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Abstract: The Internet of Things (IoT) allows machines and devices in the world to connect
with each other and generate a huge amount of data, which has a great potential to provide
useful knowledge across service domains. Combining the context of IoT with semantic
technologies, we can build integrated semantic systems to support semantic interoperability.
In this paper, we propose an integrated semantic service platform (ISSP) to support
ontological models in various IoT-based service domains of a smart city. In particular, we
address three main problems for providing integrated semantic services together with IoT
systems: semantic discovery, dynamic semantic representation, and semantic data repository
for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for
a smart office using the ISSP, which can provide a preset, personalized office environment
by interpreting user text input via a smartphone. We also discuss a scenario to show how
the ISSP-based method would help build a smart city, where services in each service domain
can discover and exploit IoT resources that are wanted across domains. We expect that our
method could eventually contribute to providing people in a smart city with more integrated,
comprehensive services based on semantic interoperability.

Keywords: Internet of Things; semantic interoperability; IoT service platform; semantic
technology; top-level ontology
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1. Introduction

The term Internet of Things (IoT), coined by Ashton in 1999 [1], has been a growing technological
trend in recent years. IoT represents a technological revolution where the current Internet would be
interconnected with physical objects and devices, so-called things, and their virtual representation due
to several technological advances, including identification and contactless data exchange (RFID [2]
and NFC [3]), distributed sensor network [4], short-range wireless communication (ZigBee [5] and
Bluetooth [6]) and universal mobile accessibility (Wi-Fi hotspots [7] and cellular networks [8]).
Accordingly, things in the world will be able to share the information about the status change in their
environment and then become smart and reactive to external stimuli, eventually enabling one to create
useful applications in various service domains [9–12].

In particular, IoT could be a key to unlocking the potential for providing integrated services across
domains in a smart city. Due to existing vertical service architectures in a smart city, as in Figure 1, it
has been difficult for services in each domain to discover and exploit resources in a city across service
domains. IoT service architectures are thus evolving to horizontal service architectures from existing
vertical service architectures in a smart city.
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Figure 1. Interoperability between various service domains in a smart city.

In horizontal service architectures, the goal of interoperability is to enable smart city services to share
IoT resources (e.g., devices, virtual entity, data) between service domains and to better understand their
surrounding environments, thereby providing end-users with intelligent services. For example, traffic
information collected from a transportation domain can be used to adjust a wakeup call alarm service
in a smart home with respect to a desirable subway departure time. Likewise, a combination of smart
home and smart energy utilities can provide a new mashup service for saving energy according to usage
patterns of home appliances. In other words, by applying horizontal architectures to a smart city, this
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will lead to the creation of new services and improve existing services via interoperability between
service domains.

Accordingly, as Barnaghi illustrated with the context of IoT and semantics [13], the collected data
within each service domain needs to be represented as semantic data, including their meanings (e.g.,
service domain knowledge), so that services from different domains could interpret and understand the
data for interoperability (perform semantic interoperability).

A common way for semantic interoperability between different domains is to share their service
domain knowledge using the well-known semantic technologies [14]. However, to share the service
domain knowledge, a service domain needs to interpret and understand the service domain knowledge
corresponding to an explicit specification generated from the other service domains. Consequently,
a realistic way for sharing the service domain knowledge is to provide an integrated service system
infrastructure, including platforms and applications to store and handle the whole knowledge of the
service domain using semantic technologies.

For the integrated service system infrastructure, however, due to the characteristics of IoT, such
as being highly-distributed, heterogeneous, and resource-constrained, we have to resolve three main
problems for providing integrated semantic services via applying the semantic technologies to IoT:
(1) integrated semantic discovery in distributed IoT domains; (2) dynamic semantic representation
between a myriad of IoT resources in real time; (3) semantic data repository to archive a large amount
of data collected from IoT devices.

To resolve these problems, we propose an integrated semantic service platform (ISSP). The proposed
ISSP handles and stores various service domain knowledge in a smart city using ontologies and then
provides semantic interoperability between different service domains based on the integrated knowledge.
To this end, the ISSP is designed to support ontological models in a smart city using a top-level ontology,
eventually providing integrated and improved smart city services for citizens.

The ontological model is modeled to be a formal, explicit representation of knowledge within a service
domain using an ontology. Subsequently, we develop a web-based authoring tool to create an ontology
for each service domain, an IoT-based service integration ontology (IIO) as a top-level ontology to store
and handle the ontologies created by the web-based authoring tool and a semantic descriptor for semantic
translation of IoT resources used in each service domain. We also develop semantic discovery-based IoT
device monitoring and control functions by working with external IoT service platforms (i.e., IoT data
repositories), which may exist in each service domain.

Finally, to show the feasibility of the ISSP, we develop a prototype service for an office domain
using the ISSP. The prototype service provides a preset, personalized office environment according to
the interpretation of user text inputted via a smartphone. For the service, we design an ontological office
model for the interpretation of the user input text and develop a web app that allows users to request
a smart office service that they want. We also develop IoT device monitoring and control functions to
perform the requested services using IoT resources in the office domain. In the prototype service, the
monitoring and control functions are provided by working with Mobius, an IoT service platform, which
we have previously implemented in another research project for managing and storing the data collected
from various IoT devices [15].
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The rest of this paper is organized as follows. The existing related work in this research field is
introduced in Section 2. The detail description of the IIO is presented in Section 3. The ISSP architecture
and implementation are introduced in Section 4. Section 5 presents a performance evaluation of ISSP
through a case study. This section also introduces the prototype service for a smart office domain
developed for the evaluation of the ISSP. We discuss practical issues to apply the semantics technologies
in IoT service domains in Section 6. Finally, we conclude our remarks in Section 7.

2. Related Work

The term semantic, started by Berners-Lee in 1998, is a framework technology for automated
processing for not just between machines, but also between humans and machines through interpretation
of meanings to resources. Actually, the goal of the Semantic Web is to allow both humans and machines
to understand through semantic interoperability based on well-defined meanings in the current web.
Currently, the Semantic Web is standardized by the World Wide Web consortium (W3C) [16].

The Semantic Web is composed of explicit metadata, ontologies and logical reasoning. The explicit
metadata is expressed by linguistic techniques, such as extensible markup language (XML), resource
description framework (RDF) and web ontology language (OWL). Additionally, the ontologies express
meanings of data and relationships using knowledge representation (KR) [17]. Finally, the logical
reasoning is used to infer new information based on meanings of data and relationships in ontologies.
The Semantic Web has been growing and applied in various research fields.

Skillen et al. proposed help-on-demand services in pervasive environments [18]. In this article,
the ontological user models are created according to user behaviors and needs. Additionally, they
implemented a prototype system for help-on-demand services with semantic rule-based reasoning, which
they defined in the article. Accordingly, the system enables semantic discovery-based services using
an ontology and semantic rule-based reasoning. Saha et al. proposed an ontology for home energy
management [19]. The developed ontology is compatible with the suggested upper merged ontology
(SUMO) [20]. Hence, the ontology enables knowledge sharing with other SUMO-compliant ontologies.
The ontology is also used to provide intelligent advice on efficient energy consumption. However,
these research works do not support semantic interoperability within different service domains. This
is because the works focused on providing an intelligent service within each service domain, which does
not consider semantic interoperability through sharing represented knowledge of their service domains.

Harshal et al. proposed a framework for linked open data (LOD) about sensor data collected from
the physical environment [21]. They introduced a publishing method for LOD. In this framework,
RDF and SPARQL are used for semantic discovery between the LOD clouds [22]. This framework
enables interoperability between platforms using a sensor dataset description for LOD. Wang et al.
proposed knowledge representation for integrated semantic services in IoT [23]. They developed a
description ontology and an application for the integration of existing models, and they evaluated the
performance of their proposed description ontology. However, these works did not consider dynamic,
semantic translation of their resources in real time. In IoT service domains, devices and their resources
are added dynamically to service domains in real time. Accordingly, to share service knowledge between
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different service domains, for example, LOD or description ontology should be updated considering the
dynamically added devices and their resources.

Dou et al. proposed OntoMerge, a web-based translation system [24]. In OntoMerge, an ontological
framework is proposed to enable translation between various vocabularies. In OntoMerge, they also
use first-order logic to define relationships between individuals in different ontologies based on the
ontological framework. However, to apply the system in IoT, it has to support dynamically-added
individuals (i.e., IoT devices) and service domain knowledge in real time.

DOLCE is a top-level ontology, which provided the whole ontology for the European research groups
in the development of the WonderWeb [25]. DOLCE allows one to share information between added
ontologies via captured ontological categories underlying natural languages and human common-sense.
However, it did not consider explicit specification for service domain knowledge, and thus, we probably
need to convert or redefine the explicit specification for the service domain knowledge to provide
semantic interoperability.

Hunter proposed the ABC model, a core ontology model for semantic interoperability [26]. The
model is an extensible ontology for integrated information from multiple genres of multimedia content
within digital libraries and archives. Through this ontology, Hunter enables semantic interoperability
from different domains. Compton et al. introduced a similar work [27]. They proposed the semantic
sensor network ontology (SSNO) for semantic interoperability in wireless sensor networks (WSNs).
They considered various use cases according to stimulus from WSNs and reflected the use cases in the
SSNO, supporting semantic interoperability in various WSN-based service domains.

Recently, many researchers have been trying to share represented knowledge within each service
domain, including the KR for semantic interoperability in IoT services [28–30]. However, sharing the
knowledge between different service domains requires one to handle the whole knowledge representing
the IoT-based service domains. In this perspective, the works of Hunter and Compton echo our
motivation in this paper.

3. IoT-Based Service Integration Ontology

In this section, we describe the IoT-based service integration ontology (IIO). The IIO is a top-level
ontology to store and handle the ontologies added from each service domain to express their knowledge.
We divide the entire knowledge of IoT-based services into three abstract concepts: service, user, and
reference, as shown in Figure 2.

The class Service represents one or more IoT-based services in a smart city, and it has subclasses,
each of which is a class Topic used to distinguish between the IoT services in the IIO. The class
Topic is dynamically created and named by developers or administrators in each service domain using
the web-based authoring tool, which we will explain in Section 4.1.1.

Individuals of the class Service have relationships with one or more individuals of the class
Reference, Repositories, and Method through object properties asserted by hasReference,
hasRepositories, and hasMethod, respectively.

The class User represents information about the end-users, such as the class of user name, class
of user password, and class of user ID in the ontology. The classes for representing user information
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are created through the same web-based authoring tool as in the class Topic. Individuals of the class
User have relationships with one or more individuals of the class Service through the object property
expressed by the hasService.

Thing

Service User Reference

Repositories

Method

URLs

Create

Read

Delete

Update

subClassOf subClassOf subClassOf

subClassOf subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

hasReference
(ObjectProperty)

hasService
(ObjectProperty)

hasMethod
(ObjectProperty)

hasRepository
(ObjectProperty)

Figure 2. A schema of the IoT-based service integration ontology (IIO) to support ontologies
created from various IoT-based service domains. The rectangle represents classes. The
solid line represents a relationship between individuals, and the dashed line represents a
relationship between super-class and subclasses.

The class Reference has two subclasses, URLs and Repositories, to represent the way to
reference IoT resources located in external IoT service platforms. The class URLs represents uniform
resource locators (URLs) of the external IoT service platforms. The class Repositories has a
subclass Method that represents CRUD methods to reference IoT resources. As in User, the classes
URLs and Method will have their individuals inputted from the authoring tool.

4. Integrated Semantic Service Platform

The ISSP provides an integrated semantic service through storing and handling the IIO and working
with external IoT service platforms. The ISSP can also provide a web service via various devices, such
as smartphones, tablets and personal computers. Figure 3 shows the overview of the ISSP.

In Figure 3, the ISSP is composed of the web-based authoring tool and integrated semantic service
server (ISSS) to provide semantic interoperability between service domains in a smart city, as mentioned
in Section 1.
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Figure 3. The overview of the integrated semantic service server (ISSS).

First, developers or administrators in each service domain input values using the authoring tool to
create an ontology based on their service domain knowledge, as shown in Figure 3- 1©. At this time,
the authoring tool creates an ontology corresponding to the values inputted and then sends the created
ontology to the ISSS for adding it into the IIO, as shown in Figure 3- 2©. In this procedure, the ISSS
uses semantic functions to interpret the ontology and adds to it the IIO complying with the explicit
specification of the IIO. This procedure also adds individuals of the class URLs and Method according
to the input values for collaborating with external IoT service platforms (see the details in Section 4.1.1).
Through these procedures, the ISSP is ready to provide interoperability between services in a smart city
according to end-user requests. Finally, end-users can request for services (e.g., IoT device monitoring
and control) with their applications, as shown in Figure 3- 3©.

4.1. ISSP Architecture

The ISSP consists of two main software packages: the web-based authoring tool and the integrated
semantic service server (ISSS), as shown in Figure 4.
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Figure 4. System architecture of the ISSP.

4.1.1. Web-Based Authoring Tool

The web-based authoring tool is used to create an ontology using a web browser to add service
domain knowledge within a smart city into the IIO without any development tool for the ontology.
The web-based authoring tool provides four main input fields, as follows: (1) Service domain topic;
(2) Ontology schema and relationship; (3) Reference resources; and (4) semantic web rule language
(SWRL)-based rule.

The service domain topic field is used to allow developers or administrators in each service domain to
create the class Topic. It will become a super-class of an ontology created with the values of the second
input field to represent particular service domain knowledge in a smart city. This field also allows one to
name the class Topic.

The ontology schema and relationship field is used to input the name of the class, object properties,
data properties, domain, range, and restriction in order to create an ontology reflecting the service domain
knowledge. Here, the web-based authoring tool does not support description logic (DL), such as its
logic, SHOIN [31], when the object properties are inputted. Shallow or vocabulary-level ontologies
(i.e., these ontologies are made by RDF and OWL-lite) do not support the DL due to lower expression.
Consequently, the web-based authoring tool uses SWRL [32] to support reasoning-based semantic
services in the IIO.

The reference resource field is used to input information about IoT resources, such as URLs and
CRUD methods (e.g., HTTP verbs or open APIs). At this time, the inputted values will become
individuals of the class URLs and subclasses of the class Method corresponding to the value
types, respectively.
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The SWRL-based rule field is used to input SWRLs for reasoning based on added ontologies
in the IIO.

4.1.2. Integrated Semantic Service Server

The ISSS includes all of the semantic functions in the ISSP. The ISSS consists of five main
components: the semantic descriptor, ontology registrant, semantic discoverer, service connector, and
IIO manager. The semantic descriptor performs a semantic translation to represent values received
from the web-based authoring tool and external IoT service platform as semantic data. The semantic
descriptor has two semantic translations: schema-based semantic translation and individuals-based
semantic translation. The schema-based semantic translation is used to represent values inputted
from the authoring tool as OWL. In this translation, the semantic descriptor classifies the inputted
values into classes, properties, and individuals, then converts them into an OWL based on RDF
schema and OWL syntax endorsed by W3C, and finally sends it to the ontology registrant. The
individual-based semantic translation is used to represent IoT resources received from an external IoT
service platform as individuals of the IIO. Usually, an IoT service platform tends to have its own resource
structure according to the standards (e.g., ETSI M2M or oneM2M) and service requirements in each
service domain. Thus, the semantic descriptor needs to make RDFs based on the meanings of the
resources defined in domain-specific forms. Finally, the semantic descriptor sends the RDFs to the
ontology registrant.

The ontology registrant performs adding the OWL and RDFs received from the semantic descriptor
into the IIO. The ontology registrant has two registration functions, including OWL registration and RDF
registration. The OWL registration adds the ontology schema (i.e., the received OWL) into the IIO to
add individuals (i.e., IoT resources) to the IIO. The OWL registration updates the IIO (i.e., an OWL
file) using the IIO manager according to its explicit specification. The RDF registration adds individuals
(i.e., the received RDFs) into the IIO according to the service added as an ontology schema to the IIO.
To distinguish a service domain ontology among ontologies in the IIO, the RDF registration interprets
explicit specification of the ontology schema in the IIO. The RDF registration next adds the individuals
into the IIO in the same way as the OWL registration and repeats this until all of RDFs are added to the
IIO. In the ontology registrant, the Pellet reasoner is used to interpret explicit specification of a particular
ontology schema and the IIO so that the ontology registrant could appropriately add OWL and RDFs
into the IIO.

The semantic discoverer performs semantic discoveries using SPARQL. SPARQL is used to make
queries for semantic discoveries in the IIO. Through SPARQL, the semantic discoverer performs
semantic discoveries over an ontology for a specific service domain, as well as two or more ontologies
for various service domains in the IIO. The semantic discoverer can discover not only individuals related
to requested services, but also their open APIs, which are individuals of the subclasses of the Method.
To discover the individuals, the semantic discoverer uses the Pellet reasoner as the ontology registrant.
The Pellet reasoner is used to interpret relationships between individuals and SWRLs defined through the
fourth field (SWRL-based rule) in the web-based authoring tool. Finally, the semantic discoverer sends
the related individuals and their open APIs to the service connector. This style of semantic discovery
enables the ISSS to reach the IoT resources that end-user applications want, which are registered in
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external IoT service platforms with their IDs, URLs, and CRUD methods. Thus, the semantic discoverer
would manage a sort of metadata about the IoT devices, whose real data and control values exist in
external IoT repositories, i.e., we perform discovery over their metadata of distributed storage.

The service connector generates commands for collaborating with external IoT platforms using
the individuals received from the semantic discoverer. The service connector uses HTTP verbs
according to the received open APIs. An individual of the class URLs is used as the network
address to an external IoT service platform. The received individuals and open APIs are
used as the arguments of query strings in HTTP to perform services requested from end-user
applications. For example, assuming an individual of the class URLs is issp.com, the
received individuals are Computer and off, each of which is the name of an IoT device and
its operation mode, respectively, and if a related open API is PUT http://<IoT service

repository>/<Device Name>/<Device Value>, then the service connector generates
command PUT http://issp.com/Computer?devicevalue=off. Through this procedure,
the ISSP could provide semantic discovery-based IoT monitoring and control.

The IIO manager is responsible for handling and updating the IIO according to OWL and RDFs added
from the ontology.

Figure 5. A snapshot of the web-based authoring tool.
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4.2. Implementation

In this section, we describe the implementation of the ISSP. Figure 5 shows the web-based authoring
tool. The tool runs on a web browser, so as to support various devices, such as a tablet, smartphone and
personal computer. We use the jQuery with the hypertext markup language (HTML). To support a large
volume of ontologies, we can dynamically increase the number of each field by clicking the add button.
In addition, we use the asynchronous JavaScript and XML (Ajax) to connect and send inputted values to
the ISSS.

Figure 6 shows the hierarchy of classes, object properties, and data properties of the IIO using
protégé 4.3 [33]. It allows specifying explicitly the ontology created from the web-based authoring tool.
The IIO supports various primitive data types of IoT resources in each service domain using explicit
data properties.

Hierarchy IIO

Figure 6. Hierarchy of classes, object properties, and data properties of the IIO: (from left),
class hierarchy, object properties hierarchy, and data properties hierarchy.

The ISSP is developed using Java, the Jena library, and the Pellet-2.3.1 reasoner on the web
application server (WAS), i.e., Tomcat 7.0. In the ISSP, we developed a java servlet for connection
with the web-based authoring tool. We also developed the semantic descriptor, ontology registrant,
and semantic discoverer using the Jena library and the Pellet-2.3.1 reasoner. In addition, we developed
semantic query methods for the semantic discovery of individuals using SPAQRL in the IIO. Finally, the
service connector is developed using the HTTP client library provided from Apache [34].

5. Performance Evaluation

In this section, we evaluate the performance of the ISSP by building a prototype service for a smart
office: (1) adding an ontology created by the web-based authoring tool for the ontological office model
into the ISSP; (2) dynamic semantic translation of the IoT resources using the semantic descriptor
existing in the semantic service server in the ISSP; (3) performing IoT device monitoring and control
using the dynamically-translated IoT resources and Mobius.

In (1) and (2), we use protégé for evaluating the ontology added and its individuals focused on schema
and annotation according to the ontological office model. To evaluate (3), we show experimental results
of device monitoring and control performed using a combination of the HTTP verbs for Mobius with its
IoT resource represented as semantic data.
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5.1. Case Study: Smart Office Application

A prototype smart office service is developed for the evaluation of the ISSP. The service provides a
personalized office environment through semantic interpretations of inputted user text through the web
app. To provide the service, it operates in two modes: (1) user profile registration mode; and (2) service
request mode. The user profile registration mode is used to register user profiles, such as an ID, password,
seat number, and user preset, for his or her personalized office environment, such as office actions and
their corresponding devices and commands. The service request mode is used to request a smart office
service based on the registered user profile and preset. The prototype service consists of the web app and
ontological office model. Figure 7 shows a service flow for the prototype service.

[Service User]

…

[Mobius]

Register office
utilities

1

Ontology for Ontological Office 
Model

Web Application Server

[Smart Office Service Server]

2
Register
user profiles using
Web App

Add user 
profile3

Register 
the office utilities as IoT devices

Request Service 
Using Web App

4

5 Interpreter
User text

6
Send command

7
Control IoT devices

“I  go  to  work”

Figure 7. The service flow for the prototype service for the smart office.

In Figure 7, a user registers his/her office utilities into Mobius, as shown in Figure 7- 1©. At this time,
Mobius adds the office utilities to its repository. Then, the service user registers his/her profiles and
commands the smart office service server to control the office utilities using the web app, as shown in
Figure 7- 2©. The registered user profile is used to create individuals according to explicit specification
of the ontological office model. The smart office service server adds the registered user profile into
the ontological office model, which is stored in a form of OWL file (i.e., ontology), as shown in
Figure 7- 3©. Now, the service is ready to provide the smart office service according to user text input.
In the service request mode, the service user can request a service using the web app, as shown in
Figure 7- 4©. In the procedure, a user text from the web app is interpreted according to the ontological
office model in the smart office service server, and then, it sends the results of the interpretation to
Mobius using open APIs provided by Mobius, as shown in Figure 7- 5©, 6©, respectively. Finally, Mobius
performs an IoT device control corresponding to the received command, as shown in Figure 7- 7©.
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5.1.1. Ontological Office Model

The ontological office model is used to interpret the inputted user text and to control office utilities
for the service. In the service, the ontological office model is designed based on an office located in our
building (Korea Electronic Technology Institute). The office consists of personal office areas, a meeting
area, and a relaxing area, as in Figure 8.

Physical information

12

4 5

1

2 3

9 10 11

6 7 8

Meeting Area
Personal Office Area

Relaxing Area

Figure 8. Classification of the space according to the characteristics.

Then, we chose six user office actions, such as get to work, meeting, leave the office, lunch time,
relaxing, and working, through an interview with office workers. In the interview, we also surveyed
relationships between user office actions and corresponding devices in each area. Finally, we developed
the ontological office model using protégé, as shown in Figure 9.

App hierarchy

Figure 9. Hierarchy of classes and object properties.
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In Figure 9, the class Device represents an abstract class of office utilities corresponding user office
actions. It has subclasses, such as the classes DeviceID, DeviceMode, and DeviceName, whose
individuals express IDs, names, and operation modes of office utilities respectively. The individuals have
relationships with one or more individuals of the classes User, UserAction and Space through the
object property expressed by hasDeviceInfo, and hasSpace, respectively.

The class Sentence represents an abstract class of user texts inputted from the web app. It
has subclasses, such as the classes GoToWork, Meeting, LeaveTheOffice, LunchTime,
Relaxing, and Working. Individuals of the subclasses are added by the user profile registration
mode via the web app. At the moment, the subclasses have the corresponding individuals according to
the user action type inputted from the web app. The individuals also have relationships with one or more
individuals of UserAction through the object property expressed by the hasAction.

The class User represents an abstract class of user information. It has subclasses UserID,
UserName, and UserPW. Individuals of the subclasses are added the same way as the subclasses of
the class Sentence. The individuals have relationships with one or more individuals of the classes
Device, UserAction, and Sentence through object properties expressed by hasDeviceInfo,
hasAction, hasSpace, and hasSentence, respectively.

The developed ontological office model is used to create and add an ontology in the evaluation of the
IIO, i.e., Evaluations (1) and (2).

5.1.2. Mobius

Mobius is an oneM2M-compatible IoT service platform that we have previously implemented in
another research project. It can manage and store the data collected from various IoT devices. Mobius
provides capabilities for registration, management, and control of IoT devices. Mobius also provides
open APIs to monitor and control IoT devices through RESTful interfaces.

5.2. Evaluation of the ISSP

In this section, we describe the evaluation of the ISSP by applying the prototype service according
to the following scenario: (1) register office utilities to Mobius; (2) register a service (i.e., the web app)
in the ISSP; (3) create an ontology based on the defined ontological office model using the web-based
authoring tool and add the ontology into the IIO; (4) register user profile using the web app (registration
mode); (5) request service using the web app (operation mode); and (6) verify the results of IoT device
control, as shown in Figure 10.

• Step 1: Register office utilities:

We first perform registration of three office utilities, two monitors and a cool fan (named
the left monitor, right monitor, and fan) to Mobius. To control each utility (i.e., turn on or
off), we use a smart socket consisting of a ZigBee-based radio transmitter and a relay [35].
During the registration, Mobius has obtained the unique IDs of the three devices, like “0.2.481.
1.0001.001.109”, “0.2.481.1.0001.001.110” and “0.2.481.1.0001.001.111”, respectively.



Sensors 2015, 15 2151

IoT resource
(SmartSocket)

IoT resource
(individual)

[End-users]

Represent IoT 
resource as 
an individual

Register service
in the ISSP

Request IoT device 
monitoring & control 
using HTTP

Semantic Function Modules

Send the created ontology to IIO in ISSS

Add the ontology

[Web-base authoring tool]

Create 
an ontology
for a service
domain

[Office Appliances]

Input the ontological
office model

[Mobius]

Register
office utilities

Add the ontology

[Detail the IIO]

IoT device 
Control

[Operation]

1

2

4

6

5
3

Register
User profile

Request
Service

IoT-based Integration Ontology (IIO)

[Integrated Semantic Service Server]

Figure 10. Evaluation process of the ISSP.

• Step 2: Register services:

We register the web app for our smart office service. The web app is implemented for our
smart office application using Ajax and operates in two modes, as mentioned in Section 5.1. To
register the web app in the ISSP, we add two request parameters named “reqOfficeRegi” and
“reqOperation” to the servlet in the ISSS. The ISSP is now ready to add user profile and preset to
the IIO and to perform the smart office service according to user text input.

• Step 3: Create and add an ontology to the IIO:

We create an ontology using the web-based authoring tool and add it to the IIO. We evaluate
the first item (adding an ontology created by the web-based authoring tool for the ontological
office model in the ISSP) using protégé. This step consists of creating an ontology through
the ontological office model inputted using the web-based authoring tool and evaluation of the
ontology added to the IIO using the ISSS.

First, we input the ontological office model using the web-based authoring tool. The ontological
office model is introduced in Section 5.1.1 in detail. To create an ontology of the ontological
office model, we input the classes, properties, relationships, URL, and CRUD methods of Mobius,
as shown in Figure 11. Here, we input SmartOffice as the name of the topic in the first field (service
domain topic). We also input an ontology schema and relationship including classes, object
properties, data properties, and relations between classes according to the explicit specification
of the ontological office model in the second field (ontology schema and relationship). Next, we
input the information of Mobius, including its URL (i.e., open.iotmobius.com) and open APIs
(GET:URL/deviceName>, POST:URL/deviceID/value and PUT:URL/deviceID/value) in the third
field (reference resources). These will be used by the service connector for collaborating with the
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external IoT service platforms (i.e., Mobius) according to the request of the end-user application.
In this case study, we did not use the fourth field, SWRL.

(a) (b)
Figure 11. A snapshot of the inputted ontological office model using the web-based
authoring tool.

1

2

3

Figure 12. Result of the ontology added in the IIO with respect to the hierarchy of classes,
object properties, and data properties.
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We also evaluate the ontology added to the IIO using the ISSS by analyzing the hierarchy of the
ontology with protégé. To this end, we compare the hierarchy of the updated the IIO shown in
Figure 12 with that of the original ontological office model shown in Figure 9).

In Figure 12- 1©, the class SmartOffice (the topic name of the service) is created as a subclass of
the class Service in the IIO, and it has four subclasses asserted in the original ontological office
model, except user classes, as explained in Section 3. The classes related to user information,
including the classes UserPW, UserName, and UserID, are added as subclasses to User in the
IIO, as shown in Figure 12- 2©. Object properties of the office ontological model are added in the
IIO, as shown in Figure 12- 3©. We can thus know that the ontology is appropriately added in the
IIO according to the explicit specification of the IIO, as well as the ontological office model.

• Step 4: Register user profile and preset using the web app:

We evaluate the second item (dynamic semantic translation of the IoT resources using the semantic
descriptor existing in the semantic service server in the ISSP) using protégé. Here, we investigate
two types of individuals. The first type of individuals are represented with the user profile
and preset inputted from the web app, whereas the second type of individuals is dynamically
translated by working with Mobius. We register the user profiles and preset using the user
profile registration mode in the web app as follows: (1) user ID: minu0921; (2) user PW:
test1234; (3) user name: minwooryu; (4) user Location: zone11; (5) user behavior: GoToWork;
(6) context: igotowork; and (7) device and use mode: 1©leftMonitor and on; 2©rightMonitor
and on; 3©fan and on. Figure 13a shows the registration of the user profile and preset using the
web app.

In contrast, the second type of individuals is added in the IIO through periodic HTTP connections
with Mobius (see the details in Section 4). At this time, the office utility names are used as
arguments of the HTTP verbs for HTTP connection with Mobius, and then, Mobius returns the
office utility IDs corresponding to the office utility names. This is a way to minimize the number of
individuals in the IIO. As we explained in Section 4.1.2, an IoT device can be stored with different
resource structures depending on the standard and the architecture of the IoT service platform,
such as oneM2M or ETSI. For example, a single temperature sensor would be stored in an IoT
service platform with related resources, including name, location, value, and the primitive data
type of the value. In order to generate a formal, explicit representation of IoT resources located
in various IoT service platforms, the ISSP needs to exploit all resources of the IoT devices and
then represent them as individuals in real time, leading to building a huge, dynamic semantic data
repository to store and handle all IoT resources in different IoT service platforms. Therefore, in
our case, rather than constructing such a semantic data repository, we make use of the unique ID
of IoT devices to distinguish, monitor, and control them.

Figure 13b shows the result of the two types of individuals added in the IIO using protégé.
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(b)(a)

1

2

Figure 13. Results of (a) the web app operation (registration mode) and (b) individuals
added in the IIO.

In Figure 13b, the two rectangles classify two types of individuals. The first three individuals
denote the office utility IDs added from Mobius by the HTTP connection, as shown in
Figure 13b- 1©. The rest of individuals denote the user profile, user preset and methods (i.e.,
GET:URL/deviceName, POST:URL/deviceID/value, and PUT:URL/deviceID/value) inputted
from the web app. From this result, we can know that the semantic descriptor appropriately
represents the user profile and preset inputted from the web app as the first type of individuals.
We also know that it appropriately represents office utility IDs inputted by working with Mobius
as the second type of individuals.

• Step 5 and Step 6: Request service and IoT device control:

In these steps, we evaluate the third item (performing IoT device monitoring and control using the
dynamically-translated IoT resources and Mobius). We first input a user ID (i.e., minu0921) and
user command (i.e., igotowork) registered from Step 4 and then send the inputted values to the
ISSS using the service request mode of the web app, as shown in Figure 14a.

We next evaluate the control functions of the office utilities, as shown in Figure 14b. From the
experiment, we can know that the ISSP enables IoT device control through working with Mobius.
In the control, the ISSP uses only office utility IDs and values for their operation modes. This
means that the ISSP can perform IoT device monitoring and control using minimum semantic data
by collaborating with our external IoT service platform, Mobius.
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(a) (b)

Figure 14. Results of (a) the web app operation (operation mode) and (b) IoT device
control functions.

5.3. A Scenario of ISSP-Based Semantic Interoperability in a Smart City

In this section, we describe a scenario of ISSP-based semantic interoperability. In particular, we focus
on how we can achieve interoperability between different service domains using the semantics in a smart
city. We assume a scenario as follows: a service user wants to turn on the HVAC (heating, ventilation
and air conditioning) system in his/her home when he/she finishes his/her office work. In other words,
when a computer is turned off in the office, the user wants to turn on the HVAC. Figure 15 shows the
semantic interoperability for the scenario.

A service user first registers his own devices (i.e., HVAC and MyPC) at home and the office, to
monitor and control them using the ISSP service, as shown in Figure 15- 1©. Here, we assume that the
user creates the same user ID between the home and office domains. Developers or administrators then
add their service domain knowledge into the IIO using the tool, such as the rectangles with dashed lines
in Figure 15- 2©. After registration from service domains, the ISSP is ready to work with the service
domains and discover related individuals in the IIO from the user.

The user registers his/her own profile and preset using a service application (e.g., mobile web), as
in Figure 15- 3©, where we assume that the profile and preset are as follows: (1) user ID: k2014;
(2) user devices: HVAC and MyPC; (3) user device mode: HVAC→ on. MyPC→ off; and (4) command:
iGoHome.

In this procedure, the ISSP defines relationships to provide interoperability via object properties
specified from the IIO. For example, to define relationships between a service user and service
domains, the ISSP discovers the matches with the inputted user ID (i.e., k2014) in the class
User and its subclasses, and then, the ISSP defines a relationship between the matched
user ID and relevant service topics (i.e., home and office) using an object property (i.e.,
hasService). In addition, the ISSP can discover URLs (i.e., iotmobius.com and smarthome.com)
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and CRUD methods (i.e., GET:iotmobius.com/MyPC/, POST:iotmobius.com/MyPC/0.1.2.425,
GET:smarthome.com/HVAC, POST:smarthome.com/HVAC/0.1.2.582) to work with external IoT
service platforms, which are related to the available services of the user. Accordingly, the ISSP can
monitor and control the devices having IDs corresponding to the device names inputted from the user.
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Figure 15. Semantic interoperability for a smart city service scenario.

The ISSP can now provide the user with the service according to the user command using semantic
interoperability. The user sends his/her own ID and command (i.e., “iGoHome”) to the ISSP, and then,
the ISSP requests the office repository to turn MyPC off using the URL and CRUD methods in the office
repository. After this procedure, the ISSP checks the use mode of MyPC. Once the use mode of MyPC
goes off, the ISSP requests the home repository to turn the HVAC on in the same way as the MyPC is
controlled. Therefore, the ISSP will be able to allow services to be provided across different service
domains in a smart city based on semantic interoperability.

6. Discussion

As we explained regarding the importance of interoperability across the entire service domain (e.g.,
smart cities) in this paper, we need to provide an integrated service system infrastructure that can handle
the whole service knowledge of IoT-based service domains to share IoT resources between service
domains. For providing such integrated service system infrastructures, we have developed the ISSP;
however, we need to consider additional practical issues.
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From the perspective of IoT, the same type of devices can exist in various service domains at the same
time, and each one may be defined and stored as a different device in the corresponding IoT service
platform (e.g., IoT data repository) according to the service requirements. At this time, the device may
have its corresponding roles required in a certain service domain. For example, we assume that two
monitors having an identical model number exist in an office domain and home domain, respectively.
Then, the monitors would be defined with a different name, type, function, and role according to the
service requirement of each service domain. In view of each service domain, of course, it is natural for
the device to have a different definition according to the service domain.

However, considering an integrated service system infrastructure for semantic interoperability, such
a domain-dependent definition for the same type of devices results in increasingly growing semantic
data (i.e., individuals) and complexity of the relationship between them due to the duplicate existence
of individuals of the same type of devices. An ideal way to resolve the problem is to identify and then
redefine the profiles (e.g., name and function) of the same type of IoT devices in the integrated service
system, when IoT devices are added from each service domain, though it is also a challenging task to
deal with a large number of IoT devices that may have the same type.

Another issue is to accommodate various, continually increasing applications for IoT. In IoT-based
service domains, a way for providing IoT device monitoring and control services is to use smartphone
applications or web applications. Although we combine the ISSP with the web application using
Ajax by manually adding these into the prototype service, this could not support connecting numerous
applications for IoT device monitoring and control. Hence, we have to consider an efficient way for
accommodating a gradually increasing number of applications.

Although we have proposed an integrated service platform to apply semantics technologies to
the IoT-based service domains, a primary goal of the semantics technologies is to share represented
knowledge within each service domain using the current web. Hence, we can consider generating open
accessible data for semantic interoperability between the IoT-based service domains. Additionally, we
would be able to use the well-known LOD for generating the data and sharing the LOD between the
service domains. However, this method may not be appropriate for providing semantic interoperability
for IoT-based services, because it should be dynamically generated and then published to support the
various IoT devices added and their collected data in real time.

7. Conclusions

In this paper, we have presented an integrated semantic service platform (ISSP) to support ontological
models in various IoT-based service domains. In order for the ontological models to be a formal, explicit
representation of knowledge within a service domain, we have developed a web-based authoring tool
with which we can create an ontology for a service domain. We have also developed an IoT-based service
integration ontology (IIO) as a top-level ontology to maintain and handle the ontologies created by the
web-based authoring tool. In addition, we have created a semantic descriptor for semantic translation of
the IoT resources used in each service domain. Finally, we can perform semantic discovery-based IoT
device monitoring control by working with our external IoT service platform, Mobius. With the proposed
method, we have tried to address three challenging problems for applying semantic technologies to
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highly-distributed, heterogeneous and resource-constrained IoT-based systems: integrated semantic
discovery in highly-distributed IoT domains, dynamic semantic expression between a large number of
IoT resources in real time, and a semantic data repository to archive a huge amount of data collected from
IoT devices. To show the practical feasibility of our proposed method, we have developed a prototype
service for a smart office, which can provide a preset, personalized office environment, for example office
utilities or lighting can be automatically turned on or off according to user text input sent from his or her
smartphone. Through the evaluation, we have shown that the ISSP can allow the prototype service to
appropriately perform semantic discovery, dynamic translation, and eventually IoT device control in real
time working with our IoT service platform. We have also discussed a scenario for ISSP-based semantic
interoperability to provide users with integrated and comprehensive services across service domains in
a smart city. Accordingly, we can conclude with confidence that the ISSP-based method can eventually
contribute to realizing semantic interoperability across the entire service domain based on IoT-based
systems and semantic technologies.
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