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Abstract: In order to develop security systems for identity authentication, face recognition
(FR) technology has been applied. One of the main problems of applying FR technology is
that the systems are especially vulnerable to attacks with spoofing faces (e.g., 2D pictures).
To defend from these attacks and to enhance the reliability of FR systems, many
anti-spoofing approaches have been recently developed. In this paper, we propose a method
for face liveness detection using the effect of defocus. From two images sequentially
taken at different focuses, three features, focus, power histogram and gradient location and
orientation histogram (GLOH), are extracted. Afterwards, we detect forged faces through
the feature-level fusion approach. For reliable performance verification, we develop two
databases with a handheld digital camera and a webcam. The proposed method achieves a
3.29% half total error rate (HTER) at a given depth of field (DoF) and can be extended to
camera-equipped devices, like smartphones.

Keywords: face liveness detection; anti-spoofing; defocus; 2D fake face; webcam

1. Introduction

At present, many people deal with personal business using portable devices. From unlocking cellular
phones to financial business transactions, people can easily conduct their individual business tasks
through such a device. Due to this trend, personal authentication has become a significant issue [1].
Instead of using a simple PIN code, industries have developed stronger security systems with biometric
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authorization technology [2]. Biometric traits, such as face, iris and fingerprint, are very powerful factors
to protect one’s private information.

However, attempts to invade security systems and steal personal information have been increasing.
One type of these attacks involves using fake identities. Spoofing faces and fingerprints are threatening
security systems and privacy. This would not matter if current face recognition (FR) systems were
secure, but current systems cannot distinguish fake faces from real faces. In some cases, the FR
system embedded in cellular phones gives approvals to forged faces. This phenomenon is an example
of weakness in the biometric system. If this problem remains unsolved, anyone will be able to
easily obtain others’ personal information in order to commit identity-related crimes. For this reason,
technological defense against spoofing attacks is necessary, so as to protect personal systems and users’
private data. Over the last decade, researchers have shown steady progress in developing anti-spoofing
technologies [3]. Most of these methods concentrate on exploiting features obtained from the analysis
of textures, spectrums and motion in order to detect face liveness.

In this paper, we propose a new method to secure face identification systems from forged 2D
photos. The key factor of our methods is that we utilize the camera function, variable focusing. In
shape-from-focus, it is possible to construct 3D images using focus measures [4,5]. Even though we
need not recover the 3D depth images, we use the characteristics of the defocusing technique in order to
predict the existence of the depth information. By adjusting the focusing parameters, parts of the image
that are not in focus become blurry. With this function, we can evaluate differences in the degree of
focus between real faces and fake faces and use this information to detect face liveness. To evaluate our
method, we organized two databases using a handheld digital camera and a webcam.

The remainder of this paper is organized as follows. In Section 2, we discuss previous studies on face
liveness detection and the theoretical background of camera focusing. Our proposed methodologies are
stated in Section 3. In Section 4, experimental results are shown and the details are discussed. Finally,
concluding remarks are provided in Section 5.

2. Related Work

2.1. Countermeasures against Spoofing Faces

Numerous approaches to minimize vulnerability to attacks using spoofing faces have been proposed.
In early research, intrusive methods that request user cooperation, such as speaking phrases and shaking
one’s head [6], were developed. However, these approaches cause users inconvenience and rely on users’
cooperation. For this reason, many researchers have attempted to develop non-intrusive methods.

Depending on the type of attack, methods can be categorized into three groups: 2D static attacks
(facial photographs), 2D dynamic attacks (videos) and 3D attacks (masks). Skills and devices for
disguising one’s identity have evolved gradually. Masks and videos are examples of advanced spoof
attacks. Some studies have focused on protecting FR systems from these advanced attacks [7,8].
However, due to the difficulty and cost of obtaining such advanced tools, 2D static attacks, such as
photographs, have been widely used by attackers. In this chapter, we review studies for detecting 2D
facial photo-based spoof attacks.
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There are three main spoof detection approaches, depending on the characteristics of input faces. The
first approach is based on textures. Real and fake faces have different texture characteristics. Some
studies have used texture to detect forged faces. Kim et al. [9] applied local binary patterns (LBP) for
texture analysis and power spectrum for frequency analysis. Määttä et al. [10] and Bai et al. [11] also
detected face liveness by examining micro texture with multiscale LBP. Peixoto et al. [12] proposed a
method to detect and maintain edges (high-middle frequencies) with different Gaussian characteristics
under poor illumination conditions. In [13], the authors extracted essential information for discrimination
using a Lambertian model. Singh et al. [14] proposed a method to classify real faces based on a
second-order gradient. This approach focuses on differences between skin surfaces of real and fake faces.
Kant et al. [15] presented a real-time solution using the skin elasticity of the human face. Approaches
with a single image have advantages in terms of low capacity and simplicity.

The second approach uses motion information. Signs of liveness, such as eye blink and head
movements, are clues to distinguish motionless spoofing faces. Image sequences can be used to perceive
movements. These factors are exploited intuitively [16–20]. In addition, optical flow and various
illumination approaches are helpful to analyze the differences between real and fake faces [21–25].
Applying the entropies of RGB color spaces is one factor in face liveness detection [26]. To make a
robust system, several methods use a combination of static and dynamic images [18,27].

The last approach is based on 3D facial information. The obvious difference between a real face and a
fake face is the presence or absence of depth information. Human faces have curves, while photos are flat.
By considering this feature, researchers have classified spoofing attacks. Wang et al. [28] suggested an
approach to detect face liveness by recovering sparse 3D facial models, and Lagorio et al. [29] presented
a solution based on 3D facial shape analysis.

2.2. Background Related to Focusing

Unlike previous research, our method utilizes the effect of defocus. Defocusing is exploited to
estimate the depth in an image [4,5,30]. The degree of focus is determined by the depth of field (DoF), the
range between the nearest and farthest objects in a given focal plane. Entities in the DoF are perceived
to be sharp. In order to emphasize the effect of defocus, the DoF should be narrow. There are three
parameters that modulate DoF, and Figure 1 shows those conditions for shallow DoF [31]. The first
factor is the distance between the camera and the subject; a short distance produces a shallow DoF. The
second factor is the focal length, which is adjusted to be longer for a shallow DoF. The last factor is the
lens aperture of the camera, which is made wider to produce a shallow DoF. Using these options, we can
achieve images with a narrow DoF and a large variation in focus [31].

Figure 1. Factors for the adjustment of the depth of field (DoF).
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2.3. Previous Work with Variable Focusing [32]

In the previous work [32], a method for face liveness detection using variable focusing was suggested.
Two images sequentially taken at different focuses are used as input images, and focus features are
extracted. The focus feature is based on the variation of the sum modified Laplacian (SML) [33] that
represents the degrees of focusing. With the focus feature and a simple classifier, fake faces are detected.
2D printed photos are used as spoofing attacks, and a database composed of images with various focuses
is produced for evaluation. When DoF is shallow enough to make the only partial area blurred, this
method shows good results. However, at a deep DoF, the performance is deteriorated. In order to make
up for the weakness of the previous work, we propose an improved method in this paper. Extracting
local feature descriptors and frequency characteristics, as well as the focus feature from the defocused
images, we detect spoofing faces. Moreover, the quantity of the database is increased, and various
experiments are performed to achieve the best result. A detailed explanation will be described in the
following sections.

3. Proposed Methodology

In this section, we introduce new FR anti-spoofing methods using defocusing techniques. From
partially defocused images, we extract features and classify fake faces. The most significant difference
between real and fake faces is the existence of depth information. Real faces have three dimensions, with
the nose and ears being relatively far from each other. This distance can be used to adequately represent
the depth information. Depending on the object or place of focus, the ear area might or might not be
clear, as shown in Figure 2a. Unlike real faces, 2D spoofing faces are flat. There is little difference in
clarity, regardless of the focus (Figure 2b). We emphasize this characteristic in order to discriminate real
faces from 2D faces.

(a) (b)

Figure 2. Partially focused images of (a) real faces and (b) fake faces.

In order to maximize the effect of defocus, we must adjust the DoF to be shallow, as mentioned
in Section 2. However, according to the type of camera, the adjustment of DoF may not be possible.
Therefore, we obtain input images using two cameras, a handheld digital camera and a webcam. We will
explain image acquisition in the following section.

Our system is composed of three steps: image acquisition and preprocessing, feature extraction and
classification (Figure 3).
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Figure 3. Flowchart of face liveness detection using defocus.

3.1. Image Acquisition and Preprocessing

In our method, image acquisition is an important factor in performance. As mentioned in the previous
section, a narrow DoF increases the effect of defocus and assists with detecting fake faces. However, not
every camera can easily change its DoF and focal plane. If people use handheld digital cameras, such
as DSLR (digital single lens reflex) and mirrorless cameras, the DoF can be made shallow by directly
controlling camera settings and the areas of desired focus can be manually selected. However, when
users utilize webcams and cameras embedded in cellular phones, they cannot accurately manipulate the
DoF. Moreover, the position of the focal plane is inexact with such cameras. Therefore, the process of
image acquisition needs to vary with the type of camera. We will introduce two methods appropriate for
a handheld digital camera and a webcam, respectively.

3.1.1. Using a Handheld Digital Camera

With handheld digital cameras (DSLR camera, mirrorless camera, compact digital camera, etc.), it is
possible to manually control the focal plane and DoF. Hence, two sequential focused facial images are
obtained for use in these experiments: one is focused on a nose and the other on ears (Figure 2). When
we set the focus on the ears and nose, we can tap on the LCD panel or turn a focus ring in accordance
with the type of handheld digital camera. In this paper, a mirrorless camera (SONY-NEX5) is used, and
it has a focus ring. Therefore, we acquire the focused images, turning the focus ring and checking the
sharpness in the regions of the ears and nose with our eyes.

In the preprocessing step, we geometrically normalize images based on the location of the eyes [34].
In every image, the positions of faces are slightly different. For accurate comparison, faces must be
aligned. Based on the coordinates of the eyes, we translate, rotate and crop facial images. The eyes
can be automatically detected by using feature templates. In this paper, however, we select the correct
positions of the eyes manually in every image and save the coordinates. Figure 4 shows the normalized
images produced in the present study. Figure 4a,c is focused on the nose (IN ) and Figure 4b,d on the
ears (IE).
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(a) (b) (c) (d)

Figure 4. Real face images focused on (a) the nose and (b) the ear; and fake face images
focused on (c) the nose and (d) the ear.

3.1.2. Using a Webcam

The focus in a webcam is controlled by adjusting the plastic lens in and out. However, the DoF is
unknown, and it is difficult to select the focus area without the use of a supplemental program. Therefore,
unless the program is used, it is not easy to obtain images focused on either the nose or ears. In order to
acquire input images with a webcam, we approach the problem in a different way.

Although it is not possible to accurately take images focused on either the nose or ears when using
a webcam, it is possible to obtain image sequences by changing the lens motor step. Depending on
the adjustment of the lens, the focal plane varies, producing images with different focal planes. From
the image sequence collected here, we select two images, IN and IE . IN and IE denote the normalized
images for which the nose and ear area are in focus, respectively. In order to determine these images,
we detect the nose and ears and calculate the degrees of focus in those areas [4]. As mentioned before,
the centers of the eyes and the regions of the ears and nose are selected manually in this paper. When
the value of a specific area is at a maximum at the k-step, that region is in focus. Figure 5 depicts the
changes in focus values in accordance with the lens step. In Figure 5a, the nose area is in focus at the
20th step and the ears area at the 16th step. With fake faces, the steps of the maximum focus values for
the nose and ears are same, as shown in Figure 5b. This allows one to distinguish between real and fake
faces. Through this procedure and normalization, we can choose two images as IN and IE (Figure 6).

(a) (b)

Figure 5. Variations of focus measures in accordance with lens steps ((a) real face and
(b) fake face).
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(a) (b) (c) (d)

Figure 6. Normalized webcam images (real face images focused on (a) the nose and (b) the
ear; and fake face images focused on (c) the nose and (d) the ear).

3.2. Feature Extraction

To detect forged faces, features are extracted from normalized images. In this paper, we use
three feature descriptors: focus, power histogram and gradient location and orientation histogram
(GLOH) [35].

3.2.1. Focus Feature

The focus feature is related to the degree of focusing. In the previous study [32], this feature was
suggested and used for classifying fake faces. Figure 7 shows the flowchart for extracting focus features.

Figure 7. Flowchart of focus feature extraction.

Using several focus measures [4], we can numerically calculate the focus levels in each pixel. There
are various focus measures, such as Laplacian-based measures and gradient-based measures. We will
show the performance in accordance with the focus measures.

The images in Figure 8 are the results of modified Laplacian (LAPM) focus measure calculations.
LAPM is one of the focus measures introduced in [4,33]. This is presented as the sum of transformed
Laplacian filters. Figure 8a,b shows the LAPMs of a real facial image focused on the nose and ears,
and Figure 8c,d shows the LAPMs of a fake facial image focused on the nose and ears. We denote
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the LAPM of nose-focused images by LAPMN and the LAPM of ear-focused images by LAPME . In
LAPMN and LAPME , bright pixels represent high values of LAPM, and those regions are in focus with
sharp edges. On the contrary, out-of-focus regions have severe blurring, lose edge information and have
low values of LAPM. In the case of real faces, the nose area in LAPMN (Figure 8a) is brighter than that in
LAPME (Figure 8b). However, there is little difference between the LAPMN and LAPME of fake faces
(Figure 8c,d). Consequently, by computing the variations in focus measures, we can determine the
degree of focusing.

(a) (b) (c) (d)

Figure 8. Modified Laplacians (LAPMs) of real face images focused on (a) the nose and
(b) the ear, and LAPMs of fake face images focused on (c) the nose and (d) the ear.

In order to maximize the LAPM difference between regions of the nose and ears, we subtract LAPME

from LAPMN (= LAPMN − LAPME). To analyze the differences in LAPMs (DiF, difference in focus
measures) in a single dimension, we add all of the DiF in the same column. In Figure 9, blue lines
describe the cumulative sums of the DiF of real and fake faces.

(a) (b)

Figure 9. Cumulative sums of the differences (DiF) of (a) a real face and (b) a fake face.

However, these distributions are not appropriate to be used for liveness detection without any
refinement. The existence of noise affects the results. Therefore, curve fitting is performed to extract
meaningful features. The sum of the DiF of real faces has a similar shape to the curvature of a quadratic

equation, y = ax2 + bx + c. In the quadratic equation, there are three coefficients, A =
[
a b c

]T
,

and these are exploited as a feature for classification. To calculate the values of these coefficients, we
perform error minimization [32].

Figure 9 presents the results of curve fitting (red circles). The curve for the cumulative sum of DiF of
the real face is convex, as shown in Figure 9a, while that of the fake face is flat. In Figure 10, coefficients
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of quadratic equations are plotted. Blue circles are features of real faces, and red crosses are those of
spoofing faces. Depending on the range of DoF, the degree of feature overlap will change.

(a) (b)

(c) (d)

Figure 10. Distributions of focus features (DoF (a) within 4 cm, (b) within 6 cm, (c) within
10 cm and (d) within 16 cm).

3.2.2. Power Histogram Feature

Out-of-focus images have few edge components because the blurring filter eradicates the boundary.
This affects the frequency characteristics of such images. We analyze this feature to identify forged
faces. In this section, we introduce another feature, the power histogram feature, which contains spatial
frequency information. The process of extracting this feature is presented in Figure 11.

In the first step, we divide a normalized image into three subregions, as shown in Figure 12. When
a picture is taken focusing on the ears, we adjust the focal plane to include the ear area. Not only
ears, but other components in the DoF are in focus. To analyze those components, we divide the
images radially. The first subregion (subR1, Figure 12b) is the nose area, the second subregion (subR2,
Figure 12c) includes the eyes and mouth, and the third subregion (subR3, Figure 12d) contains the ears
and the contour of the chin.
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Figure 11. Flowchart of power histogram feature extraction.

(a) (b) (c) (d)

Figure 12. Subregions before extracting the power histogram ((a) original image,
(b) Subregion 1 (subR1), (c) subR2 and (d) subR3).

Using a Fourier transform, we convert subregions from the spatial domain to the frequency domain.
Figure 13 illustrates center-shifted Fourier spectrums of the three described subregions with power being
concentrated at the center of each spectrum. According to the subregion, the distributions of power are
different. In order to analyze those distributions, we calculate the percentage of power in circular regions.
We divide the frequency spectrum into several circles by allowing it to be superimposed. The percentage
of power within a circular region is computed by Equation (1) [36],

α(%) = 100× [ 1
PT

∑
u,v∈C P (u, v)]

PT =
∑U

u=1

∑V
v=1 P (u, v)

P (u, v) = real(u, v)2 + imag(u, v)2

(1)

where C is a circular region and real(u, v) and imag(u, v) are the real and imaginary parts of the
frequency component, respectively. Each spectrum has a histogram, and the value of each bin is the
percentage of power in each circular area. By concatenating three histograms, we can obtain a combined
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histogram from one image. The dimensionality of the histogram is determined by the radii of the circular
regions in the frequency spectrum. With real faces, power histograms vary depending on the focus area.
However, those of fake faces do not vary. We use the differences in the power histograms as a feature
for liveness detection.

(a) (b) (c)

Figure 13. Fourier spectrums of (a) subR1, (b) subR2 and (c) subR3.

3.2.3. GLOH Feature

We extract another feature descriptor, the gradient location and orientation histogram (GLOH) [35],
which is an extended version of scale-invariant feature transform (SIFT) [37] and makes it possible to
consider more spatial regions, as well as making feature descriptors robust and distinctive. In this paper,
we modify and apply this feature locally. Figure 14 shows the flowchart of extracting the GLOH feature.

Figure 14. Flowchart of gradient location and orientation histogram (GLOH) feature extraction.

For each Gaussian smoothed image, the gradient magnitude, GMag, and orientation, GOri, are
computed by Equation (2).
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GOri(x, y) = tan−1 I(x,y+1)−I(x,y−1)
I(x+1,y)−I(x−1,y)

GMag(x, y) =
√
(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2

(2)

Next, we divide the image into P × Q patches in order to draw features locally. Figure 15 shows how
to separate the image into patches. GLOH descriptors are derived from polar location grids in patches. As
shown in Figure 15, each patch is divided into 17 subregions (three bins in each radial direction and eight
bins in each angular direction). Note that the central subregion is not split. In a subregion, the gradient
orientations are quantized into 16 bins (Figure 16). From one patch, 17 histograms are created. We
reshape these histograms into one column vector, whose dimensionality is 272 (=17 × 16), as illustrated
in Figure 17. Finally, a 272 × P × Q-dimensional column vector is extracted from P × Q patches.
From IN and IE , two vectors, HN and HE , are acquired, and the difference between them is determined
(HN − HE). Principal component analysis (PCA) is applied to reduce the final dimensionality.

Figure 15. Patches in an image and polar location grids in a patch (patch size: 50 × 50).

Figure 16. A histogram from one radial subregion.

Figure 17. A histogram from one image patch.
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3.3. Classification

For classification, the support vector machine-radial basis function (SVM-RBF) is used [38]. The
SVM classifier learns normalized focus, power histogram and GLOH features. Furthermore, we carry
out fusion-based experiments by concatenating normalized features. Figure 18 shows the flowchart of the
feature-level fusion approach. Depending on the training data and the development data, the parameter
of the SVM classifier is determined.

Figure 18. Flowchart of the feature-level fusion approach.

4. Experimentation

Before evaluating the performances of our approaches, we collected frontal facial images from
24 subjects, because there is no open facial database that has various focusing areas. Although there
are some databases for liveness detection, they do not satisfy our requirements. Therefore, we created
two databases, one composed of images taken by a mirrorless camera (SONY-NEX5) and the other
containing images taken by a webcam (Microsoft LifeCam Studio). The difference between the two
cameras is the possibility of the accurate and delicate control of focus. With the mirrorless camera, it
is possible to focus precisely on the nose or ear area. However, the webcam makes it difficult to adjust
focus in detail, and users are not able to determine what is in focus. We will explain the processes of
acquiring databases in the next section. We printed photos for fake faces with a Fuji Zerox ApeosPort-II
C5400 printer.

For evaluations, the following measures are used.

• False acceptance rate (FAR): the proportion of fake images misclassified as real.
• False rejection rate (FRR): the proportion of real images misclassified as fake.
• Total error rate (TER): the sum of FAR and FRR. TER = FAR + FRR

• Half total error rate (HTER): half of the TER. HTER = TER/2

The performance of the proposed method is evaluated with our own databases. Databases are
randomly categorized into 3 groups: training, development and testing sets.

• Training set (30%): to be used for training the classifier.
• Development set (30%): to be used for estimating the threshold of the classifier.
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• Testing set (40%): to be used for evaluating the performance.

Thirty percent of the subjects are used for training and development, and forty percent of the subjects
are used for testing. Three groups are disjoint. That is, if images of subject ‘A’ are used for training,
they cannot be utilized for development or testing.

4.1. Experiment 1: Using the Mirrorless Camera Database

4.1.1. Data Acquisition

With the mirrorless camera, the nose and ear areas are able to be in focus, and the DoF is manually
controlled. In order to obtain images with various DoFs, we adjusted the distance between the camera
and the subject, focal length and F-stop. Figure 19 shows the ranges of the parameters. Focal lengths are
16, 28 and 35 mm, and values of F-stop are changed according to the focal lengths from f/3.2 to f/22.
Distances between the camera and the subject vary from 20 cm to 55 cm.

Figure 19. The ranges of the distance between the camera and the subject, focal length,
F-stop and DoF.

The total number of images in the mirrorless camera database is 5968 (1492 pairs of real images and
1492 pairs of fake images). The images are categorized into four groups according to the range of DoF
and are listed in Table 1. The number of males is 17 and that of females is 7.

Table 1. The number of pairs of images in the database.

Depth of
Field

within within within within
4 cm 6 cm 10 cm 16 cm

Real 336 767 1149 1492
Fake 336 767 1149 1492

The size of each normalized image is 150 by 150 pixels, and the distance between the eyes is 70 pixels.
Figure 20 shows real (a) and fake (b) samples from the database.
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(a)

(b)

Figure 20. Normalized images of (a) real and (b) fake faces.

4.1.2. Experimental Results

We carry out experiments in accordance with the types of features, and the detailed results are
described in Appendix A. The following shows the performance of the concatenated features. The
process of combining features is carried out in the feature level. For high performance, we choose
features based on the above results. Modified Laplacian (LAPM) and wavelet sum (WAVS) are used as
focus features. In the case of the power histogram feature, the radii of the circular regions are 5, 15,
30, 50 and 75. GLOH features are extracted using 75 × 75 patches without allowing overlap. In order
to reduce the dimensionality of the GLOH features, we apply PCA and use several eigenvectors whose
variances are 90%. Table 2 shows the denotations of the features.

Table 2. Denotations.

Denotation Specification

Focus (LAPM) Modified Laplacian
Focus (WAVS) Wavelet sum

Power hist Rad.ver6 (radii = 5, 15, 30, 50, 75)
GLOH Patch75, No overlapping, PCA 90%

Fusion.ver1 Focus (LAPM) + Power hist + GLOH
Fusion.ver2 Focus (WAVS) + Power hist + GLOH

Table 3 and Figures 21 and 22 illustrate the results of the fusion-based methods. When the DoF
is shallow (within 4 cm and 6 cm), the performances of focus features (LAPM and WAVS) are better
than those of other features. However, as the DoF becomes deeper, the performances of focus features
deteriorate. In the case of the GLOH and fusion-based features, the performances are maintained
compared to other features. Especially, the HTERs of the fusion-based features under 16-cm DoF are
lower than those of other features (6.27% and 6.08%). These numerical results demonstrate that the
fusion-based methods are prominent when the effect of defocusing is low.
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Table 3. Half total error rates (HTERs) (%) of the experiments with the mirrorless camera database.

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Focus (LAPM) 0.92 ± 0.40 2.25 ± 1.54 0.09 2.72 ± 0.89 3.89 ± 0.70 0.09 5.49 ± 0.95 5.66 ± 0.53 0.08 7.59 ± 1.43 9.57 ± 1.84 0.08
Focus (WAVS) 1.28 ± 0.97 2.46 ± 0.91 0.15 3.37 ± 1.32 4.09 ± 0.69 0.095 5.87 ± 0.57 6.04 ± 0.66 0.10 8.33 ± 1.40 9.90 ± 1.20 0.09

Power hist 5.15 ± 1.76 7.54 ± 1.18 0.90 6.50 ± 1.62 8.29 ± 1.42 1.00 6.98 ± 1.13 8.67 ± 1.34 0.70 9.29 ± 1.58 10.1 ± 1.96 0.75
GLOH 3.52 ± 1.24 4.79 ± 1.37 1.75 5.09 ± 0.88 6.19 ± 0.87 3.00 5.08 ± 0.88 7.00 ± 0.99 2.90 6.98 ± 1.26 7.13 ± 1.31 3.55

Fusion.ver1 2.45 ± 1.27 3.29 ± 1.44 2.30 4.06 ± 0.90 4.78 ± 1.08 3.40 3.92 ± 0.89 5.79 ± 1.05 3.65 5.58 ± 1.66 6.27 ± 1.80 4.55
Fusion.ver2 2.45 ± 1.27 3.32 ± 1.42 2.40 4.06 ± 0.89 4.76 ± 0.86 4.50 3.91 ± 0.96 5.93 ± 1.23 4.15 5.57 ± 1.62 6.08 ± 1.72 5.25

Figure 21. HTERs (%) of features.

(a) (b)

(c) (d)

Figure 22. ROC curves of the feature-level fusion (DoF (a) within 4 cm, (b) within 6 cm,
(c) within 10 cm and (d) within 16 cm).
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4.2. Experiment 2: Using the Webcam Database

4.2.1. Data Acquisition

For evaluations, we gathered facial data using Microsoft LifeCam Studio. Using the provided
program, we could control the lens motor step from 0 to 40. Therefore, one input sequence is composed
of 41 images. Among those, we choose IN and IE , as mentioned in Section 3.1.2. The distance between
the webcam and the subject is about 20 cm, so that the image can contain a whole face. The number of
real face sequences is 94. Normal prints and an HD tablet (iPad 2) are used as spoofing attacks, and the
number of sequences is 240 and 120 respectively. Five-fold cross-validation is applied for the evaluation.

4.2.2. Experimental Results

Numerical results are listed in Table 4. The good performance is maintained, even though the webcam
database cannot express depth information well compared to the mirrorless camera database. The results
of the combined features are the best, and the HTERs of them are 3.02% under normal print attack and
3.15% under HD tablet attack. These experiments show the possibility that our proposed method can
be used in security systems at a low cost and with low specification devices. Furthermore, if detailed
adjustment of the focus is possible in the device, our method can improve the performance more.

Table 4. HTERs (%) of experiments with the webcam database.

Normal Print HD Tablet
(mean ± std) (mean ± std)

Focus (LAPM) 8.29 ± 0.45 10.0 ± 0.45
Focus (WAVS) 6.48 ± 0.36 7.54 ± 0.49

Power hist 7.93 ± 0.45 7.25 ± 0.43
GLOH 6.09 ± 0.55 5.28 ± 1.06

Fusion.ver1 3.39 ± 0.46 3.30 ± 0.66
Fusion.ver2 3.02 ± 0.47 3.15 ± 0.45

4.3. Discussion

Due to the characteristic of our proposed method, it is impossible to apply our method to open
databases, such as the CASIA database [39] and the Replay-Attack database [40]. Therefore,
we conducted comparative experiments by applying other methods to our own database. Table 5
demonstrates the performance comparison between our proposed method and other methods.

Other methods [9,41,42] detect the liveness based on textural analysis (local binary patterns) or
frequency components (difference of Gaussian, power spectrum). Even though they have an advantage
in terms of using a single image, the performances for our own database are not remarkable, regardless of
the DoF; whereas the previous work [32] shows a good result relatively at the within 4-cm DoF. However,
when the DoF is deep, the performance of [32] deteriorates. This represents that the performance of the
previous system is determined depending on the method of input picture collection with great effects
on defocus.
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Table 5. Performance comparison (HTER (%)).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Zhang [41] 29.2 ± 4.12 39.2 ± 3.55 2.00 26.9 ± 4.45 33.9 ± 4.00 2.40 29.3 ± 2.99 35.4 ± 5.70 2.95 25.7 ± 4.70 36.9 ± 4.41 3.85
Kim [9] 12.6 ± 2.86 17.2 ± 3.70 15.0 18.8 ± 5.74 18.8 ± 5.55 18.5 17.65 ± 3.35 20.4 ± 4.05 17.3 23.9 ± 5.28 18.9 ± 6.03 17.2

Määttä [42] 19.7 ± 7.11 22.2 ± 4.35 - 20.4 ± 5.64 21.6 ± 2.52 - 24.4 ± 4.54 23.1 ± 5.40 - 22.6 ± 6.99 21.0 ± 3.14 -
Kim [32] 9.34 ± 4.07 8.39 ± 2.63 - 11.9 ± 1.90 12.1 ± 1.59 - 15.9 ± 1.97 16.3 ± 2.27 - 19.1 ± 2.05 20.8 ± 2.10 -

Fusion.ver1 2.45 ± 1.31 3.39 ± 1.46 2.30 4.51 ± 1.04 4.87 ± 1.13 3.45 4.07 ± 1.03 5.60 ± 0.83 3.45 5.19 ± 1.60 6.71 ± 1.65 4.55
Fusion.ver2 2.50 ± 1.33 3.39 ± 1.45 2.35 4.55 ± 0.92 4.80 ± 0.87 3.65 4.09 ± 1.07 5.82 ± 1.13 4.05 5.20 ± 1.57 6.51 ± 1.57 5.25

In order to overcome this limitation, we propose our system by considering two factors. The first is
by supplementing features. By adding other feature descriptors, we try to maintain good performance,
even though the DoF becomes deeper. In the case of the GLOH feature [35], it has high matching scores
for images with severe blur, whereas local features used in other methods [9,41,42] are not proper for the
defocused images to be compared to the GLOH feature descriptor. The influence of the GLOH feature
can be confirmed in the previous Section 4.1.2. In Figure 21, the performances of the focus and power
histogram features are deteriorated in accordance with the increase of the DoF. However, the performance
of the GLOH feature is maintained. As a result, we can achieve 6.51% HTER (feature-fusion) at a DoF within

16 cm by using additional features specialized for the defocused images. These results are better than
the HTERs of other methods and the previous method [32], which uses only a focus feature of 20.8%.

The second way to mitigate the weakness of the previous study [32] is the use of the webcam database.
Digital cameras, such as DSLR and mirrorless cameras, have high specifications and make it possible
to manually adjust the DoF and focusing areas. However, due to their high cost, people might be
unwilling to use digital cameras for image acquisition in anti-spoofing algorithms. Webcams are cheaper
than digital cameras and are utilized broadly. With the webcam, we created a database and conducted
experiments. As a result, we accomplish 3.02% HTER with the combined feature. The performance
with the webcam database is similar to that with the mirrorless camera database.

Even though we show the good performance for liveness detection, our method has a disadvantage
in the process of acquiring and normalizing images. In this paper, we set the focus on the ears and
nose and find the centers of the eyes manually. In order to apply our proposed method to the security
systems at low cost and with low specification devices, like smartphones, facial components must be
detected automatically. Recently, many studies for feature point extraction have been in progress, and
most cameras and smartphones have a face priority auto focusing function [43–45], which helps to obtain
face-focused images by automatically controlling the lens actuator. If these technologies are utilized, the
limitation of our method will be settled and applicable to the devices. Moreover, it will strengthen the
security of smartphones.

5. Conclusion and Future Work

We proposed a face liveness detection method based on the characteristics of defocus. Our method
pays attention to the difference between the properties of real and 2D fake faces. We use focus, power
histogram and GLOH as feature descriptors and classify spoofing faces in terms of the feature-level
fusion processes. Our experimental results show 3.29% HTER when the DoF of images is within 4 cm.
Moreover, by applying various features, we overcome the limitation of DoF without adding any other
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sensors. Furthermore, through experiments with a webcam, we confirm that the good performance of
our method is maintained.

Even though our proposed method yields good results, it has a limitation for being applied to
camera-embedded security systems, such as smartphones, because of the manual processes to acquire the
focused images and to detect facial components. Therefore, in future work, we will improve our method
in order for it to operate automatically in the image acquisition and preprocessing and to make it possible
to embed our method on a smart devices. Furthermore, we will consider more robust countermeasures
against videos and 3D attacks by analyzing textural and temporal characteristics. Furthermore, we will
advance our method using a light-field camera, which can acquire various focusing information in the
spatial domain using a microlens array.
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A. Appendix: Experiments According to the Type of Features

We carry out experiments in accordance with the types of features. The following shows the
performance of our proposed methods.

A.1. Focus Feature

We conduct experiments with eight types of focus features. Eight focus features are categorized into
four groups: statistic-based, Laplacian-based, gradient-based and wavelet-based operators [4]. The focus
features are listed in Table A1. Related equations are organized in [4].

Table A2 and Figure A1 show HTERs and receiver operating characteristic (ROC) curves of focus
features according to the range of the DoF. In general, the performance of the Laplacian group is better
than those of other groups. As depicted in Figure A1, focus features in the Laplacian group swarm in
the upper side. Especially, modified Laplacian (LAPM) has stable and prominent results all over the
DoF (1.64% HTER under the within 4-cm DoF and 8.93% HTER under the within 16-cm DoF). The
sum of wavelet coefficients (WAVS) also shows good performance. When the DoF is shallow, the effect
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of defocusing is great. This makes the focus features of real and fake faces more discriminative. As a
result, focus features, except gray-level variance (GLVA), yield the best performances under the within
4-cm DoF. The GLVA focus feature, unusually, has the best performance when the DoF is within 16 cm
(12.4% HTER). GLVA is the simple variance of the gray-scale image. Compared to other focus features,
it is inadequate to represent the difference between the focused and defocused regions regardless of the DoF.

Table A1. Focus features.

Focus Feature (Abbreviation) Focus Feature (Full Name) Category

GLVA Gray-level variance Statistic
LAPD Diagonal Laplacian Laplacian
LAPM Modified Laplacian Laplacian
LAPV Variance of Laplacian Laplacian
TENG Tenengrad Gradient
TENV Tenengrad variance Gradient
WAVS Sum of wavelet coefficients Wavelet
WAVV Variance of wavelet coefficients Wavelet

Table A2. HTERs (%) of the focus features.

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

GLVA 14.4 ± 2.77 16.6 ± 2.41 0.3 14.1 ± 2.30 13.6 ± 2.20 0.09 11.4 ± 2.34 12.5 ± 1.15 0.08 10.7 ± 2.01 12.4 ± 1.59 0.1
LAPD 1.02 ± 1.15 1.82 ± 0.59 0.15 3.46 ± 1.18 3.97 ± 1.09 0.20 4.91 ± 0.81 5.75 ± 0.56 0.135 8.61 ± 1.78 9.41 ± 1.64 0.09
LAPM 1.07 ± 1.16 1.64 ± 0.59 0.2 3.08 ± 0.99 3.57 ± 1.05 0.09 4.97 ± 0.88 6.10 ± 0.39 0.085 8.56 ± 1.40 8.93 ± 1.90 0.06
LAPV 1.22 ± 0.80 2.50 ± 2.61 0.35 3.06 ± 0.92 3.16 ± 0.86 0.075 5.67 ± 1.05 6.36 ± 0.63 0.25 8.53 ± 1.51 8.48 ± 1.31 0.07
TENG 3.72 ± 1.91 4.68 ± 1.86 0.09 4.27 ± 0.98 4.88 ± 0.55 0.065 5.59 ± 1.07 6.17 ± 1.05 0.065 8.05 ± 1.69 9.14 ± 1.30 0.055
TENV 4.94 ± 1.89 7.11 ± 3.34 0.135 5.41 ± 1.40 6.79 ± 2.03 0.03 7.53 ± 1.25 8.44 ± 1.37 0.06 9.22 ± 2.91 10.8 ± 1.78 0.01
WAVS 1.22 ± 1.11 2.00 ± 0.89 0.3 3.53 ± 1.34 3.50 ± 0.91 0.2 5.53 ± 0.69 6.15 ± 0.72 0.145 8.83 ± 1.73 9.79 ± 1.05 0.08
WAVV 2.65 ± 1.44 4.57 ± 2.44 0.55 5.70 ± 0.84 5.66 ± 1.32 0.09 8.21 ± 0.85 8.96 ± 1.44 0.08 10.7 ± 1.86 11.4 ± 1.73 0.45

(a) (b)

(c) (d)

Figure A1. ROC curves of the focus features (DoF (a) within 4 cm, (b) within 6 cm,
(c) within 10 cm and (d) within 16 cm).
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A.2. Power Histogram Feature

In order to find that how to divide the frequency spectrum that yields good performance, we carry
out experiments taking the radii of circular regions in Table A3. The dimensionality is the length of the
concatenated histograms of the three subregions.

Table A3. Radii of circular regions.

Version Radii Dimensionality

Rad.ver1 [1:1:75] 225
Rad.ver2 [3:3:75] 75
Rad.ver3 [5:5:75] 45
Rad.ver4 [10:10:75] 21
Rad.ver5 [15:15:75] 15
Rad.ver6 [5 15 30 50 75] 15

Table A4 describes the numerical results, and Figure A2 illustrates the distributions of the HTERs
and ROC curves. When the averages of HTERs are calculated respectively, Rad.ver6 shows a good
performance: 7.69% HTER. Even though the dimensionality of the power histogram feature is low, it
yields the best performance compared to the others.

Table A4. HTERs (%) of the power histogram features.

within 4 cm within 6 cm within 10 cm within 16 cm
Avg.Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Rad.ver1 5.61 ± 1.73 7.04 ± 1.86 2.65 7.76 ± 2.24 8.19 ± 1.01 3.05 7.40 ± 1.64 8.34 ± 1.19 2.95 8.30 ± 2.13 10.1 ± 2.04 3.50 7.84
Rad.ver2 4.64 ± 1.55 6.93 ± 2.20 2.60 6.98 ± 1.46 7.43 ± 1.70 2.20 7.85 ± 1.51 8.42 ± 1.29 1.45 8.54 ± 1.85 11.5 ± 1.93 1.55 7.79
Rad.ver3 6.33 ± 2.57 7.04 ± 1.77 1.85 7.42 ± 1.51 8.99 ± 3.32 1.15 7.30 ± 0.94 9.32 ± 0.96 1.25 8.74 ± 1.84 10.2 ± 1.22 1.00 8.17
Rad.ver4 5.10 ± 0.96 7.36 ± 2.17 1.05 7.04 ± 1.80 9.71 ± 1.61 0.90 7.50 ± 1.55 9.63 ± 1.71 1.50 9.21 ± 1.75 11.3 ± 0.83 0.65 8.36
Rad.ver5 6.12 ± 2.44 7.36 ± 1.54 1.40 8.84 ± 1.51 9.88 ± 2.81 0.75 8.05 ± 0.96 9.37 ± 0.97 1.00 9.67 ± 1.61 10.9 ± 1.46 0.50 8.77
Rad.ver6 5.15 ± 1.90 7.07 ± 1.26 1.50 5.88 ± 1.22 9.15 ± 2.41 1.55 6.99 ± 0.76 8.85 ± 1.92 1.30 8.50 ± 1.12 9.93 ± 1.02 0.90 7.69

A.3. GLOH Feature

We perform experiments by altering the size of the patch, the energy percentage in PCA and whether
the patches are overlapped or not. In Tables A5–A10, numerical results are listed, and Figure A3
describes the ROC curves.

As shown in Figure A3, the performances with and without allowing the overlap of patches are similar.
In terms of the computational cost, the overlap of patches is not effective. Therefore, it is better not to
overlap the patches to extract the GLOH features. In the case of the energy percentage in PCA, when the
percentage is 98%, the performance is worse than those under 90% and 95%.

Additionally, experiments are carried out depending on the size of the patch. When the GLOH
features are extracted from the whole image, the performance is the worst, and those features cannot
represent the spatial properties sufficiently. As the size of the patch is 75 × 75 and the energy percentage
in PCA is 90% without allowing the overlap, the performance is the best (7.75% HTER under the within
16-cm DoF).
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(a) (b)

(c) (d)

Figure A2. ROC curves of the power histogram features (DoF (a) within 4 cm, (b) within
6 cm, (c) within 10 cm and (d) within 16 cm).

Table A5. HTERs (%) of GLOH features (overlap, PCA 90%).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Patch25 6.17 ± 1.33 7.61 ± 1.67 0.65 7.42 ± 1.19 8.86 ± 1.11 1.40 7.52 ± 1.64 8.14 ± 1.77 1.70 8.52 ± 1.36 8.92 ± 1.49 2.25
Patch50 4.85 ± 1.62 7.36 ± 2.21 1.55 6.74 ± 1.21 6.47 ± 0.67 2.30 6.32 ± 1.20 6.70 ± 0.82 2.80 6.83 ± 1.51 8.20 ± 1.72 3.30
Patch75 5.20 ± 1.65 7.64 ± 1.38 1.80 6.23 ± 0.80 7.01 ± 0.71 2.70 6.58 ± 1.39 6.87 ± 0.78 3.10 6.93 ± 1.20 8.25 ± 0.96 4.20

Patch150 6.48 ± 2.20 9.57 ± 1.86 2.95 8.42 ± 1.07 8.82 ± 2.05 3.70 7.42 ± 1.17 9.36 ± 0.86 3.20 8.83 ± 1.74 10.1 ± 1.52 3.40

Table A6. HTERs (%) of GLOH features (overlap, PCA 95%).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Patch25 8.57 ± 1.68 8.64 ± 2.60 0.70 10.0 ± 1.86 9.05 ± 1.12 1.55 10.8 ± 6.04 10.8 ± 4.19 2.25 8.90 ± 1.47 10.3 ± 1.26 2.60
Patch50 6.07 ± 2.97 7.89 ± 1.81 1.40 6.50 ± 1.10 7.49 ± 0.76 2.50 6.26 ± 1.31 7.36 ± 1.34 3.20 7.46 ± 1.52 8.44 ± 0.92 4.20
Patch75 7.24 ± 1.84 8.14 ± 1.84 2.15 7.40 ± 1.58 8.58 ± 1.03 3.35 7.99 ± 0.82 7.73 ± 1.06 4.40 7.52 ± 1.57 9.04 ± 1.91 5.90
Patch150 7.60 ± 2.38 10.0 ± 1.34 2.95 10.6 ± 2.36 9.58 ± 1.77 5.30 9.82 ± 1.74 9.67 ± 1.56 3.75 10.7 ± 2.02 10.3 ± 1.63 4.80

Table A7. HTERs (%) of GLOH features (overlap, PCA 98%).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Patch25 19.1 ± 11.5 20.3 ± 10.2 0.90 12.5 ± 4.69 12.2 ± 4.32 1.50 9.08 ± 1.29 9.38 ± 1.45 2.45 10.2 ± 2.27 11.0 ± 2.58 3.75
Patch50 6.83 ± 2.37 7.17 ± 2.13 1.50 6.79 ± 1.48 7.61 ± 0.96 3.10 7.32 ± 0.98 7.33 ± 1.30 4.15 7.80 ± 1.92 9.23 ± 1.37 5.05
Patch75 7.39 ± 1.58 9.25 ± 2.46 2.05 7.73 ± 1.12 8.94 ± 1.44 4.20 8.43 ± 2.15 9.04 ± 1.20 6.00 8.02 ± 1.48 10.4 ± 2.23 9.55
Patch150 7.70 ± 1.62 10.3 ± 2.23 4.60 10.2 ± 2.24 11.9 ± 1.35 7.30 10.7 ± 2.15 11.7 ± 1.96 7.25 11.2 ± 1.26 12.6 ± 1.86 8.60
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Table A8. HTERs (%) of GLOH features (no overlap, PCA 90%).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Patch25 5.05 ± 1.00 5.14 ± 1.37 0.90 6.90 ± 1.21 7.10 ± 1.26 1.75 6.59 ± 0.82 7.60 ± 1.43 2.45 7.22 ± 1.47 8.89 ± 0.87 3.00
Patch50 4.69 ± 1.89 6.67 ± 1.54 1.55 6.89 ± 1.12 6.63 ± 1.83 2.50 6.07 ± 0.90 7.26 ± 0.68 3.15 7.53 ± 1.09 8.56 ± 1.25 3.65
Patch75 3.11 ± 1.16 5.67 ± 1.74 1.75 5.37 ± 0.83 6.42 ± 1.73 2.85 5.60 ± 0.65 7.07 ± 1.20 2.85 5.75 ± 1.62 7.75 ± 1.13 4.10

Patch150 6.48 ± 2.20 9.57 ± 1.86 2.95 8.42 ± 1.07 8.82 ± 2.05 3.70 7.42 ± 1.17 9.36 ± 0.86 3.20 8.83 ± 1.74 10.1 ± 1.52 3.40

Table A9. HTERs (%) of GLOH features (no overlap, PCA 95%).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Patch25 7.85 ± 3.94 8.21 ± 3.54 0.90 7.51 ± 1.11 8.65 ± 1.74 1.95 7.48 ± 1.21 8.35 ± 1.56 3.00 8.44 ± 1.53 9.45 ± 1.92 3.60
Patch50 6.02 ± 1.62 8.67 ± 3.59 1.50 7.49 ± 0.91 6.73 ± 0.86 3.35 7.04 ± 0.81 7.54 ± 1.01 5.15 9.40 ± 2.56 7.91 ± 1.20 5.40
Patch75 4.69 ± 1.39 6.10 ± 1.61 2.20 7.13 ± 2.41 7.16 ± 1.07 3.65 6.74 ± 1.54 6.62 ± 0.86 4.00 7.45 ± 1.96 8.52 ± 1.73 5.15

Patch150 7.60 ± 2.38 10.0 ± 1.34 2.95 10.6 ± 2.36 9.58 ± 1.77 5.30 9.82 ± 1.74 9.67 ± 1.56 3.75 10.7 ± 2.02 10.3 ± 1.63 4.80

Table A10. HTERs (%) of GLOH features (no overlap, PCA 98%).

within 4 cm within 6 cm within 10 cm within 16 cm
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
Dev Test

sigma
(mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std) (mean ± std)

Patch25 11.0 ± 5.95 11.4 ± 6.54 1.20 8.10 ± 1.38 8.94 ± 1.95 2.55 7.16 ± 1.24 9.31 ± 1.69 3.60 8.90 ± 2.23 9.92 ± 1.42 4.10
Patch50 6.78 ± 1.96 7.75 ± 1.67 1.80 6.30 ± 1.22 8.88 ± 2.45 3.85 6.30 ± 1.83 7.39 ± 1.17 5.40 8.87 ± 2.08 7.83 ± 1.57 8.05
Patch75 6.17 ± 1.62 6.57 ± 1.47 2.30 6.97 ± 2.07 7.57 ± 1.76 6.25 6.90 ± 1.83 7.75 ± 1.17 6.65 9.75 ± 2.28 8.46 ± 1.20 9.60

Patch150 7.70 ± 1.62 10.3 ± 2.23 4.60 10.2 ± 2.24 11.9 ± 1.35 7.30 10.7 ± 2.15 11.7 ± 1.96 7.25 11.2 ± 1.26 12.6 ± 1.86 8.60

(a) (b)

(c) (d)

Figure A3. Cont.
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(e) (f)

(g) (h)

Figure A3. ROC curves of the GLOH features (overlap: PCA 90%, DoF (a) within 4 cm,
(b) within 6 cm, (c) within 10 cm and (d) within 16 cm; and NO overlap: PCA 90%, DoF
(e) within 4 cm, (f) within 6 cm, (g) within 10 cm and (h) within 16 cm).

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Raty, T.D. Survey on Contemporary Remote Surveillance Systems for Public Safety. IEEE Trans.
Syst. Man Cybern. Part C Appl. Rev. 2010, doi:10.1109/TSMCC.2010.2042446.

2. Li, S.Z.; Jain, A.K. Handbook of Face Recognition; Springer: New York, NY, USA, 2011.
3. Kähm, O.; Damer, N. 2D Face Liveness Detection: An Overview. In Proceedings of the

International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany,
6–7 September 2012.

4. Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of focus measure operators for shape-from-focus.
Pattern Recognit. 2013, 46, 1415–1432.

5. Billiot, B.; Cointault, F.; Journaux, L.; Simon, J.C.; Gouton, P. 3D image acquisition system based
on shape from focus technique. Sensors 2013, 13, 5040–5053.

6. Ali, A.; Deravi, F.; Hoque, S. Liveness Detection Using Gaze Collinearity. In Proceedings of the
2012 Third International Conference on Emerging Security Technologies(EST), Lisbon, Portugal,
5–7 September 2012.



Sensors 2015, 15 1561

7. Zhang, Z.; Yi, D.; Lei, Z.; Li, S.Z. Face liveness detection by learning multispectral reflectance
distributions. In Proceedings of the 2011 IEEE International Conference on Automatic Face &
Gesture Recognition and Workshops (FG 2011), Santa Barbara, CA, USA, 21–25 March 2011.

8. Sun, L.; Huang, W.; Wu, M. TIR/VIS Correlation for Liveness Detection in Face Recognition. In
Computer Analysis of Images and Patterns Lecture Notes in Computer Science; Springer: Seville,
Spain, 29–31 August 2011; Volume 6855, pp. 114–121.

9. Kim, G.; Eum, S.; Suhr, J.K.; Kim, D.I.; Park, K.R.; Kim, J. Face Liveness Detection Based on
Texture and Frequency Analyses. In Proceedings of the 2012 5th IAPR International Conference
on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 67–72.

10. Määttä, J.; Hadid, A.; Pietikäinen, M. Face Spoofing Detection from Single Images Using
Micro-Texture Analysis. In Proceedings of the 2011 International Joint Conference on Biometrics
(IJCB’11), Washington, DC, USA, 11–13 October 2011.

11. Bai, J.; Ng, T.T.; Gao, X.; Shi, Y.Q. Is Physics-Based Liveness Detection Truly Possible with a
Single Image? In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems
(ISCAS), Paris, France, 30 May–2 June 2010; pp. 3425–3428.

12. Peixoto, B.; Michelassi, C.; Rocha, A. Face liveness detection under bad illumination conditions. In
Proceedings of the IEEE 2011 International Conference on Image Processing, Brussels, Belgium,
11–14 September 2011; pp. 3557–3560.

13. Tan, X.; Li, Y.; Liu, J.; Jiang, L. Face Liveness Detection from a Single Image with Sparse Low
Rank Bilinear Discriminative Model. ECCV 2010 Lecture Notes in Computer Science; Springer:
Berlin, Germany, 2010; Volume 6316, pp. 504–517.

14. Singh, A.; Singh, S.K. Effect of Face Tampering on Face Recognition. Signal Image Process. Int.
J. 2013, 4, 83–99.

15. Kant, C.; Sharma, N. Fake Face Recognition Using Fusion of Thermal Imaging and Skin Elasticity.
IJCSC 2013, 4, 65–72.

16. Pan, G.; Sun, L.; Zhaohui, W.; Wang, Y. Monocular camera-based face liveness detection by
combining eyeblink and scene context. Telecommun. Syst. 2011, 47, 215–225.

17. Jee, H.; Jung, S.; Yoo, J. Liveness Detection for Embedded Face Recognition System. Int. J. Biol.
Life Sci. 2005, 1, 235–238.

18. Tronci, R.; Muntoni, D.; Fadda, G.; Pili, M.; Sirena, N.; Murgia, G.; Ristori, M.; Roli, F.
Fusion of multiple clues for photo-attack detection in face recognition systems. In Proceedings
of the 2011 International Joint Conference on Biometrics (IJCB’11), Washington, DC, USA,
11–13 October 2011.

19. Anjos, A.; Marcel, S. Counter-Measures to Photo Attacks in Face Recognition: A Public Database
and a Baseline. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB’11),
Washington, DC, USA, 11–13 October 2011.

20. Komogortsev, O.V.; Karpov, A. Liveness Detection via Oculomotor Plant Characteristics: Attack
of Mechanical Replicas. In Proceedings of the 2013 6th International Conference on Biometrics
(ICB), Madrid, Spain, 4–7 June 2013.

21. Kollreider, K.; Fronthaler, H.; Bigun, J. Non-intrusive liveness detection by face images. Image
Vis. Comput. 2009, 27, 233–244.



Sensors 2015, 15 1562

22. Bao, W.; Li, H.; Li, N.; Jiang, W. A liveness detection method for face recognition based on
optical flow field. In Proceedings of the International Conference on Image Analysis and Signal
Processing, Taizhou, China, 11–12 April 2009; pp. 233–236.

23. Huang, C.H.; Wang, J.F. SVM-Based One-Against-Many Algorithm for Liveness Face
Authentication. In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics (SMC 2008), Singapore, 12–15 October 2008; pp. 744–748.

24. Bharadwaj, S.; Dhamecha, T.I.; Vatsa, M.; Singh, R. Computationally Efficient Face Spoofing
Detection with Motion Magnification. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013.

25. Kollreider, K.; Fronthaler, H.; Faraj, M.I.; Bigun, J. Real-Time Face Detection and Motion Analysis
with Application in “Liveness” Assessment. IEEE Trans. Inf. Forensics Sec. 2007, 2, 548–558.

26. Lee, T.W.; Ju, G.H.; Liu, H.S.; Wu, Y.S. Liveness Detection Using Frequency Entropy of Image
Sequences. In Proceedings of 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2013), Vancouver, BC, Canada, 26–31 May 2013.

27. Schwartz, W.R.; Rocha, A.; Edrini, H.P. Face Spoofing Detection through Partial Least Squares
and Low-Level Descriptors. In Proceedings of 2011 International Joint Conference on Biometrics
(IJCB’11), Washington, DC, USA, 11–13 October 2011.

28. Wang, T.; Yang, J.; Lei, Z.; Liao, S.; Li, S.Z. Face Liveness Detection Using 3D Structure
Recovered from a Single Camera. In Proceedings of the 2013 6th International Conference on
Biometrics (ICB), Madrid, Spain, 4–7 June 2013.

29. Lagorio, A.; Tistarelli, M.; Cadoni, M.; Fookes, C.; Sridharan, S. Liveness Detection Based on
3D Face Shape Analysis. In Proceedings of the 2013 International Workshop on Biometrics and
Forensics (IWBF), Lisbon, Portugal, 4–5 April 2013.

30. Veerender, R.; Acharya, K.; Srinivas, J.; Mohan, D. Depth Estimation Using Blur Estimation in
Video. Int. J. Electron. Comput. Sci. Eng. 2012, 1, 2350–2354.

31. Stroebel, L.D. View Camera Technique; Focal Press: London, UK, 1999.
32. Kim, S.; Yu, S.; Kim, K.; Ban, Y.; Lee, S. Face Liveness Detection Using Variable Focusing.

In Proceedings of the 2013 6th International Conference on Biometrics (ICB), Madrid, Spain,
4–7 June 2013.

33. Nayar, S.K.; Nakagawa, Y. Shape from Focus. IEEE Trans. Pattern Anal. Mach. Intell. 1994,
16, 824–831.

34. Brunelli, R.; Poggio, T. Face Recognition: Features versus Templates. IEEE Trans. Pattern Anal.
Mach. Intell. 1993, 15, 1042–1052.

35. Mikolajczyk, K.; Schmid, C. A Performance Evaluation of Local Descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. 2005, 27, 1615–1630.

36. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice Hall:
Upper Saddle River, NJ, USA, 2002.

37. Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004,
60, 91–110.

38. Burges, C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl.
Discov. 1998, 2, 121–167.



Sensors 2015, 15 1563

39. Zhang, Z.; Yan, J.; Liu, S.; Lei, Z.; Yi, D.; Li, S. A face antispoofing database with diverse attacks.
In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi,
India, 29 March –1 April 2012; pp. 26–31.

40. Chingovska, I.; Anjos, A.; Marcel, S. On the Effectiveness of Local Binary Patterns in Face
Anti-Spoofing. In Proceedings of the International Conference of the Biometrics Special Interest
Group, 2012 (BIOSIG), Darmstadt, Germany, 6–7 September 2012; pp. 1–7.

41. Zhang, Z.; Yan, J.; Liu, S.; Lei, Z.; Yi, D.; Li, S.Z. A face antispoofing database with diverse
attacks. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB),
New Delhi, India, 29 March –1 April 2012; pp. 26–31.

42. Määttä, J.; Hadid, A.; Pietikäinen, M. Face spoofing detection from single images using texture
and local shape analysis. IET Biom. 2012, 1, 3–10.

43. Cootes, T.; Taylor, C.; Cooper, D.; Graham, J. Active Shape Models—Their Training and
Application. Comput. Vis. Image Underst. 1995, 61, 38–59.

44. Nanu, F.; Stan, C.N.; Coreoran, P. Continuous Autofocus Based on Face Detection and Tracking.
U.S. Patent 2012/0075492A1, 2 December 2012.

45. Rahman, M.; Kehtarnavaz, N. Real-time face-priority auto focus for digital and cell-phone cameras.
IEEE Trans. Consum. Electron. 2008, 54, 1506–1513.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Countermeasures against Spoofing Faces
	Background Related to Focusing
	Previous Work with Variable Focusing Kim2013

	Proposed Methodology
	Image Acquisition and Preprocessing
	Using a Handheld Digital Camera
	Using a Webcam

	Feature Extraction
	Focus Feature
	Power Histogram Feature
	GLOH Feature

	Classification

	Experimentation
	Experiment 1: Using the Mirrorless Camera Database
	Data Acquisition
	Experimental Results

	Experiment 2: Using the Webcam Database
	Data Acquisition
	Experimental Results

	Discussion

	Conclusion and Future Work
	Acknowledgments
	Author Contributions
	Appendix: Experiments According to the Type of Features
	Focus Feature
	Power Histogram Feature
	GLOH Feature


