)

2.3.2. Probability of Intruder Interception

Let gi(j, k) be the Euclidean distance between the positions of UAV i at steps j and k. Given the
probability of an intruder passing a UGS during a certain time window, the probability of intruder
interception can be calculated by accounting for the UAV locations:

Pcapture(S, y(l), y(l + 1)) =
m∑
j=1

αj × Pint(pj(l + 1), S, τ(l), τ(l + 1)) (14)

where: αj =

{
1 if gj(l, l + 1)=0
0 otherwise

.

This equation consists of a sum over all of the UAVs, where j indicates the UAV index. αj is only
one when UAV j is loitering over a UGS during the step, in which case, the probability of an intruder
passing the node where the UAV is located during the time window of the step is added.

3. Problem Formulation

Using the models for the defenders and intruders presented in the previous section, the problem is
now formulated. Given the UAV states’ at the current step, the UGSs’ revisit deadlines and the results
from the UGSs’ queries, the UAVs are to find paths that satisfy the revisit deadlines and maximize the
probability of intercepting the intruder. This revisit deadline satisfaction version of the problem does not
allow for missing any revisit deadline and, hence, limits the UAVs’ ability to pursue the intruder.

Thus, a revisit deadline optimization version problem is formulated to give the UAVs flexibility in
meeting revisit deadlines and pursuing the intruder. Instead of satisfying the revisit deadlines, the amount
by which revisit deadlines are missed is minimized. Let tmission be the duration of the UAVs’ base
defense mission. Let Sl be the set of possible intruder paths given the most recent intruder detection at
step l. Let bhc(u, t) indicate the smallest step in sequence u of UAV actions where τ(bhc(u, t)) ≥ t. Let
x̃i(t) and x˜i(t), respectively, be the slack time left and the slack time overdue at time t,

x̃i(t) =
(|xi(t)|+ xi(t))

2
(15)

x˜i(t) =
(|xi(t)| − xi(t))

2
(16)
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Let β be the cost of not capturing the intruder, and let γ be the cost associated with missing a deadline,
where β > 0 and γ > 0. Let C(l) be the cost of the UAV actions taken at step l,

C(l) =β × (τ(l + 1)− τ(l))× (1− Pcapture(Sl, y(l), y(l + 1))

+
γ

n
×

n∑
i=1

(τ(l + 1)− τ(l)− x̃i(τ(l)))×
x˜i(τ(l + 1)) + x˜i(τ(l))

2
(17)

The first component of the cost penalizes the UAVs for not intercepting the intruder over the course
of the step. The second component of the cost penalizes revisit deadlines that are overdue by adding the
integral of the slack time missed over the course of the step.

Based on the cost function above, the revisit deadline optimization version of
the problem is formulated as follows: the central authority is to find a sequence
uj(k), 1 ≤ j ≤ m,k ∈ N, such that, under Equations (1)–(6),

∑∑∑bhc(u,tmission)
k=1 C(k) is

minimized and 0 ≤ t ≤ tmission,1 ≤ j ≤ m, fj(t) ≥ 0.

3.1. Problem Complexity

Proposition 1. The revisit deadline satisfaction version problem of cooperative surveillance and pursuit
is NP-hard.

Proof. If no intruders are present in the road network, then an optimal solution is one where the slack
times are kept positive. The problem of keeping slack times positive for a single UAV is the persistent
visitation problem and is proven to be NP-complete in [25]. The persistent visitation problem can be
reduced to the problem of cooperative surveillance and pursuit by selecting one UAV to patrol the
same graph with the same revisit deadlines without intruders present. Thus, the problem of cooperative
surveillance and pursuit is NP-hard.

Corollary 2. The revisit deadline optimization version problem of cooperative surveillance and pursuit
is NP-hard.

4. UAV Path Selection

The problem is NP-hard, hence a heuristic algorithm is used to select the paths of the UAVs. This
algorithm searches ahead for a sequence of UAV actions that minimizes the cost function within a certain
time window and executes the first set of UAV actions in the sequence.

4.1. System Structure

The algorithm used to simulate the defenders’ system for a cooperative surveillance and pursuit
problem is provided in Algorithm 1. The states are first initialized (Lines 1–3); then at each step,
the possible intruder paths within tsearch are computed (Line 5), followed by the computation of the
minimal cost action for the UAVs within the same time horizon using the possible intruder paths (Line 6).
In addition, at each step k, new detections are added from the UGS queries (Lines 9–11), stale queries
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rejected (Lines 12–16) and UGS queries without detections added (Lines 17–18). A UGS query is
characterized by the status of the UGS, the time of the detection if one occurred (otherwise, the time
of the query) and the index of the queried UGS. The resulting data from querying the UGSs is used
in the intruder path generation process in the next time step. This process of finding intruder paths,
selecting UAV actions and gathering UGSs queries is repeated until the mission completion time is
reached (Line 4).

Algorithm 1: Defenders’ system for the cooperative surveillance and pursuit problem.

Data: G(N,E),r,d,m,v,F ,ḟc,tmission,tsearch,tstale
1 k ← 0; t← 0

2 (y(k), f(t), x(t))← (Equation (1))

3 tD ← ∅;nD ← ∅;TU ← ∅;NU ← ∅
4 while τ(k) < tmission do
5 (Sk, P (Sk))← paths(nD, 1, tD, tD, TU , NU , τ(k) + tsearch, ∅, ∅)
6 u(k)← uavsAction(y(k), f(·), x(·), tsearch, Sk, P (Sk))

7 (y(k + 1), f(·), x(·))← (Equations (2)− (6)), y(k), u(k)

8 k ← k + 1; t← τ(k + 1)

9 for (detection) ∈ queries(k) do
10 if (detection).t > tD then
11 (tD, nD)← (detection)

12 if tD + tstale < τ(k) then
13 tD ← ∅;nD ← ∅;TU ← ∅;NU ← ∅
14 for (tU , nU) ∈ (TU , NU) do
15 if tU ≤ (τ(k)− tstale) then
16 (TU , NU)← (TU , NU) \ (tU , nU)

17 for (¬detection) ∈ queries(k) do
18 (TU , NU)← (TU , NU) ∪ (¬detection)

Result: uj(·)

4.2. Intruder Path Generation

Possible intruder paths are generated using the information from UGS queries. The central authority
stores the time and UGS index of the most recent intruder detection. It also stores the times and UGS
indices of recent UGS queries without detections. This information is used to generate the potential
intruder paths at each step using a recursive breadth first search methodology. If a detection is too stale,
then it is ignored. In simulations, the threshold for a detection to be considered stale was selected to be
half the mean intruder travel time between the two UGSs most distant from one another.

A recursive algorithm is used to compute the possible intruder paths (Algorithm 2); this algorithm
is used by the heuristic to assist in its decision making process. This algorithm to find intruder paths
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is the method by which the heuristic uses the information obtained from the UGSs. The input of the
algorithm is the current candidate path for the intruder (which at the start of the algorithm’s execution,
is the most recent detection). At each iteration in the search, the nodes adjacent to the last node of the
current working path, s, are obtained (Line 1). Possible travel times to these adjacent nodes are then
computed using the intruder’s velocity probability distribution. If any of the visits to the adjacent nodes
violate the constraints set by recent UGS queries without detections, then they are removed (Lines 2–10).
Valid adjacent nodes are then appended to the current working path (Lines 11–12). If the minimum travel
time of the new path is larger than the search depth, then the path is admitted to the set of possible paths
(Lines 14–15); otherwise, the search continues for that path (Lines 16–17). When all of the candidate
paths reach the search depth, the algorithm terminates and returns the possible intruder paths. These
possible intruder paths are then used to select the actions of the UAVs.

Algorithm 2: The paths()algorithm to find possible intruder paths.
Data: s,p,tmin,tmax,TU ,NU ,tf ,S,P (S)

1 Γ← adjacentNodes(s(|s|), G)); l← |Γ|
2 while l > 0 do
3 T ′max(l)← tmax +

ds(|s|),Γ(l)

min(vint)

4 for (tU , nU) ∈ (TU , NU) do
5 if Γ(l) = nU then
6 if T ′max(l) ≤ tU then
7 Γ← Γ \ {Γ(l)}
8 T ′max ← T ′max \ {T ′max(l)}

9 break

10 l← (l − 1)

11 for l← 1 to |Γ| do
12 s′ ← [s Γ(l)]; p′ ← p× 1

|Γ|

13 t′min ← tmin +
ds(|s|),Γ(l)

max(vint)

14 if t′min ≥ tf then
15 S ← S ∪ {s′};P (S = s′)← p′

16 else
17 (S, P (S))← paths(s′, p′, t′min, T

′
max(l), TU , NU , tf , S, P (S))

Result: S, P (S)

4.3. Selection of UAV Actions

The following algorithm is used by the heuristic to make its decisions. The algorithm starts by
searching for all possible sequences of actions for the team of UAVs within the search horizon tsearch.
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For each sequence of actions available to the team of UAVs, ũ, it then assesses the cost using the
following equation:

bhc(ũ,tsearch)∑
l=k

C(l) (18)

where k is the current step. The cost calculations use the intruder paths generated earlier.
The algorithm starts by using the current state of the UAVs to compute feasible actions. The action

is then applied, and the corresponding UAV states and costs are computed. These actions, states and
costs are then added to sets of candidate sequences of actions, candidate states of the UAVs after the
application of the corresponding sequence of actions and candidate costs after the application of the
corresponding sequence of actions. The algorithm then proceeds to iterate over the set of candidate
sequences of actions for the UAVs.

The procedure for computing potential sequences of actions and their costs is described in
Algorithm 3. Several intermediate variables are used: Ũ is the working set of sequences of UAV actions;
W is the corresponding set of states after the sequences of actions in Ũ have been applied; and Θ is the
set of costs for the sequences of actions. u is the current minimal cost sequence of actions, and φ is the
current minimal cost. These variables are initialized (Lines 1–2). The algorithm then proceeds to loop
over the working set of sequences of UAV actions until none remain (Line 3). At each iteration, the first
elements in the working sets of states, sequences of actions and costs are obtained and removed from
their parent sets (Lines 4–5). The set of possible actions, Z, given the current working state w ∈ W is
then computed (Lines 6–14). For each possible action for the team of UAVs, z ∈ Z, the next state, λ, is
computed (Line 15). If λ results in positive fuel for all of the UAVs and has reached the search depth,
then its cost is computed (Lines 16–17); if that cost is smaller than the current minimal cost, then the
current minimal cost sequence of actions is set to the sequence of actions that resulted in λ (Lines 18–19).
If λ results in positive fuel for all of the UAVs without reaching the search depth, then the working state,
sequence of actions and cost are added to the corresponding parent working sets (Lines 20–24). The
algorithm terminates when the set of candidate sequences of UAV actions is empty (i.e., all feasible
actions in the search horizon have been considered) and returns the minimal cost sequence of actions.
The heuristic directs the UAVs to take the first step in this minimal cost sequence of actions; this step
results in the UAVs visiting or loitering above certain UGSs, thereby obtaining new information from
the UGSs and possibly capturing an image of the intruder. The possibility of imaging the intruder exists
when a UAV is loitering above a UGS; the capture of an image is triggered when the UGS which the
UAV is loitering detects the intruder.

4.4. Algorithm Completeness

The search depth for the UAV actions affects the existence of solutions; if the search depth is less than
the endurance of the UAVs, tsearch < (F/ḟc), then there is no guarantee that the generated paths will
lead to the satisfaction of the UAVs’ fuel constraints. If tsearch ≥ tmission, then the heuristic is complete,
i.e., it will find a solution if one exists.
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Algorithm 3: The uavsAction() heuristic to find the minimal cost action for the UAVs within a given
search horizon.

Data: y(k),f(·),x(·),S,P (S)

1 W ← {(y(k), f(·), x(·))}
2 Ũ ← ∅; Θ← ∅;u← ∅;φ←∞
3 while |W | > 0 do
4 w ← W (1); ũ← Ũ(1); θ ← Θ(1)

5 W ← W \ {w}; Ũ ← Ũ \ {ũ}; Θ← Θ \ {θ}
6 Z ← ∅
7 if q1(w.p1) = 0 then
8 Z ← N ∪ {n+ 1}

9 for l← 2 to m do
10 if ql(w.pl) = 0 then
11 Z ← Z × {N ∪ {n+ 1}}
12 else
13 Z ← Z × ∅

14 for z ∈ Z do
15 λ← (Equations (2)− (6)), w, z

16 if (∀j, λ.fj(λ.τ) ≥ 0) ∧ (λ.τ ≥ τ(k) + tsearch) then
17 θ′ ← θ + (Equation(17)), S, P (S), w, λ

18 if θ′ < φ then
19 u← [ũ z];φ← θ′

20 else if ∀j, λ.fj(κ.τ) ≥ 0 then
21 θ′ ← θ + (Equation (17)), S, P (S), w, λ

22 if θ′ < φ then
23 W ← W ∪ {λ}; Ũ ← Ũ ∪ [ũ z]

24 Θ← Θ ∪ {θ′}

Result: u

4.5. Algorithm Complexity

The topology of the road network, the number of UAVs, the UAVs’ velocity, the mean intruder
velocity and tsearch affect the algorithm complexity. Let d̄ be the mean distance between any two UGSs.
By inspection, the time complexity of the heuristic per step is:

O

(
|E|

tsearch×µv
d̄ +

(
n!

m!(n−m)!

) tsearch×v
d̄

)
(19)
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The complexity increases polynomially with respect to the number of UGS and the number of
roads, increases exponentially with respect to the vehicle velocities and the search depth and decreases
exponentially with respect to the mean distance between any two UGSs.

5. Simulations

To illustrate the performance of the uavsAction() heuristic, several simulations with varying
configurations are shown. A local search heuristic is used as a baseline comparison to the uavsAction()

heuristic developed in the previous sections. The local search heuristic is detailed in Appendix A.
Four scenarios are considered: Scenario A2 occurs in Area A with a UAV-to-intruder velocity ratio

of two; Scenario A3 occurs in Area A with a UAV-to-intruder velocity ratio of three; Scenario B1
occurs in Area B with a UAV-to-intruder velocity ratio of one; and Scenario B2 occurs in Area B with
a UAV-to-intruder velocity ratio of two. Two UAVs are operating in Area A, while three UAVs are
operating in Area B; UAV fuel consumption is not accounted for in these simulations. Visualizations of
Areas A and B are shown in Figure 2. Detailed parameters for the scenarios are given in Tables 1 and 2;
these tables contain the locations of the base and UGSs, revisit deadlines for the UGSs and velocity for
the UAVs and intruders.

1
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Figure 2. Visualization with base, UGSs and roads of Scenario A (left) and B (right).

Table 1. Base and unattended ground sensor (UGS) parameters for Scenarios A and B.

Scenarios A Scenarios B

Destination ξi ζi ri ξi ζi ri

Base 6 6 N/A 6 6 N/A
UGS 1 94.66 70.33 11.4 150.03 56.21 8.1
UGS 2 117.05 109.94 12.4 162.18 124.23 10.7
UGS 3 57.17 151.44 10.5 37.41 72.06 3.0
UGS 4 70.00 100.00 2.6 117.54 131.08 8.4
UGS 5 10.79 106.16 10.8 19.65 110.68 9.5
UGS 6 186.80 25.98 8.3 44.29 4.66 7.1
UGS 7 93.88 2.38 5.6 148.70 107.66 12.6
UGS 8 40.00 50.00 7.0 N/A N/A N/A
UGS 9 140.00 42.00 11.0 N/A N/A N/A
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Table 2. Vehicle parameters for Scenarios A and B.

Scenario A2 Scenario A3 Scenario B1 Scenario B2

Vehicle µv σv µv σv µv σv µv σv

Intruder 37.5 1.57 25 1.57 25 2.33 25 2.33
UAVs 75 0 75 0 25 0 50 0

The metric used to assess the performance of the approaches is the intruder capture index. The
intruder capture index is the number of intruders whose image was captured subtracted by the number
of intruders that reached the base divided by the total number of intruders over the course of the
mission. Three cost configurations, indicated by (β, γ), are considered: (1, tmission), (tmission, 1),
(t2mission, 1), where the mission time, tmission, is 30 in the simulations. Missing revisit deadlines is
weighted heavily in the first cost configuration, while not capturing an image of the intruder is weighted
heavily in the last cost configuration. Eighty simulations were run per search depth per scenario per
cost configuration; Figures 3–6 show the average intruder capture index (represented on the ordinate)
for these 80 simulations for the three different cost configurations (represented by the three different line
styles) as a function of search depth for Scenarios A and B (represented on the abscissa).

Figure 3. Intruder capture index for Scenario A2 using uavsAction() (left) and
localSearch() (right).

Figure 4. Intruder capture index for Scenario A3 using uavsAction() (left) and
localSearch() (right).
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Figure 5. Intruder capture index for Scenario B1 using uavsAction() (left) and
localSearch() (right).

Figure 6. Intruder capture index for Scenario B2 using uavsAction() (left) and
localSearch() (right).

In the left subfigures of Figures 3–6, where uavsAction() is used, the intruder capture index increases
as a function of search depth for all cost functions. The intruder capture index for localSearch()

(right subfigures of Figures 3–6) does not increase significantly with a larger search depth. While
uavsAction() and localSearch() perform similarly for short search depths, uavsAction() performs
better than localSearch() for larger search depths.

For Scenarios A2, A3 and B2 (Figures 3, 4 and 6), weighting intruder capture heavily when using
uavsAction() resulted in more captures for large search depths, while only a marginal difference
between cost configurations is seen for small search depths. In Scenario B1 (Figure 5), weighting missed
revisit deadlines more heavily for uavsAction() resulted in more captures for search depths less than
0.9% of the mission completion time. The performance of localSearch() is not significantly affected by
different cost configurations.

In Scenario A, an optimal search depth is seen for both velocity advantages at 1.05% of the mission
completion time for uavsAction(). An optimal search depth is not seen in Scenario B; however, it may
occur at a search depth greater than performed in the simulations. As expected, the intruder capture
indices in Scenario A3 are larger than in Scenario A2, i.e., the UAVs perform better when they are faster.
This trait is also seen when comparing Scenario B2 to Scenario B1. The UAVs do not perform well
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when they do not have a velocity advantage (Figure 5), even when they are more numerous. When the
UAVs are faster than the intruder and the topography is advantageous, as is the case in Scenario B, they
can perform very well (Figure 6).

Videos of simulations for a variety of other scenarios can be found at [29].

6. Discussion

The performance of the uavsAction() heuristic largely depends on the problem instance, as can be
seen from the differences in the results from the scenarios presented. In the simulations, the UAVs
perform better with a larger velocity advantage compared to the intruder; this behavior is expected in all
scenarios. Problem instances with bottlenecks in the road network topology lead to better performance,
since the UAVs’ pursuit and interception of the intruder are simplified. Topologies with highly connected
nodes close together lead to poorer performance, since the UAVs cannot adequately pursue the intruder.
The effect of the topology on the performance of the heuristic highlights the importance of the selection
of UGSs’ locations.

The simulations demonstrate that the heuristic can be used to plan the paths of UAVs in cooperative
surveillance and pursuit tasks. Cooperative surveillance and pursuit systems, such as the motivating
Talisman Saber exercise, are realistic and can be constructed with current technology. Details on a UAV
and UGS system to monitor and pursue intruders for the Talisman Saber exercise is provided in [22]. This
system uses small, commercially available UAVs and small Doppler radars as UGSs. UAVs and UGSs
communicate using WiFi radios and the UAVs capture images of the intruder using a gimballed video
camera. The Talisman Saber area is approximately 2450 km2, and the road network within the area is
sparse. The velocity of the UAVs ranges between 50 km/h and 100 km/h, and typical cruising altitude
ranges between 60 m and 900 m, which is within the 1-km communication range of the UGSs’ WiFi
radios. With these parameters, the simulations shown in Section 5 can be viewed as taking place in an
area nine-times larger than the Talisman Saber area or with UAVs that travel at a third of the velocity
of the commercially available UAVs discussed. Simulating faster UAVs in a smaller area with more
UGSs, similar to Talisman Saber, takes much longer to simulate, because of the complexity of the
heuristic: in Equation (19), faster UAVs and smaller areas increase the computation time exponentially,
and increasing the network size increases the computation time polynomially.

While this work is motivated by the Talisman Saber exercise, the heuristic can be used for other
monitoring and pursuit tasks occurring on graphs using vehicles and stationary sensors with the
same assumptions and dynamics that are described above; examples of such tasks include a pollutant
monitoring task in a body of water using autonomous boats in conjunction with stationary buoys or the
monitoring of a forest fire or flood using appropriate sensors on the ground and autonomous aircraft to
visit these sensors.

The assumptions made in this work allow for paths to be computed while still capturing the essence
of the problem; however, they do not allow for the modeling of certain features that do occur in real
scenarios. For example, the UAV constant velocity and constant fuel consumption rate assumption does
not handle wind disturbances. Wind disturbances affect the speed of the UAVs and alter the arrival
times of UAVs at UGSs. If the wind is steady, the decision making heuristic can account for wind in its
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computations. If the wind is stochastic, i.e., turbulence, the constant fuel consumption rate assumption
needs to be relaxed, so that more fuel can be consumed during turbulence to allow the vehicles to remain
on their nominal paths. The assumption that the intruder moves according to a Markov chain may be
valid in some scenarios, but does not allow for intelligent intruder behavior, such as reacting to seeing
a UAV flying overhead or attempting to deceive the UAVs. The assumptions made for communication
reflect the capabilities of the hardware used for the Talisman Saber exercise; however, they do not handle
disturbances, such as communication jamming.

7. Conclusions

In this paper, a path planning problem for a team of UAVs patrolling a network of roads and pursuing
intruders using UGSs is formulated. The problem is shown to be NP-hard. A heuristic algorithm to solve
the problem is presented, and its completeness and complexity are assessed. The heuristic primarily
plans the paths for the UAVs; however, it also interacts with the UGSs by acquiring information from
the UGSs through the UAVs, using the information to predict possible intruder paths and relying on the
UGSs to trigger the capture of an image of the intruder by a loitering UAV.

The heuristic demonstrates that intercepting the intruder is possible using a sensing scheme relying
entirely on UGSs. Given a good topology for the road network and well selected revisit deadlines, such
as Scenario B in Section 5, the heuristic performs well and can intercept a majority of the intruders. The
heuristic also exhibits intuitive behavior at times, such as orbiting several UGSs nearby and trapping the
intruder, thereby forcing an interception.

In future work, other heuristics to solve the problem and decentralized approaches will be investigated.
The ability to handle multiple intruders simultaneously will also be included. This could be achieved by
the UGSs tagging their measurements to certain intruders. Variable levels of communication between
the UGSs and UAVs will also be considered.
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Appendix

A. Local Search Heuristic

Algorithm A1: The localSearch() heuristic to find a local minimal cost action for the UAVs.
Data: y(k),f(·),x(·),S,P (S), searchinit, searchiter

1 Ũ ← ∅;u← ∅;φ←∞
2 for l← 1 to searchinit do
3 κ← Generate a feasible sequence of actions of a given depth
4 S, P (S)← Compute possible intruder paths for the duration of the sequence of actions
5 i← −1

6 Ũ ← Compute the k-neighborhood of the sequence of actions
7 S, P (S)← Extend possible intruder paths to the maximum end time of the k-neighborhood
8 Ũ .cost← Compute costs for all actions
9 κ2 ← min

ũ∈Ũ
(ũ.cost)

10 while κ2 6= κ ∧ i < searchiter do
11 κ← κ2

12 Ũ ← Compute the k-neighborhood of the sequence of actions
13 S, P (S)← Extend possible intruder paths to the maximum end time of the k-neighborhood
14 Ũ .cost← Compute costs for all actions
15 κ2 ← min

ũ∈Ũ
(ũ.cost)

16 if searchiter > 0 ∧ i < 0 then
17 i← i+ 2

18 else if searchiter > 0 then
19 i← i+ 1

20 if κ2.cost < φ then
21 u← κ2

Result: u

For comparison, a local search heuristic is also implemented to solve this problem (Algorithm A1).
At each step, the algorithm randomly generates a feasible sequence of actions of a given depth
(Line 3) and computes possible intruder paths that can occur in the same time window (Line 4). The
k-neighborhood of the initial sequence of actions is then computed (Line 6) for k = 2, and the possible
intruder paths are extended due to the increased time window (Line 7). For each sequence of actions,
the corresponding cost is computed using the intruder paths (Line 8), and the minimum cost sequence of
actions is extracted (Line 9). This procedure of generating a k-neighborhood and selecting the optimal
sequence is repeated until convergence of the minimal cost sequence of actions or a number of iterations,
searchiter, is reached (Lines 10–21). The overall procedure can also be repeated for multiple initial
random feasible sequences of actions to further increase the search space. searchinit indicates the
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number of these initial guesses. For the search to continue until convergence, searchiter is indicated
as zero. The simulations shown in this paper use searchinit = 5 and searchiter = 0.
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