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Abstract: Label-free immunosensors are well suited for detection of microorganisms 

because of their fast response and reasonable sensitivity comparable to infection doses of 

common pathogens. Active (lever oscillator and frequency counter) and passive 

(impedance analyzer) modes of quartz crystal microbalance (QCM) were used and 

compared for rapid detection of three strains of E. coli. Different approaches for antibody 

immobilization were compared, the immobilization of reduced antibody using 

Sulfo-SMCC was most effective achieving the limit of detection (LOD) 8 × 104 CFU·mL−1 

in 10 min. For the passive mode, software evaluating impedance characteristics in real-time 

was developed and used. Almost the same results were achieved using both active and 

passive modes confirming that the sensor properties are not limited by the frequency 

evaluation method but mainly by affinity of the antibody. Furthermore, reference 

measurements were done using surface plasmon resonance. Effect of condition of cells on 

signal was observed showing that cells ruptured by ultrasonication provided slightly higher 

signal changes than intact microbes. 
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quartz crystal microbalance 
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1. Introduction 

Rapid detection and identification of pathogenic bacteria is important in many fields of human 

activities: medicine, environment control, waste water treatment, food industry, etc. Microbiological 

methods require time consuming cultivation of bacteria, followed by biochemical or immunological 

tests. An effort exists to develop a rapid, sensitive and conclusive method for the detection of relevant 

pathogens. Immunosensors may help in this case, especially the label-free devices providing simplified 

assay formats. The two mostly used direct immunosensors are based on either optical surface plasmon 

resonance or mass sensitive quartz crystal microbalance (QCM) transducers. 

QCM is a sensitive device consisting of the AT-cut quartz disc plate covered by evaporated 

electrodes (Au, Pt, etc.) on both faces allowing further immobilization of sensitive biorecognition 

elements. Alternating voltage applied to these electrodes induces shear deformation of the crystal. The 

Curie brothers discovered this phenomenon called piezoelectricity in 1880 [1]. The first sensor 

application was developed after Sauerbrey derived a formula for changes of the oscillation frequency 

depending on the mass loaded to the sensor surface [2]. The behavior of the crystal with respect to 

Sauerbrey’s equation is effective in vacuum and also under special conditions in air. A significant step 

forward was also elucidation of the behavior of the QCM sensor in liquids [3,4]. 

Many QCM-based biosensors were developed and tested over almost 30 years [5–8]. Two basic 

techniques have been developed and specified in a theoretical comprehension for getting the accurate 

frequency changes. The first one inserts the crystal to an oscillator circuit with elements that are 

explicitly related to physical properties of the crystal. In this way, it is rather difficult to distinguish 

between mass changes and viscosity effects of liquid. This technique is known as active mode or 

classical QCM. The other approach requires more expensive impedance analyzer. The impedance 

characteristic is measured close to the resonant frequency of the crystal allowing to differentiate 

between mass-affected frequency change and the contribution of liquid [9,10]. Similarly, this 

technique is known as passive mode. 

Direct label-free detection of bacteria or viruses in liquid samples is a challenging task. QCM 

sensors have been tested for the detection of bacteria, viruses, fungi and algae. A QCM sensor for the 

detection of Salmonella typhimurium was developed and used for either direct or sandwich detection 

with gold nanoparticles [11]. Probiotic bacteria were detected in real samples in the range  

104–105 CFU·mL−1 within 60 min [12]. Non-labelled detection of Francisella tularensis was 

demonstrated by Kleo using QCM with dissipation monitoring and a detection limit of  

4 × 103 CFU·mL−1 in 20 min [13]. In vitro study of infective endocarditis was also realized using a 

QCM in a flow system [14]. In the all the above cases antibodies were utilized as the biorecognition 

part. Alternatively, some viruses can serve for bacterial recognition. The specific phage-bacteria 

interaction was used for discrimination of methicillin resistant (MRSA) and sensitive (MSSA) strains 

of Staphylococcus aureus [15]. 

Most QCM sensors operate at the fundamental frequency in the range of 5–20 MHz. In some cases 

it is possible to apply an overtone frequency. Sensor response to S. aureus was measured at the 3rd 

overtone of the 5 MHz crystal, at 15 MHz [16]. An oscillator designed to drive the quartz crystal at  

27 MHz (3rd overtone) was used for detection of the toxic algae Alexandrium minutum [17]. The 

response was quite large (−540 Hz) for concentration of algae 5.6 × 106 CFU·mL−1, nevertheless, LOD 
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was only 106 CFU·mL−1. The authors concluded that the sensor response in a gravimetric regime is not 

well respected. Beside the overtone oscillators, a high fundamental frequency 50 MHz QCM oscillator 

circuit was designed as a DNA biosensor [18]. 

The main limitations of label-free QCM immunosensors are rather high values of LOD. Two main 

approaches have been utilized for elimination of this disadvantage: a nanoparticles-based 

preconcentration and amplification. The QCM sensor has been described for detection of  

S. typhimurium with simultaneous measurements of the resonant frequency and motional resistance. 

Using magnetic beads preconcentration and amplification, the achieved LOD was at 100 CFU·mL−1 

based on motional resistance changes [19]. A label-free capacitive QCM immunosensor was developed 

for detection of E. coli O157:H7 with LOD equal to 220 CFU·mL−1 within 1 h [20]. 

The theory of QCM detection of living microbial particles is still not completely clear. 

Mathematical models and descriptions of sensor behavior have been published [21]. One could expect 

a negative shift of frequency during an interaction of these particles with sensor. However, in some 

cases, a positive shift can occur and the sensors response is not as expected [22,23]. Besides 

transduction, affinity of the biorecognition part and method of its immobilization at the sensing surface 

play a significant role. 

The available information indicates that passive mode is not routinely employed for detection of the 

living bacteria in flow liquids. Usually, small inorganic or biological molecules are tested and the 

detection is not carried out in flow systems [24]. This work describes a comparison of active and 

passive modes for determination of the resonant frequency corresponding to binding of bacteria to 

antibodies realized in a flow-through system. The specificity of the antibodies was tested on several 

strains of E. coli. SPR measurements were included to check the binding kinetics and the atomic force 

microscopy imaging was applied for confirmation of microbial cells in the sensing surface. Finally, the 

effect of bacterial state (viable, dead, desintegrated) on the responses was studied. 

2. Experimental Section 

2.1. Chemicals and Reagents 

(3-Aminopropyl)triethoxysilane (APTES), cysteamine, glutaraldehyde (GA), staphylococcal protein 

A (SpA) and sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) for 

sensor surface modifications were purchased from Sigma-Aldrich (St. Louis, MO, USA). Chemicals 

for buffer preparation were obtained from PENTA (Prague, Czech Rep.). Phosphate buffered saline 

consisting of 50 mM sodium hydrogen phosphate/sodium dihydrogen phosphate and 150 mM sodium 

chloride pH 7.4 (PBS) was used for QCM analysis, PBS-EDTA (100 mM PBS, 10 mM EDTA,  

pH 7.2) was used for preparation of reduced antibodies. Acetate buffer (50 mM, pH 4.5) was prepared 

by mixing acetic acid and sodium acetate. For regeneration of sensor surface, either 50 mM sodium 

hydroxide or 100 mM citrate buffer pH 4.0 was used. Piranha solution was prepared by mixing 

concentrated sulfuric acid and 30% hydrogen peroxide in a 3:1 volume ratio. 1-Ethyl-3-(3-dimethyl-

aminopropyl)carbodiimide (EDC), N-hydroxysuccinimide (NHS), ethanolamine and HBS-P buffer for 

SPR experiments were purchased from GE Healthcare (Uppsala, Sweden). All solutions were filtered 

through a 0.22 µm PTFE membrane (Merck Millipore, Billerica, MA, USA). 
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2.2. Microorganisms and Antibodies 

The used E. coli strains (BL21, DH5α and K-12) were obtained from the Czech Collection of 

Microorganisms and were all cultivated using the same procedure. Stock solution (100 µL) were 

inoculated into low salt LB Broth (200 mL, Duchefa Biochemie, Haarlem, The Netherlands) in 

Erlenmeyer flasks and the cultivation was done aerobically at 37 °C overnight. The obtained bacterial 

suspension was centrifuged thrice for 10 min at 4500 g and washed with sterile PBS. Concentration  

of bacteria was determined by measuring optical density at 600 nm, calibration was done by the  

McFarland scale. 

Detection of the strains BL21 and DH5α was done using goat polyclonal antibody Abcam ab25823 

(Abcam, Cambridge, UK). Rabbit polyclonal antibody Serotec 4329-4906 (AbD Serotec, Kidlington, 

UK) was used for detection of the strain K-12. 

The capability of antibodies to bind E. coli cells was confirmed using atomic force microscopy 

(AFM). Glass cover slips were submerged in freshly prepared acidified methanol (methanol and 

chloric acid in volume ratio 1:1) for 30 min, washed with water and submerged in concentrated 

sulfuric acid for another 30 min [25]. After washing with water, their surface was activated with 2% 

APTES (in 95% methanol acidified with 2% HCl, pH 4.6) for 3 h at room temperature and in the dark. 

Then the activated slips were cured for 1 h at 110 °C and incubated with 5% glutaraldehyde for 

another 1 h. The antibodies (100 μg·mL−1) were immobilized directly to this layer overnight at 4 °C. 

Free reactive groups were deactivated using ethanolamine (50 mM, 30 min). The washed slips were 

stored in closed Falcon tubes. 

Microbes (concentration 107 CFU·mL−1) were allowed to bind for 1 h and then the surface was 

thoroughly washed with deionized water. The scanning was done in semicontact mode using the AFM 

NanoWizard 3 system (JPK Instruments, Berlin, Germany) and the ACTA-10 probe (Applied 

NanoStructures, Mountain View, CA, USA). 

2.3. Preparation of Biosensing Layers for QCM 

Three different approaches were used for immobilization of antibodies to gold electrodes of  

10 MHz quartz crystals (ICM, Oklahoma City, OK, USA). The sensor surface was always initially 

cleaned for 30 min with chromic acid and rinsed with deionized water. In the first procedure, the 

surface was activated using cysteamine (20 mg·mL−1, 2 h at room temperature), glutaraldehyde (5%,  

1 h at room temperature) and protein A (1 mg·mL−1, 20 h at 4 °C). In the next step, the antibody was 

bound (100 μg·mL−1, 20 h at 4 °C) and free reactive groups were deactivated using ethanolamine  

(50 mM, 30 min at room temperature). After each step, the sensor was thoroughly washed with sterile 

deionized water, allowed to dry and resonant frequency was measured using both frequency counter 

and impedance analyzer. The second approach was based on the same procedure but antibody was 

bound directly to glutaraldehyde omitting the protein A [26]. 

For the third method, antibody was diluted in PBS-EDTA to 2 mg·mL−1 and then it was reduced  

(10 µL of 60 mg·mL−1 cysteamine were added to 100 µL of antibody solution). The incubation was 

done for 90 min at 37 °C and the reduced antibodies were purified using centrifugal microfilter 

Microcon YM-10 (Merck Millipore, Billerica, MA, USA). The sensor surface was activated by 
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cysteamine (20 mg·mL−1, 2 h at room temperature), Sulfo-SMCC (3 mg·mL−1, 1 h at room temperature) 

and finally, the reduced antibody was bound (100 μg·mL−1, 18 h at 4 °C). The third immobilization 

procedure leaves no free reactive groups and therefore no deactivation was required [27]. 

2.4. Active and Passive QCM Immunoassay 

Active QCM measurements were performed using the QCM Analyzer (KEVA, Brno, Czech Republic) 

which serves both as oscillator and frequency counter. Piezoelectric crystals with immobilized 

antibody were placed in a flow-through cell (designed and constructed by Karel Lacina). Transport of 

liquids was provided by a milliGAT pump (Global FIA, Fox Island, WA, USA) and a selection valve  

(Valco Instruments, Houston, TX, USA). A scheme of the experimental set-up is shown in Figure 1. 

The whole system was controlled via the in-house developed software LabTools that allowed fully 

automated operation. PBS was used as a running buffer with a flow-rate of 40 µL·min−1. After baseline 

establishing, samples were injected for 10 min followed by 10 min dissociation phase in PBS. 

Regeneration was done for 2 min using 50 mM NaOH in case of sensors with antibody bound using 

protein A and by citrate buffer in case of the other sensors. 

 

Figure 1. Scheme of experimental set-up for active QCM measurements. 

Passive QCM measurements were done by an Agilent 4249A impedance analyzer (Agilent,  

Santa Clara, CA, USA) connected by a LAN network. The analyzer was continuously scanning the 

impedance characteristics near the crystal resonance frequency, and each spectrum consisted of 401 

points and was measured with the parameter Bandwidth 4 (the spectrum acquisition took 20 s). 

Resonant frequencies corresponding to the zero phase shift (fr) and maximum admittance (fm) were 

evaluated in real-time using LabTools software according to the built-in OUTPRESO fitting function. 

The amplitude of impedance at the resonant frequency (|Zr|) was obtained simultaneously. In contrast 

to the alternative BVD model (represented by the function EQUCPARS4), the frequency based on the 

zero phase shift provided more reliable results and lesser fluctuations for measurements in liquid. The 

remaining experimental parameters were the same as in case of the active QCM experiments. 
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2.5. SPR Immunoassay 

Reference SPR measurements were performed on Biacore 3000 (GE Healthcare, Uppsala, Sweden) 

equipped with the CM5 chip. The Biacore microfluidic system contains four flow-through channels 

(Fc). Antibody immobilization was done in a flow-through mode (buffer HBS-P, flow-rate  

5 µL·min−1). First, carboxymethylated dextran matrix was activated by 50 µL of 1:1 mixture of EDC 

(400 mM) and NHS (100 mM). Then, antibody (20 µL, 10 μg·mL−1, in acetate buffer pH 4.5) were 

injected into the channel Fc4. After this step the signal change was 5,000 RU. The channel Fc3 

(serving as a reference) was modified by the same procedure but excluding antibody binding. The 

remaining reactive groups were deactivated using ethanolamine (30 µL, 1 M, pH 8). 

For the measurements, the same experimental conditions were used (buffer HBS-P, flow-rate  

5 µL·min−1). When the baseline signal was established, E. coli samples (50 µL) were injected using the 

KINJECT function. Ten min of association phase were followed by 10 min of dissociation in HBS-P, 

regeneration was done by a short pulse (10 µL) of 50 mM HCl. Differential signal (Fc4 − Fc3) was 

evaluated to suppress the effect of non-specific binding and refractory index changes. 

3. Results and Discussion 

3.1. Scanning by Atomic Force Microscopy 

Atomic force microscopy was used to study microbial cells both nonspecifically attached to a cover 

slip glass and specifically bound to the antibody immobilized on glass. In the case of the nonspecific 

binding, the smoothness of the cover slip and shape of E. coli cells was checked. 

 

Figure 2. AFM scan of E. coli K-12 specifically bound on the cover slip modified by 

APTES and antibody Serotec 4329-4906. The “Error” signal is shown. (A) Overview and 

(B) detail of a single cell. 

Compared to the practically flat bare cover slips, small nm-sized particles were formed on the 

APTES-modified slips. The Ab-modified glass slips were incubated with bacteria suspension  

(107 CFU·mL−1) and after 1 h thoroughly washed with water. The samples were scanned in the  



Sensors 2015, 15 85 

 

 

semi-contact mode. High-density immobilization of antibodies led to high surface concentration of the 

bound bacteria (average 2 cells per 100 μm2) as evident in Figure 2. In the case of blank (glass slip 

modified using APTES, glutaraldehyde and ethanolamine, but with no antibody), no bacterial cells 

were captured. QCM sensor modified with reduced antibody was scanned, as well. In this case, the 

number of bound bacteria was smaller (0.5 cells per 100 µm2), but the antibody binding ability was 

still clearly confirmed. 

3.2. Performance of the QCM Immunosensor 

After each immobilization step, crystal resonant frequency and impedance characteristics (Figure 3) 

were measured in dry state. Two approaches were used to determine the resonant frequency from 

impedance characteristics—the first one (fr) was corresponding to zero phase shift and the second one 

(fm) to maximal admittance (minimal impedance). These two methods provided practically identical 

results. In the following text, passive mode results are expressed as frequency fr. During the 

immobilization, the frequency shifted to lower values keeping admittance size the same as for bare 

gold. After binding of cysteamine, a frequency increase was noticed. The etching mechanism of gold 

by alkanethiols was already proved by STM and AFM studies [28]. 

 

Figure 3. Impedance characteristics of quartz crystal after individual immobilization steps. 

The inset table shows the initial resonant frequency and further frequency changes from the 

previous immobilization step evaluated using both active and passive modes. Cys—cysteamine;  

GA—glutaraldehyde; Ab—antibody; EA—ethanolamine. 

Comparing the resonant frequencies obtained by the active and passive method, the absolute 

frequency values differ by nearly 3000 Hz. The variation results from the completely different 

approach for frequency determination, but the subsequent frequency changes are readily comparable. 

This technique can be used also for determination of microbe concentrations. However, due to the 

drying step, it is longer and more complicated than the on-line mode which is discussed later. 
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Figure 4. Binding interactions between E. coli DH5α and antibody Abcam ab25823 

immobilized directly using glutaraldehyde. (A) Frequency measured in active mode using 

the QCM Analyzer; (B) Frequency measured in passive mode using Agilent 4294A;  

(C) Amplitude of impedance at the resonant frequency measured in passive mode. 

The sensor with antibody Abcam ab25823 bound directly via glutaraldehyde was then used for 

detection of E. coli DH5α. The binding interactions were initially followed in the active mode (Figure 4A). 

The limits of detection (LOD) were determined as the E. coli concentration for which the signal 

reached three times of the standard deviation of blank measurement (3s). In this case the LOD was  

9 × 105 CFU·mL−1. Only 400 µL of sample was required for the experiments. The regeneration using 

citrate buffer pH 4.0 allowed reproducible detection of more than 15 samples with one side of the 

sensor. Practically no signal change was observed for either blank (PBS) measurements or cross-reactivity 

tests using 107 CFU·mL−1 of Bacillus atrophaeus spores. 

For the measurements using passive mode, all experimental conditions including microbe samples 

remained unchanged to suppress any effect other than the influence of frequency determination 
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method. Binding interactions are shown in Figure 4B. The obtained LOD had the same value  

(9 × 105 CFU·mL−1) as in case of active mode which confirms that both frequency determination 

methods are comparable. When evaluating the amplitude of impedance at the resonance, analogous 

results were achieved and the value of LOD was practically the same as using the frequency changes 

(8 × 105 CFU·mL−1). 

Figure 5 provides calibration curves for active and passive QCM detection of E. coli DH5α. 

Typically, the dependence of frequency change on concentration exhibits saturation character and 

therefore linearization by transforming x axis to log-scale is usually done. The sensor then provided a 

linear response up to 108 CFU·mL−1. The error bars correspond to the standard deviations. 

 

Figure 5. Calibration curves for determination of E. coli DH5α using active and passive 

QCM immunosensors based on antibody Abcam ab25823 immobilized directly using 

glutaraldehyde. 

The other immobilization methods and E. coli strains were compared using the active mode. The 

results are summarized in Table 1. Calibration curves correspond only to the linear ranges of 

dependencies, LODs are evaluated using three times the standard deviation of blank signals. In all 

cases, the analysis time was only 10 min. The whole experiment including analysis, dissociation and 

regeneration phase took 35 min. 

Antibody Abcam ab25823 immobilized using glutaraldehyde was used also for binding of E. coli 

BL21. In this case, the signal changes were approximately half of those for DH5α (slope 5.7 vs. 12.3 

for DH5α) but LOD was similar (5 × 105 CFU·mL−1). In a similar manner, the antibody Serotec  

4329–4906 was immobilized via cysteamine and glutaraldehyde. Thus modified sensor was used for 

detection of K-12 strain. The LOD was the same as in the previous case. The slope was between values 

for both previously mentioned strains. Generally, these data suggest that lower LOD level probably 

cannot be achieved using this immobilization method. 
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Table 1. Summary of the results for tested QCM and SPR immunosensors and E. coli strains. 

Mode Immobilization Antibody Strain Calibration Curve 
LOD 

(CFU·mL−1) 

Active QCM 

Cys–GA ab25823 DH5α −f = 12.3 log(c) − 72.8 9 × 105 

Cys–GA ab25823 BL21 −f = 5.7 log(c) − 32.0 5 × 105 

Cys–GA 4329-4906 K-12 −f = 7.0 log(c) − 35.0 5 × 105 

Cys–GA–SpA ab25823 DH5α −f = 27.1 log(c) – 182 5 × 106 

Cys–SMCC 4329-4906 K-12 −f = 5.1 log(c) − 24.4 8 × 104 

Passive QCM Cys–GA ab25823 DH5α 
−f = 11.1 log(c) − 65.5 

|Zr| = 1.6 log (c) – 9.0 

9 × 105 

8 × 105 

SPR EDC/NHS ab25823 DH5α R = 39.9 log(c) – 249 2 × 106  

Cys—cysteamine, GA—glutaraldehyde, SpA—protein A, SMCC—Sulfo-SMCC. 

Protein A provides oriented immobilization of antibodies because it binds their Fc fragment and 

therefore better LOD was expected. Even though the signals obtained for high concentrations of 

microbe were larger (slope 27.1), the sensor was not able to detect low E. coli concentrations. The 

higher value of LOD (5 × 106 CFU·mL−1) was mainly due to the higher standard deviation of blank. In 

fact, this method provides oriented immobilization of antibody only relative to protein A, which can be 

bound also in a “nonproductive” way, despite its multivalency. 

The best results were achieved with the reduced antibody bound via Sulfo-SMCC. Even though the 

signals for high concentrations were rather small (slope 5.1, which is comparable with the 

determination of the strain BL21), LOD of 8 × 104 CFU·mL−1 was reached. Despite the fact this 

immobilization procedure is complicated (requiring reduced antibodies), it seems to be the most 

promising for sensitive detection of microorganisms using QCM. 

Our findings confirm the previously published results, where conventional microbalances and 

electroacoustic admittance also gave the same response [17]. For the detection of microbes in food 

samples, lower LOD would be necessary. Further improvement of LOD can be achieved by various 

approaches—preconcentration using magnetic beads [29], cultivation based preconcentration [30] or 

by amplification using precipitation products [31,32]. Nevertheless, all of these methods would make 

the analysis times significantly longer. 

3.3. Performance of the SPR Immunosensor 

The binding interactions between E. coli DH5α and the antibody Abcam ab25823 were studied also 

using surface plasmon resonance (Figure 6). The SPR experiments were performed with 10 min of the 

binding phase as well. Regeneration was done by 50 mM HCl and this allowed more than 40 

experiments with a single chip. The calibration curve and LOD (2 × 106 CFU·mL−1, Table 1) are 

comparable to the results achieved using QCM. An improved LOD could be achieved using a 

dedicated LSPR system based on long-range surface plasmons combined with immunomagnetic 

entrapment of bacteria [33]. 
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Figure 6. Binding interactions between E. coli DH5α and antibody Abcam ab25823 

studied using surface plasmon resonance. Changes of differential signal are shown. The 

inset graph represents calibration curve for SPR detection of E. coli DH5α. 

The producer claims that the Abcam ab25823 antibody is specific against heat-killed and sonicated 

E. coli cells, so both of these procedures were tested for expected improved response. First, the 

ultrasonication using a Sonopuls HD 2200 homogenizer with a MS 72 sonotrode (both from Bandelin 

Electronic, Berlin, Germany) was done. While the signal change for 108 CFU·mL−1 of native cells was 

68 RU, in case of ultrasonicated ones, the signal slightly increased to 87 RU. Typically, SPR 

recognizes only those parts of cells that are close to the sensor surface (in the range of surface 

plasmons); smaller cell pieces are detected entirely. Still, the difference was not too large and rough 

estimation of damaged cells could be done even using a common calibration curve. Heat-killing of 

cells was done in an autoclave at 121 °C for 20 min. For this sample, the signal change was only  

12 RU, which indicates that thermal denaturation changed the antigenic structures and hindering 

binding to antibodies. 

4. Conclusions 

A piezoelectric immunosensor for rapid detection of microorganisms was developed. As a model 

microbe, E. coli strains BL21, DH5α and K-12 were used. From the three tested immobilization 

procedures, the best results were achieved with the reduced antibody bound via Sulfo-SMCC, and this 

sensor was able to detect 8 × 104 CFU·mL−1 in 10 min, while regeneration allowed more than  

15 measurements with one side of the QCM sensor. Active and passive QCM modes were compared; it 

seems that the effect of frequency determination method is negligible compared to the influence of the 

antibody immobilization procedure. The immunosensor shows good potential for detection of 

pathogenic microorganisms in common situations. Reference measurements were done using surface 

plasmon resonance; the ability of antibodies to bind E. coli cells was confirmed with AFM. The 

affinity of antibodies was found to be affected by cell viability and integrity. Still, the ability of the 

developed sensor to detect damaged cells was not substantially worse than in the case of living ones. 
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