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Abstract: A hyperbolic positioning method with antenna arrays consisting of  

proximately-located antennas and a multi-channel pseudolite is proposed in order to 

overcome the problems of indoor positioning with conventional pseudolites (ground-based 

GPS transmitters). A two-dimensional positioning experiment using actual devices is 

conducted. The experimental result shows that the positioning accuracy varies centimeter- 

to meter-level according to the geometric relation between the pseudolite antennas and the 

receiver. It also shows that the bias error of the carrier-phase difference observables is more 

serious than their random error. Based on the size of the bias error of carrier-phase difference 

that is inverse-calculated from the experimental result, three-dimensional positioning 

performance is evaluated by computer simulation. In addition, in the three-dimensional 

positioning scenario, an initial value convergence analysis of the non-linear least squares is 

conducted. Its result shows that initial values that can converge to a right position exist at 

least under the proposed antenna setup. The simulated values and evaluation methods 
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introduced in this work can be applied to various antenna setups; therefore, by using them, 

positioning performance can be predicted in advance of installing an actual system. 

Keywords: pseudolite; hyperbolic positioning; indoor positioning; GPS 

 

1. Introduction 

In recent years, indoor positioning has been getting a lot of attention in both the academic and business 

fields. Positioning services and devices using Wi-Fi and Bluetooth low energy (BLE) have already been 

commercialized (e.g., Wi-Fi databases provided by Combain Mobile AB [1] and Navizon Inc. [2], and 

a BLE system called “iBeacon” of Apple Inc. [3]). One of the main strengths of Wi-Fi is that many 

access points have already been installed for communication use, and they can be directly utilized as a 

positioning infrastructure. On the other hand, the primary advantage of BLE, especially iBeacon, is that 

an API (application program interface) for iPhone, which already has a huge market share in the 

smartphone industry, is provided by Apple Inc. However, since Wi-Fi and BLE basically use  

low-accuracy positioning methods (e.g., signal strength-based trilateration (trilateration with the 

distances calculated by a signal propagation model) [4], fingerprinting (positioning method by matching 

the patterns of the acquired signal strength with a stored signal strength map) [5], and proximity detection 

(positioning method by detecting a reference device near the target device) [6], the positioning accuracy 

is limited to a few meters at best. Other indoor positioning methods that can achieve higher accuracy 

(such as an optical method [7], ultra-wideband (UWB) [8], and ultra-sound-based method [9]) have been 

proposed. However, these methods and systems are still limited to special applications because  

general-purpose devices such as smartphones do not include sensors necessary for them. Mautz analyzes 

indoor positioning technologies comprehensively and systematically in [10].  

In Japan, a consortium consisting of the government, universities, and companies is promoting a 

positioning system called IMES (abbreviation of an indoor messaging system) as an indoor positioning 

infrastructure [11,12]. An IMES transmitter is a RFID tag that transmits a GPS-compatible signal (C/A 

code on the L1 band); this GPS-compatibility is one of the significant advantages of IMES because GPS 

is the de facto standard of outdoor positioning, and off-the-shelf GPS/GNSS receivers can be used with 

minor changes to their firmware. Since IMES uses the proximity detection as its positioning method, the 

system is very simple but the positioning accuracy is not high (5 to 10 m depending on the installation 

interval of the transmitters).  

Pseudolites are focused in this paper. Pseudolites are ground-based pseudo-satellite transmitters that 

were originally used to test GPS signals on the ground. In the simplest form, pseudolites transmit  

GPS-compatible signals similar to IMES. Since they use trilateration as its positioning method, the 

achievable positioning accuracy is the same level as GPS; that is, it is cm-level if the carrier phase (the 

phase of the carrier wave) is used and m-level if the code (modulated in the carrier wave) is used.  

In consideration of the GPS-compatibility and the positioning accuracy, pseudolites can be expected to 

be a next generation of IMES. In other words, they have a potential to be a high-accuracy indoor 

positioning infrastructure. 
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The present work is an extension of our previous work [13]. In the previous work, three problems of 

pseudolites (near-far, synchronization, and integer ambiguity resolution) were introduced, and in order 

to overcome these problems, a hyperbolic positioning method with closely-located pseudolite antennas 

was proposed. Hyperbolic positioning, which is also called “multilateration,” is a common technique 

used for positioning when the absolute time reference does not exist. Figure 1 explains the positioning 

method of a two-dimensional positioning scenario; if the time difference of arrival of signals from two 

transmitters is constant, the receiver’s position is on a hyperbola; if there are three or more transmitters, 

the intersection of hyperbolas obtained from two or more pairs of transmitters is the receiver’s position.  

 

Figure 1. Concept of hyperbolic positioning. 

In the previous work, a two-dimensional positioning experiment was conducted based on the 

proposed hyperbolic positioning method, and its positioning accuracy was evaluated. In the present 

work, in addition to introducing the previously-proposed positioning theory and the experimental result 

of two-dimensional positioning, the cause of the positioning error is analyzed in more detail, and the 

performance of three-dimensional positioning is evaluated with a computer simulation. For the proposed 

method and system, three-dimensional positioning is not a simple extension of the two-dimensional one 

unlike other positioning systems such as GPS trilateration and Wi-Fi fingerprinting because the 

positioning accuracy and the initial value convergence of the non-linear least squares used for position 

calculation are very sensitive to the geometry of the antenna setup of the transmitter. Accordingly, in the 

present work, two types of antenna arrays with different geometric setups are evaluated, and how the 

initial value converges to the proper position is analyzed. Since these evaluation methods can be applied 

to various pseudolite setups, they can be used to know the positioning performance of a designed system 

in advance of installing it. Moreover, they can also be used to make a guideline of the antenna setup; 

this is important for a positioning infrastructure. 
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2. Positioning Theory 

2.1. Overview 

A schematic of the multi-channel pseudolite is given in Figure 2. As shown in the figure, the  

antenna array consists of multiple/3 pseudolite antennas. The antennas are located at intervals of a  

half-wavelength of a common GPS L1 carrier wave, i.e., at 95.15 mm to each other. Each antenna 

transmits a signal with a different C/A code (which is used to distinguish channels) and a navigation 

message (which includes the ID or position of the antenna) by modulating them on a GPS L1 carrier 

wave. Since the carrier waves transmitted from the antennas are all generated by a single phase-locked 

loop (PLL), their wavelength and frequency are the same; accordingly, the difference between the phases 

of each pair of received carrier waves (i.e., carrier-phase difference, or CPD, hereafter) does not vary as 

long as the receiver remains still at the same position, and it changes when the receiver moves to a 

different position. Since the CPD of each pair of the antennas is constant on the same hyperbolic line 

similar to the concept shown in Figure 1, the intersection of hyperbolic lines is the receiver’s position. 

 

Figure 2. Overview of multi-channel pseudolite and carrier-phase difference acquisition. 

2.2. Positioning Algorithm 

Normally, a GPS/GNSS receiver outputs a carrier phase as an observable, which is an integrated value 

of the number of whole cycles and the fraction of a cycle of a beat wave that arises between the received 

and receiver-generated carrier waves. If the carrier phase corresponding to pseudolite antenna k is 

represented as φk (whose unit is cycles), it is modeled as 

1 1 ( )k k k k
t u c t T N φφ λ λ δ δ ε− −= − + − − +r r  (1)
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where λ is the wavelength of GPS L1-band, rt
k is the position of the pseudolite antenna k (which is 

known), ru is the receiver position to be determined, c is the speed of light, δt is the clock bias of the 

receiver, δT is the clock bias of the multi-channel pseudolite system, Nk is the integer ambiguity (which 

is an integer value that consists of the number of wave fronts existing between the transmitter and 

receiver antennas and an integrated value of cycles of the beat wave mentioned above; see also [14]), 

and εk
φ is the observation error of the carrier phase. This kind of equation modeling the observable by 

using the geometric relation between the receiver and transmitter is called “observation equation” in the 

terminology of GPS/GNSS. Since the signals transmitted from the antennas are synchronized, the 

subtraction of Equation (1) for antenna k from that for antenna l gives 

1( )lk l k l k lk lk
t u t u N φφ φ φ λ ε−= − = − − − − +r r r r  (2)

where φlk is the carrier-phase difference (CPD), and Nlk (i.e., Nl − Nk) is constant over time if the receiver 

remains still. Note that since the carrier waves transmitted from the antennas l and k have the same 

frequency by sharing a common PLL as shown in Figure 2, the integrated values of the beat wave cycles 

included in Nl and Nk are the same, and they are cancelled out by the subtraction in Equation (2); 

accordingly, Nlk varies depending on only the geometry of transmitter and receiver antennas. 

Here, if only the fractional part of φlk is used as the observable, and the absolute value of 

( )u
k

tu
l
t rrrr −−−−1λ  is limited to less than 0.5 (i.e., the distance between pseudolite antennas l and 

k is less than a half wavelength), Nlk is always zero; as a result, the integer ambiguity does not need to 

be resolved. Equation (2) can therefore be reduced to 

lk l k lk
t u t u λφλφ ε= − − − +r r r r  (3)

This is the observation equation of the proposed hyperbolic positioning method. Both the left-hand 

side (observable) and right-hand side (model) are caused by the difference between the travel distances 

of the carrier waves from the antennas l and k (for convenience, this is also called carrier-phase difference 

or CPD hereafter if not otherwise specified). 

When the CPD (φlk) is calculated from two carrier-phase outputs from the receiver, phase inversion 

of each carrier wave has to be considered because GPS receivers can track a received carrier wave even 

if it is inverted 180 degrees because of the modulation of a navigation message. Phase inversion can be 

detected by checking the 29th or 30th bit of the handover word (HOW) of the navigation message, which 

must always be zero according to the GPS specification [15]. If the received carrier wave is inverted,  

0.5 must be added to its phase to revert it. 

If the receiver position to be estimated is three dimensional, three or more linearly independent 

observation equations (Equation (3)) are necessary; in that case, four or more pseudolite antennas are 

needed, and at least one of them has to be placed in a different plane from the others. If the position to 

be estimated is two dimensional, three or more antennas are necessary, and at least one of them must be 

located on a different line from the others. 

Since the observation equation is non-linear, a non-linear least-square method (the Newton-Raphson 

method) is used to determine the receiver position. If the non-linear term in Equation (3) is defined as 

( )lk l k
u t u t uF = − − −r r r r r  (4)
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its partial derivative with respect to ru is 

T T( ) ( ) ( )lk l k
u t u t u

l k
u t u t u

F∂ − −= − +
∂ − −

r r r r r

r r r r r
 (5)

If the initial value of ru used for the solution-updating process of the Newton-Raphson method is 

described as ru,0 = (x0, y0, z0), and if the second- and higher-order terms of the Taylor expansion of 

Flk(ru,0) are ignored, the first updated solution is represented as 
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Here, if the number of antennas connected from a multi-channel pseudolite is m (the proposed method 

assumes that m is 3 and more, although only three antennas are depicted in Figure 2), the number of 

linearized observation equations (Equation (7)), n, is 

2

!

2!( 2)!m

m
n C

m
= =

−
 (8)

where mC2 is the number of 2 combinations from m elements. Those observation equations are expressed 

in the following matrix form as 
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The matrix on the left-hand side of Equation (9) is defined as G, called the “geometry matrix”, and 

the two column vectors on the right-hand side are respectively defined as b (left one) and ελφ (right one; 

i.e., observation noise). Equation (9) is then expressed as 

λϕεbrG +=Δ 0,u  (10)

If the estimated value of Δru,0 is denoted as 0,ûrΔ , the solution to Equation (10) is given as 

T 1 T
,0

ˆ ( )u
−Δ =r G G G b  (11)

The estimated position is then updated iteratively according to 

,1 ,0 ,0ˆ ˆ
u u u= + Δr r r  (12)

After this updating process is repeated several times, a sufficiently approximate solution for the 
receiver position, ur̂ , is obtained. 
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2.3. Dilution of Precision 

As in the case of outdoor GPS/GNSS, the magnitude of the positioning error is estimated by the  

so-called “dilution of precision” (DOP) [16]. In order to calculate the DOP of hyperbolic positioning, a 

standard deviation of CPDs of carrier waves (shown as the left-hand side of Equation (3)) is used. If it 

is denoted as σλφ, the covariance matrix of Δru is given as 
2 T 1cov( ) ( )u λφσ −Δ =r G G  (13)

If (GTG)−1 is defined as H, the DOP is expressed as the diagonal elements of H, where 

2

2

2

XDOP

H YDOP

ZDOP

 • •
 = • • 
 • • 

 (14)

Here, “XDOP” means the DOP for the x-coordinate (likewise, for the y- and z-coordinates). From 

Equations (13) and (14), the variance of positioning error for each x-, y-, and z-coordinate is given by 
2 2 2XDOPx λφσ σ=  (15)

2 2 2YDOPy λφσ σ=  (16)

2 2 2ZDOPz λφσ σ=  (17)

If the DOP for the x-y plane is defined as HDOP, 

2 2 2HDOP XDOP YDOP= +  (18)

Moreover, if the standard deviation of the estimated position on the x-y plane, σxy, is defined as 

2 2
xy x yσ σ σ= +  (19)

from Equations (15)−(19), σxy can be expressed as 

HDOPxy λφσ σ=  (20)

Likewise, if the DOP for the three-dimensional space is defined as PDOP, 

2222 ZDOPYDOPXDOPPDOP ++=  (21)

Then, the standard deviation of the estimated three-dimensional position, σxyz, is defined as 

DOPP222
λϕσσσσσ =++= zyxxyz  (22)

Equations (20) and (22) mean that σxy and σxyz can be deduced from the standard deviation of the 

CPDs and the geometric relation between the transmitters and receiver. In other words, Equations (20) 

and (22) are the functions to convert the error of the observable to a positioning error. 
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3. Two-Dimensional Positioning Experiment 

3.1. Devices 

A prototype of multi-channel (three-channel) pseudolite is shown in Figure 3a. Its architecture is 

largely consistent with the diagram depicted in Figure 2; a GPS L1 carrier wave (1575.42 MHz) 

generated by a PLL is divided into three, and each wave is modulated by a digital signal (composed of 

a C/A code with a transmission rate of 1.023 Mbps and a navigation message with a transmission rate of 

50 bps) created by a field-programmable gate array (FPGA). Since only one PLL is used, the CPDs are 

always constant, both during the operation of the pseudolite and when it is switched on after being 

switched off. The multi-channel pseudolite connects to an antenna array consisting of three antennas 

shown in Figure 3b. Patch antennas (PA175-S of Allis Communications Co., Taipei, Taiwan) are located 

at the interval of the half-wavelength of the GPS L1 carrier wave, i.e., at 95.15 mm from each other. As 

the receiver, a SuperStar IITM from NovAtel Inc. (Calgary, Canada), with firmware modified so that 

pseudolite signals can be received, is used (Figure 3c). The receiver antenna is mounted on a ground 

plane with a 200 mm diameter (Figure 3d) to avoid the multipath propagation from the floor. 

 

Figure 3. (a) Multi-channel pseudolite (three channels); (b) Three channel antenna array; 

(c) SuperStar IITM receiver module; (d) Receiver antenna on ground plane. 

3.2. Setup and Procedure 

In order to evaluate the two-dimensional hyperbolic positioning with the prototype multi-channel 

pseudolite, two positioning experiments were conducted in different places, a meeting room and a 

corridor (Figure 4a). The same experimental setup was applied to both places (except the height of the 

pseudolite antenna array); Figure 4b shows the positions in which the CPD was measured and in which 

the pseudolite antennas were installed in the given coordinate system (four-meter square area). In each 

place, as seen in Figure 4b, the CPD was measured at a total of 33 points; on the x- and y-axes, it was 

measured at 500-mm intervals; otherwise, it was measured at 1000-mm intervals on the grid. As for the 

antenna array, three pseudolite antennas (#1, #2, and #3) were placed at the vertices of a regular triangle 

with a side length of 95.15 mm (a half wavelength of the carrier wave), drawn on a circular plate. This 
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antenna array was attached to the ceiling in such a way that the center of gravity of the triangle was 

exactly above the origin of the coordinate system, and antenna #1 was on the x-axis. (For convenience, 

the origin of the coordinate system is simply called the “origin”, hereafter.) The inclination of the antenna 

array was carefully adjusted to zero (horizontal). The height of the antenna array was set to 2832 mm in 

the meeting room and 2546 mm in the corridor, and the height of receiver antenna was set to 944 mm in 

both places. 

In consideration of the setup above, CPDs for all combinations of pseudolite antennas must be zero 

at the origin because the distances between the receiver and pseudolite antennas are the same. For this 

reason, the CPDs were calibrated by using phase-shifters inserted between the output connectors of the 

multi-channel pseudolite and the input ones of the antenna array so that all the CPDs become zero at  

the origin. 

The carrier-phase was measured for 60 s (120 epochs with the receiver’s sampling rate of 2 Hz) at 

each measurement position. After the measurements at all 33 measurement positions were completed, 

the two-dimensional positions of the receiver were estimated by using the algorithm described in  

Section 2.2. 

 

Figure 4. (a) Appearance of experimental fields; (b) Measurement points of CPD and 

positions of pseudolite antennas on horizontal plane. 

3.3. Experimental Results 

The results of the position estimation conducted for each epoch at each measurement point are plotted 

in Figure 5a (meeting room) and 5b (corridor). The solid black circles represent the measurement 

positions where position estimation could be done; the empty black circles represent the positions where 

position estimation could not be done because the receiver could not obtain all three observables (i.e., 

CPDs shown in the left-hand side of Equation (3)) necessary for the position estimation. The black 

arrows represent the correspondence between the estimated positions and the true position. As seen in 

those figures, the positioning accuracy is relatively good around the origin but, as the distance between 

measurement position and the origin increases, the positioning accuracy decreases. The positioning 

errors that occur depending on the measurement positions are not biased to the same direction; rather, as 

seen from the black arrows in the figures, the direction of error occurrence appears to be almost random. 
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The position estimation results shown in Figure 5 are summarized in Figure 6 as follows. The position 

estimation error on the x-y plane, Exy, is calculated for each epoch by using 22
yxxy EEE +=  where Ex 

and Ey are the positioning errors on x- and y-coordinate, respectively. Then, its average and standard 

deviation at each measurement position in the meeting room and corridor are calculated and plotted in 

Figure 6a (average) and 6b (standard deviation) in relation to the distance between the origin and 

measurement position on the x-y plane. In both figures, the theoretical values of average estimation error 

and standard deviation of estimation are also represented; the theoretical average estimation error is set 

to zero assuming no setup bias and no bias error in the CPD observables, and the theoretical standard 

deviation is calculated from Equation (20) based on the geometric relation between the pseudolite 

antennas and the receiver with the value of σλφ of 1.04 mm which is obtained by averaging the  

one-minute measured values at the origin. 

 

Figure 5. Results of position estimation at each measurement point: (a) meeting room and 

(b) corridor. 

 

Figure 6. Relation between positioning error on x-y plane at each measurement position and 

distance of measurement position from the origin of coordinate system: (a) average of 

position estimation error and (b) standard deviation of estimated position. 
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As seen in the both graphs in Figure 6, when the measurement position is distant from the origin, both 

the average estimation error and standard deviation increase, although some outliers (data with large 

error) are seen at the distance of around 1400 and 2000 mm. Note that there was a huge outlier at the 

distance of 2000 mm in Figure 6b (its standard deviation is 1478 mm) that is not shown in the figure 

because its scale is too large compared to that of the others. If those outlier-like values are ignored, as 

can be seen in Figure 6b, the theoretical standard deviation is largely consistent of the actual measured 

values; on the other hand, as seen in Figure 6a, relatively large gaps exist between the theoretical average 

error and actual values. These graphs also show that the magnitude of the average estimation error is 

about 10 times more than that of the standard deviation; that is, the average estimation error has larger 

impact for positioning performance. As a result, from Figure 6a, the achieved positioning accuracy with 

the developed system based on the proposed positioning method is centimeter- to meter-level. 

3.4. Discussion 

As shown in Equation (20), the standard deviation of position estimation (i.e., random error of the 

estimated position) derives from the random error of CPD. This is the reason that the actual values were 

roughly consistent to the theoretical values in Figure 6b.  

On the other hand, there are two possible reasons why the average position estimation error (i.e., bias 

error of the estimated position) is large compared to the theoretical values as shown in Figure 6a. One 

of them is a multipath propagation of the carrier wave. In the experimental fields, there were a lot of 

materials that reflect radio waves, such as wire mesh on the ceiling and large metallic partitions. As the 

distance of the receiver from the pseudolite antennas increases, the risk of multipath propagation also 

increases, because the elevation angle of the pseudolite antennas with respect to the receiver antenna 

decreases, and the propagation distance of the radio wave increases; as a result, the receiver easily 

receives reflected waves. This could be the reason that the positioning bias error was relatively large at 

the distance of around 1400 and 2000 mm in Figure 6a, especially the reason of the huge error such as 

the ones of about 1700 and 2750 mm. 

The multipath propagation also causes the interference between the direct and reflected waves  

(so-called multipath interference). When this occurs, the receiver cannot acquire the direct wave 

correctly. This is likely the reason that there were some measurement positions, especially distant from 

the origin, in which the carrier phase could not be acquired in the meeting room (shown as empty circles 

in Figure 5a) but it could be acquired in the same measurement positions of the corridor (shown as filled 

circles in Figure 5b). 

The other possible cause of the bias error is the so-called “antenna phase-centre variation” (PCV). 

The radio-wave emission point or receiving point (phase center) of an antenna is usually different from 

the physical center of the antenna. Moreover, the position of the phase center frequently varies in 

millimeters to centimeters according to the geometric relation between the receiver and transmitter 

antennas [17]; this would be the reason that the direction of the positioning bias error (shown as black 

arrows in Figure 5) is almost random. The scale of the carrier-phase error caused by the PCV (mm to 

cm) is far larger than the random error of the CPD (1.04 mm). 

The occurrence of the positioning bias error (caused by the multipath propagation and the PCV) 

means that the geometric relation between the pseudolite antennas and the receiver antenna are virtually 
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distorted. This influences also the random error of estimated position because the error magnitude 

depends on the geometry; this is the reason that, in Figure 6a,b, the average error and standard deviation 

at the distance of around 1400 and 2000 mm are both large. 

4. Preparation for Simulation 

As implicitly assuming in the discussion above, the error of the CPD expressed as σλφ in  

Equation (20) includes two components: bias and random errors. From the experimental results 

mentioned in Section 3.3, the bias error of estimated position is about 10 times larger than its random 

error; this means that the bias error of the CPD is also 10 times larger than its random error. In this 

section, the bias error of the CPD is inverse-calculated from the experimental results shown above so 

that the calculated value can be used for the simulation introduced in the next section. 

First of all, the HDOP described in Equation (20) is calculated for each point of the 500-mm square 

grid of the four-meter square area for each experimental setup (both the meeting room and the corridor). 

A HDOP value in a grid point can be calculated by using Equations (3)–(18) combined with a value of 

the ideal CPD calculated by the geometric relation between the pseudolite antennas and the receiver. 

The HDOP values for each setup of the meeting room and corridor are respectively shown in Figure 7a,b. 

As seen in the figures, the value of HDOP is the minimum at the position just below the pseudolite 

antenna array. 

 

Figure 7. HDOP distributions (top views): (a) meeting room and (b) corridor. 

According to Equation (20), if the positioning error on the x-y plane shown in Figures 5 and 6a are 

divided by the HDOP values in Figure 7, the error of the CPD, σλφ, is inversely calculated (in millimeter). 

Figures 8 and 9 respectively show the calculation result and its histogram. The average and median 

values of the CPD error are 9.2 and 7.2 mm, respectively. These values are not so different from the 

results of PCV analysis shown in [17], which mentions that the value of PCV varies within a few 



Sensors 2015, 15 25169 

 

 

centimeters. Accordingly, these values can be used as the basic data of the computer simulation to 

evaluate the positioning performance of various pseudolite setups. 

 

Figure 8. Estimated observation error of CPD: (a) meeting room and (b) corridor. (Unit is 

in millimeter) 

 

Figure 9. Histogram of estimated observation error of CPD for both meeting room  

and corridor. 

5. Simulation of Three-Dimensional Positioning 

In this section, a computer simulation of three-dimensional positioning is conducted based on the 

positioning theory introduced in Section 2; especially, the positioning performance under the occurrence 

of antenna PCV is evaluated by using the value of CPD error derived in Section 4. The primary  

difference between two- and three-dimensional positioning is the antenna arrangement; to achieve the  

three-dimensional positioning, four or more pseudolite antennas must be placed on different planes so 

that the rank of matrix G in Equation (10) becomes three. 
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Two types of antenna arrangement are supposed here: one is the simplest form with a single array of 

four pseudolite antennas shown in Figure 10a and the other is the second possibly simplest one with a 

pair of antenna arrays each with three pseudolite antennas shown in Figure 10b (for convenience, the 

former is called “single array” and the latter is called “double array”, hereafter). The four antennas of 

the single array are attached to the vertices of a regular tetrahedron with the edge of a half wavelength 

of the GPS L1 carrier (95.15 mm). Each of the antenna arrays of the double array is the same as that 

used for two-dimensional positioning described in the previous sections. The antenna setup consisting 

of three antenna arrays each with two antennas (triple array) is also simple but the double array is better 

for practical use because it can be also used alone if only two-dimensional positioning is required. 

Figure 10a,b also shows the simulation setup. Similar to the experimental setup mentioned in  

Section 3, the size of the measurement area is 4000-mm square and the measurement positions are  

81 points on the grid of 500 mm. The height of the single array (top plane consisting of three antennas) 

and that of the double array (the height of the center of gravity of each antenna array) are both set at 

2500 mm. In the case of double array, two antenna arrays are 45-degree inclined so that the vertical line 

from the center of the gravity of each antenna array faces to the center of measurement area. In addition, 

two antenna arrays are separated with a 3000-mm distance; this distance does not have a particular 

meaning but it is assumed that the antenna arrays are installed at a building entrance or an intersection 

of corridors. Moreover, since the distance of 3000 mm is not long compared to the antenna height, the 

near-far problem is not an issue. Furthermore, also the cabling is not an issue, because the two antenna 

arrays do not need to synchronize to each other; that is, two independent pseudolite sets can be used. 
The initial value of the non-linear least squares, 0,ur , shown in Equations (6) and (12) is set to the true 

position of the receiver so that the position calculation is successfully done; as analyzed in the next 

section, the position calculation does not necessarily converge to a right solution depending on the  

initial value. 

 

Figure 10. Simulation setup with (a) single antenna array and (b) double antenna arrays. 
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Figure 11. Error simulation results for each of x-, y-, and z-coordinates with single array. 

 

Figure 12. Error simulation results for each of x-, y-, and z-coordinates with double array. 

The error of three-dimensional positioning for each x, y, and z-coordinate was simulated using 

Equations (15)–(17) based on the geometric relation between pseudolite antenna arrays and 

measurement positions (receiver antenna positions) shown in Figure 10 and the average CPD error of 
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9.2 mm derived in Section 4. Figures 11 and 12 respectively show the positioning error for the case of 

single array and double array. As can be seen in Figure 11, in the case of single array, the positioning 

error is huge other than on the x- and y-axes. On the other hand, in the case of double array shown in 

Figure 12, the positioning error is small over the measurement area, especially in the area surrounded by 

the two antenna arrays. The three-dimensional positioning error calculated from 222
zyxxyz σσσσ ++=  

in the case of double array is shown in Figure 13. As seen in the figure, the positioning error around the 

center of the measurement area is decimeter-level. If the bias error stemmed from the antenna PCV is 

ignored (assuming the use of ideal antennas) and only the random error of the CPD of 1.04 mm 

influences the position estimation, the positioning errors become those shown in Figure 14. Similar to 

the experimental results shown in Figure 5, the scale of the error of the bias error is about ten times more 

than that of the random error. 

 

Figure 13. Three-dimensional positioning error with double array based on CPD bias error 

(9.2 mm). 

 

Figure 14. Three-dimensional positioning error with double array based on CPD random 

error (1.04 mm). 

6. Initial Value Convergence Analysis 

In the two-dimensional positioning experiment mentioned in Section 3, the initial value for the  

non-linear least squares (ru,0 of Equations (6) and (12)) was set to the position of the pseudolite antenna 

array (i.e., the center of gravity of three antennas), and it always converged to the right position as long 

as the carrier-phases were obtained rightly, although a certain amount of positioning error occurs. 

However, in the simulation using the double array described in Section 5, initial values around pseudolite 
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antennas often did not converge to a right position (this is the reason that, in the simulation, the initial 

value is always set to the true position of the receiver). In this section how the initial value converges to 

a right position in the case of using the double array is analyzed.  

The simulation setup is the same as in the case of the double array in the previous section (4000-mm 

square field and 81 measurement points on the 500-mm grid). Whether the initial value can converge to 

a right position or not is investigated for each of the 81 measurement points while varying the  

z-coordinate of the initial value from −2500 (the height of the double array) to 0 (ground) with the step 

of 250 mm keeping the x- and y-coordinates at 0 (the midpoint between two antenna arrays). Basically, 

the initial value converges to a position close to the correct position or diverges to a huge value (clearly 

not a pseudo-solution such as a local minimum); therefore, it is simple to judge if the converged value 

is right or not. 

 

Figure 15. Results of initial value convergence.  

Figure 15 shows the results of the initial value convergence. The results with the z-coordinate of less 

than −1750 are omitted because they are the same as that of the case of −1750; that is, the initial value 

converges to the right positions in all measurement points when the height is less than 1750 mm. These 

results give a guideline of how to set an initial value (e.g., in the case of using double array, it should be 

set to the midpoint between two antennas on the ground). However, since the right initial value could 

change according to the antenna setup, an analysis similar to this work is necessary for a different setup. 

7. Conclusions 

This work introduces a novel use of pseudolites to cope with pseudolites’ conventional problems on 

the indoor positioning. The experimental results of two-dimensional positioning with a single antenna 

array show that the positioning accuracy varies from centimeter- to meter-level according to the 

geometric relation between the antenna array and the receiver. In addition, these results suggest that the 

antenna PCV is critical for the positioning accuracy. Based on the error of CPD inverse-calculated from 

those experimental results, a simulation of three-dimensional positioning is conducted. The simulation 

result suggests that positioning with two antenna arrays can achieve a relatively good accuracy. The 

initial value for the non-linear least squares is also important for the proposed positioning method. The 
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result of the initial value convergence analysis shows that initial values that converge to a proper position 

for all measurement points exist at least with the double array setup. 

The positioning theory and simulation methodology described in this work could be a foundation to 

make a guideline for future applications. For example, the simulation introduced in Section 5 can be 

used to test the positioning performance of a designed system in advance of installing it, and the initial 

value analysis shown in Section 6 should be conducted for a different type of antenna setup constellation. 

In future work, an actual three-dimensional positioning system will be developed and evaluated 

assuming a practical application. 
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