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Abstract: In this paper, a three-dimensional (3D) object moving direction and
velocity estimation method is presented using a dual off-axis color-filtered aperture
(DCA)-based computational camera. Conventional object tracking methods provided only
two-dimensional (2D) states of an object in the image for the target representation. The
proposed method estimates depth information in the object region from a single DCA
camera that transforms 2D spatial information into 3D model parameters of the object. We
also present a calibration method of the DCA camera to estimate the entire set of camera
parameters for a practical implementation. Experimental results show that the proposed
DCA-based color and depth (RGB-D) camera can calculate the 3D object moving direction
and velocity of a randomly moving object in a single-camera framework.

Keywords: object tracking; depth estimation; computational camera; image registration;
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1. Introduction

Object tracking is a very popular research topic in the computer vision field because of its wide
applications in video surveillance systems, intelligent driver assistant systems, robot vision, etc. [1,2].
Conventional object tracking methods provided only two-dimensional (2D) states of an object in the



Sensors 2015, 15 996

image and therefore cannot deal with the occlusion and depth-related problems. For solving these
problems, estimation of three-dimensional (3D) depth information has been intensively studied for the
past several decades [3–6].

The traditional approach to 3D image acquisition or depth estimation involves the use of two cameras
that capture two images of the same scene from different viewpoints [7,8]. Despite many advantages,
the stereo vision system has a fundamental limitation that highly accurate calibration is required for both
cameras. In addition, stereo cameras require both calibration and rectification steps for the alignment
of two cameras. However, even after completion of the two steps, the rectification step should be
performed again, if the stereo camera is influenced by various external factors that break the alignment
between two cameras. As an alternative approach, Panasonic’s LUMIX G 12.5 mm F12 lens can
acquire two images with different viewpoints by dividing the imaging sensor into two regions. Although
this system mimics the stereo vision in a single-camera framework, the reduced resolution is the
fundamental disadvantage.

Another single camera-based depth estimation approach is the pupil plane coding method that
modifies an aperture of a lens for coding geometric depth information into the image [9]. Recently,
three apertures covered with red, green and blue filters have been used for the same purpose [10], where
three color-filtered apertures (TCA) generate color shifts among channels depending on the distance of an
object. Kim et al. proposed a multifocusing image restoration algorithm using the distance estimation in
the color shifted image using the TCA [11]. Lee et al. proposed a simultaneous object tracking and depth
estimation system using the TCA camera [12]. However, these TCA-based methods produce redundant
pairs of disparity vectors and do not establish the theoretically complete relationship between color
shifting and the real distance. Lee et al. proposed a novel configuration of dual off-axis color-filtered
apertures (DCA) to remove the disparity redundancy of the color shifting vectors and to increase the
size of an individual aperture to receive more incoming light [13]. The mathematical model of the DCA
configuration with the relationship between color shifting values and the actual distance of the object
were proposed in [14].

In this paper, we present a novel 3D object moving direction and velocity estimation method for robust
object tracking using a DCA-based computational RGB-D camera. The incremental learning-based
approach [15] is used for object tracking from the DCA camera, and the color shifting value (CSV),
which is related to the distance of the object, is estimated in the region of the tracked object. The
states of the object at the image coordinate are then transformed into the 3D parameters of the object
using the estimated CSV. Finally, the direction and velocity of a moving 3D object are simultaneously
calculated while tracking the object. We also present a calibration method of the DCA camera to estimate
the entire set of camera parameters for real applications. Although this work shares the concept of
multiple, color-filtered apertures in the previous work [11–14], the original contribution includes: (i) the
incremental learning-based object tracking algorithm that is optimized for the DCA camera system; (ii)
single camera-based simultaneous 3D object moving direction and velocity estimation; and (iii) a novel
calibration method that can be used for a DCA camera system.

The paper is organized as follows. Section 2 presents the background of the DCA camera, and
Sections 3 and 4 describe the object moving direction and velocity estimation for tracking and the DCA
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camera calibration, respectively. Experimental results are provided in Section 5, and Section 6 concludes
the paper.

2. Dual Off-Axis Color-Filtered Aperture-Based Camera

Recently, computational imaging systems have been widely used for obtaining additional information,
while traditional imaging systems only acquire intensity and color information. A computational
imaging system projects rays, which is altered by specially-designed optics, in the light field of the
scene onto the image sensor using novel optics and the correspondingly developed image processing
algorithms. These systems can produce a new type of image that is potentially useful for re-focusing,
scene segmentation and 3D computer vision. Computational imaging systems can be broadly classified
into six categories, as shown in Figure 1 [9].

Figure 1. Six types of computational cameras and the proposed dual off-axis color-filtered
aperture (DCA) camera [9].

The pupil plane coding places a specially designed pattern at the aperture in front of the lens to easily
configure the computational camera for depth information. By incorporating the concept of pupil plane
coding, we design a novel computational imaging system by simply inserting an appropriately resized
DCA into any general optical system in the single-camera framework.

The aperture of an optical system is the opening device that adjusts the amount of light entering the
image sensor. The center of the aperture in the traditional imaging system is generally aligned with the
optical axis of the lens. If there are two off-axis apertures, the convergence pattern of the projected point
on the image plane is divided into the two projected points if the object is not located at the plane of
focus. The distance between two separated convergence patterns depends on the distance of the object
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from the camera. It is noted that we cannot estimate the distance between two projected regions if they
are mixed together.

Figure 2. The convergence patterns of objects at three different distances in the DCA
configuration.

In order to separate two regions, we covered apertures using two different color filters that generate
geometric disparity between two color images. For the complete color shift model using the DCA
camera, we use two apertures with red (R) and cyan (C) filters, whose centers are located on the same
line crossing the optical axis. The color shift model can provide the geometric disparity of misalignment,
which can be estimated from the amount of color deviation between the pair of two projected points, as
shown in Figure 2. Thus, the distance of the object can be estimated using the color shifting value
(CSV) that corresponds to the length of the amount of misalignment between color channels from the
color-misaligned image.

3. Object Moving Direction and Velocity Estimation with Tracking

The object region should be continuously tracked to estimate the 3D motion of the object while the
position and scale of the object change. We use the incremental learning-based method for robust object
tracking [15].

The statistical object tracking problem is usually defined as the Bayesian inference with a hidden
Markov model. Given the state of an object at time t, denoted as ot, cumulated observations up to time
t, denoted as Y1:t, the Bayesian filter updates a posteriori probability p(ot|y1:t) with the following rule,

p(ot|y1:t) ∝ p(yt |ot)
∫
p(ot|ot−1)p(ot−1|y1:t−1)dot−1 (1)

where p(yt|ot) represents the observation model as a likelihood term that measures the similarity
between the observation at the estimated state and the given model and p(ot|ot−1) the transition model
as a prior term, which predicts the next state ot based on the previous state ot−1. With the posterior
probability p(ot|y1:t), we obtain the maximum a posteriori (MAP) estimate over N samples at time t as:
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oMAP
t = arg max

on
t

p(ont |y1:t), forn = 1, ....., N (2)

where oMAP
t denotes the best configuration, which can explain the current state with the given model.

The observation model is updated by the incremental principle components analysis (PCA) algorithm
proposed by Ross, and then, the current state oMAP

t is determined by the distance metric in this
work [15]. The transition model is formulated by a random walk with a Gaussian distribution.

Let the 2D state of the object xt at time t in the image coordinates denote xt = {xt, yt, wt, ht}, where
xt and yt indicate the center position of the object, wt and ht represent the width and the height of the
object, respectively. In order to convert the image coordinate system into the 3D camera coordinate
system, we need to know the distance Z of the object and camera intrinsic parameters, including the
focal lengths fx, fy and the principal point sx, sy.

Because two disparities between red and green and red and blue are the same with respect to the
horizontal direction, the distance measure combines two energy functions as:

E(∆x) =
∑
x,y∈Ω

(Ir(x, y)− Ig(x+ ∆x, y))2

+
∑
x,y∈Ω

(
Ir(x, y)− Ib(x+ ∆x, y)

)2
(3)

where ∆x represents the CSV, Ω the extracted object region and I the image acquired by the DCA
camera. Superscripts r, g and b respectively represent the red, green and blue color channels. Since
this error function is nonlinear, it cannot be analytically minimized. To simplify the minimization, we
approximate this error function using a first-order truncated Taylor series expansion [16] as:

E(∆x) =
∑
x,y∈Ω

(Irgt (x, y)−∆xIrgx (x, y))2

+
∑
x,y∈Ω

(
Irbt (x, y)−∆xIrbx (x, y)

)2
(4)

where Irct = Ir − Ic, for c ∈ {g, b}, and Ircx represents the first derivative of (Ir + Ic)/2 using the Sobel
operator in the horizontal direction. Since E(∆x) is a quadratic function of ∆x, a closed-from solution
for minimizing the energy can be found by differentiation with respect to ∆x and setting the result equal
to zero as:

∆x =
∑
x,y∈Ω

[
Irgx (x, y)Irgt (x, y) + Irbx (x, y)Irbt (x, y)

]
[(Irgx (x, y))2 + (Irbx (x, y))2]

(5)

A more accurate estimation of ∆x can be performed by a Gaussian pyramid-based iterative
coarse-to-fine approach for accommodating large color shifting values between color channels [17].
In [13], Lee et al. estimated the dense depth map in the entire image. However, the proposed method
estimates only one CSV by minimizing the error function in the object region. If the object region is
large enough to contain meaningful features, it is almost always reliable.



Sensors 2015, 15 1000

Figure 3. The configuration of the DCA camera.

In [14], the relation between ∆x and the object distance Z has been derived as:

∆x = f 2 Z0 − Z
(Z0 − f)(Z · f − (Z − f)cz)

∆cx (6)

where f represents the focal length, ∆cx the distance between the two off-axis apertures, cz the distance
of the DCA away from the lens and Z0 the plane of focus. Figure 3 shows the configuration of the DCA
camera. If we assume that both Z and Z0 are sufficiently larger than the focal length, then the movement
of the projection is approximately computed as:

∆x ≈ f

(
1

Z
− 1

Z0

)
f

f − cz
∆cx (7)

where f/(f − cz) determines the distance between the two equivalent apertures, ∆ceffx = (f/(f − cz)) ·
∆cx. If cz is zero, ∆ceffx is equal to ∆cx.

If the parameters in Equation (7) are expressed in millimeters, then ∆x is also determined in
millimeters. In order to express ∆x in pixels, ∆x has to be multiplied by the distance αx between
two pixels, which is given as:

αx = Sh/Mh (8)

where Sh represents the size of an image sensor with respect to the horizontal direction and Mh the
size of the image resolution with respect to the horizontal. f is redefined as fx = f/αx, and then,
Equation (8) can be rewritten as:

∆x ≈ fx
∆ceffx

Z
− fx

∆ceffx

Z0

(9)

Equation (9) is similar to the relationship between the disparity and the depth in the stereo vision
defined as ∆D = fx

B
Z

, where B represents the baseline, except theoffset given as f ∆ceffx

z0
. Solving (9)

for Z yields:

Z =
fxZ0∆ceffx

fx∆c
eff
x + Z0∆x

(10)

Given Z, the 2D states of the object xt and yt are transformed into 3D camera coordinate as:
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Xt = (xt − sx) · Zt/fx and Yt = (yt − sy) · Zt/fy (11)

where sx and sy are the principal points with respect to horizontal and vertical directions, respectively.
The 2D states of the object wt and ht are transformed into 3D camera coordinates as:

W = w · Z/fx and H = h · Z/fy, (12)

3D object moving direction D and velocity V are then calculated as:

D = {Ẋ = Xt −Xt−k, Ẏ = Yt − Yt−k, Ż = Zt − Zt−k} (13)

V =
√
Ẋ2 + Ẏ 2 + Ż2 (14)

where Ẋ , Ẏ and Ż represent the amount of the object moving with respect to the x-, y- and z-coordinates,
respectively. k represents the number of frames per second. Finally, the proposed 3D state of the object
is defined as ȯt = {ot,Ot,Dt, Vt}, where Ot = {Xt, Yt, Zt}.

In ȯt, the state of the object to be used for object tracking is ot. After determining oMAP
t , the final

3D state of the object ȯt is then computed. Continuously estimated Z may have a minor oscillation due
to the estimation error of the CSV. For robust estimation of Z, we use Kalman filtering to predict and
compensate temporally changing CSV.

4. DCA Camera Calibration

For accurate depth estimation, the entire set of camera parameters, except ∆x, should be calibrated.
Calibration of the DCA camera consists of two steps: (i) estimation of the camera parameters, including
the focal lengths, principal point and lens distortion coefficients; and (ii) estimation of the DCA
parameters, including Z0 and cz.

(a) color channel (b) red channel (c) green channel (d) blue channel

Figure 4. Calibration patterns for estimating the camera parameters. (a) Color channel; (b)
Red channel; (c) Green channel; (d) Blue channel.

Although each color channel has the same lens distortion coefficients, because the DCA camera uses
a single lens, sx and sy have to be estimated in each color channel due to two off-axis apertures, as
shown Figure 4. For the calibration of the camera parameters, we took the images using a checkerboard
at different camera locations and used a calibration tool at each color channel.
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(a) Before lens correction (b) After lens correction

Figure 5. The result of the lens distortion correction. (a) Before lens correction; (b) After
lens correction.

Although the object is located at the same distance, each object has different CSVs before lens
correction, as shown in Figure 5a. However, after lens correction, the objects located at the same distance
also have the same CSVs, as shown in Figure 5b.

(a) 1 m (b) 3 m (c) 4 m

Figure 6. A concentric circle pattern for calibrating DCA parameters. (a) 1 m; (b) 3 m;
(c) 4 m.

For solving Z as in Equation (10) from ∆x, the unknown parameters Z0 and cz should be determined.
We use a concentric circle pattern for calibrating the DCA camera and then take the image of the pattern
at various distances, as shown in Figure 6. Because we know the real diameter of the circle, the distance
of the concentric circle pattern can be calculated as:

Z = fx ·
W

w
(15)

where W represents the real diameter of the circle in meters and w represents the diameter of the circle
in pixels. Rearranging Equation (10) yields:

Z · Z−1
0 −

∆x · Z · αx
cx · f 2

cz = 1− ∆x · Z · αx
cx · f

(16)

For solving this equation, we need to develop more than two linear equations. Therefore, we estimate
∆x from the circle pattern of more than two images and then calculate Z using Equation (15). Using
these values, Equation (16) can be developed as a matrix form as:
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
Z1 −∆x1·Z1·α

cx·f2

Z2 −∆x2·Z2·α
cx·f2

...
...

Zn −∆xn·Zn·α
cx·f2


[
Z−1

0

cz

]
=


1− ∆x1·Z1·α

cx·f
1− ∆x2·Z2·α

cx·f
...

1− ∆xn·Zn·α
cx·f

 (17)

where Zn and ∆xn represent the n-th object distance and the corresponding CSV, respectively. Finally,
Z0 and cz can be solved by multiplying the pseudo inverse matrix. As a result of the calibrations of Z0

and cz, we are able to calculate the distance of the object from the estimated color shifting value, ∆x,
between color channels in the image using Equation (10).

In [14], Lee et al. estimated cz by assuming that two objects are placed at Z0 and Z1, which should be
given before the estimation process. It also needs manual identification of whether the object is placed at
the in-focus position to determine Z0. However, the proposed calibration method estimates the unknown
parameters Z0 and cz using the least squares optimization method with the distance data acquired at
different locations using the known size of the circle pattern. Because the proposed method just takes
the image using the circle pattern and does not need to measure the distance of the object, it can better
estimate the calibration parameters than [14].

5. Experimental Results

To demonstrate the feasibility of the DCA-based RGB-D camera for the distance estimation of the
tracked object, we used a Sony NEX6 digital single lens reflected (DSLR) camera with a 18 − 55 mm
lens. The resolution of the video sequence is 1920 × 1080. The DCA lens is configured by the red and
the cyan color filters, and the distance between the two apertures ∆cx is set to 6 mm.

Figure 7 shows comparison of the input data for the DCA calibration. As shown in the figure, the
curve of the function using Equation (9) closely passes through the input data. In addition, Equation (7)
is almost the same as its approximated version in (9).

Figure 7. Plot of ∆x versus the distance Z of an object from the camera (f = 49.8 mm,
z0 = 3250 mm, cz = −10 mm).

Figure 8 shows the results of the proposed 3D state estimation of the tracked object. The images
were taken of this object at distances that ranged from 5 m to 1 m, and cross pattern was moved at
1-m intervals.
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(a) (b) (c)

Figure 8. Estimation results of the 3D states of the object ẋt using the proposed method. (a)
76th frame; (b) 656th frame; (c) 805th frame.

Figure 9 shows the 3D trajectory of the moving object in the camera coordinate system. The trajectory
without Kalman filtering has minor oscillations due to the estimation error. However, the trajectory with
Kalman filtering smoothly changes without oscillation.

Figure 10 shows the estimation error of the distances and diameters of the concentric circle. This
result can provide a key indicator for accuracy of the depth estimation. If the estimated diameter is
similar to the real value, 140 mm, the estimated 3D distance is also accurate. As shown in Figure 10a,
the proposed method robustly estimates the diameter of the circle with an error less than ±10 mm.

Figure 9. 3D trajectory of the moving object (red, with Kalman filtering; blue, without
Kalman filtering).

(a) Object diameter estimation error of the concentric circle

(b) Object distance estimation error of the concentric circle

Figure 10. Comparison of the object diameter and distance estimation with the ground truth.
(a) Object diameter estimation error of the concentric circle; (b) Object distance estimation
error of the concentric circle.
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Figure 11 shows the results of the estimated 3D states of the tracked object in another scene. The
object having complex patterns was also successfully tracked with the proposed 3D states of the object.

(a) 329th frame (b) 1290th frame (c) 1414th frame

(d) 1461st frame (e) 1527th frame (f) 1582nd frame

Figure 11. Estimation results of the proposed 3D states of the object ẋt using the proposed
method. (a) 329th frame; (b) 1290th frame; (c) 1414th frame; (d) 1461st frame; (e) 1527th
frame; (f) 1582nd frame.

As a result, the proposed method can estimate the 3D states of an object with a single object motion.
However, it cannot accurately estimate the 3D states of multiple moving objects with possible occlusions
or fade-in/-out, because the object tracking method may fail to track the object.

6. Conclusions

In this paper, we proposed a novel 3D object direction and velocity estimation method for object
tracking using the DCA-based computational RGB-D camera. We estimated the amount of the color
shifting value as the disparity by minimizing the error function. After the proposed DCA camera
calibration, the 2D states of the object were converted into the 3D camera coordinates using an
approximated mathematical model of the relationship between color shifting values and the actual
distance of the object. Finally, the 3D object moving direction and velocity are calculated by the temporal
changes of the object.

Based on the experimental results, the DCA camera-based object tracking system can successfully
estimate the three-dimensional direction and velocity of a randomly-moving object. More accurate depth
estimation with the extended range will be possible using an improved sub-pixel interpolation-based
registration method in future research.

Supplementary Materials

Supplementary materials can be accessed at: http://www.mdpi.com/1424-8220/15/1/995/s1.
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