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Abstract: In this paper, the performance of two Kalman filter (KF) schemes based on the 

direct estimated model and differencing estimated model for input rate signal was thoroughly 

analyzed and compared for combining measurements of a sensor array to improve the 

accuracy of microelectromechanical system (MEMS) gyroscopes. The principles for noise 

reduction were presented and KF algorithms were designed to obtain the optimal rate signal 

estimates. The input rate signal in the direct estimated KF model was modeled with a random 

walk process and treated as the estimated system state. In the differencing estimated KF 

model, a differencing operation was established between outputs of the gyroscope array, and 

then the optimal estimation of input rate signal was achieved by compensating for the 

estimations of bias drifts for the component gyroscopes. Finally, dynamic simulations and 

experiments with a six-gyroscope array were implemented to compare the dynamic 

performance of the two KF models. The 1σ error of the gyroscopes was reduced from  

1.4558°/s to 0.1203°/s by the direct estimated KF model in a constant rate test and to  

0.5974°/s by the differencing estimated KF model. The estimated rate signal filtered by both 

models could reflect the amplitude variation of the input signal in the swing rate test and 

displayed a reduction factor of about three for the 1σ noise. Results illustrate that the 

performance of the direct estimated KF model is much higher than that of the differencing 
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estimated KF model, with a constant input signal or lower dynamic variation. A similarity 

in the two KFs’ performance is observed if the input signal has a high dynamic variation. 

Keywords: MEMS gyroscope; Kalman filtering; sensor array; direct model; differencing 

model; performance comparison; optimal estimation 

 

1. Introduction 

Microelectromechanical system (MEMS) vibratory gyroscopes are usually characterized by low cost, 

low power consumption, small size, and high reliability [1–3]. However, the low accuracy and 

performance of MEMS gyroscopes has restricted their development and applications to date [4]. 

Comprehensive research has been conducted to improve the accuracy of MEMS gyroscopes. Previous 

studies have effectively minimized the bias drift and measurement noise of MEMS gyroscopes. 

Recently, people have started to pay more attention to fusing the data from multiple gyroscopes to reduce 

the bias drift and improve the accuracy of MEMS gyroscopes, as multiple gyroscopes can be combined 

to form an array, and then a filtering technique is utilized to fuse multiple measurements together and 

thus achieve an optimal estimation of the rate signal, thus improving the accuracy of MEMS gyroscopes.  

Numerous studies have been carried out on the multiple signal fusion of gyroscope arrays [5–11], 

which is called “virtual gyroscope” technology. Bayard and Ploen at the JPL laboratory first designed a 

virtual gyroscope system composed of four gyroscope arrays [5], and their simulated results 

demonstrated that, in a gyroscope, a 8.6604°/h drift could be greatly reduced to 0.0623°/h if the noise 

correlation of the sensor array approached −1/3. Previously, a gyroscope array composed of three MEMS 

sensors was designed [6], and a two-level Kalman filter (KF) algorithm was established to further reduce 

the gyroscope drift. In addition, a KF was presented to combine the outputs of six gyroscope arrays [7], 

in which the output of the MEMS gyroscope was described by a simplified error model to reduce the KF 

dimension. The effect of noise correlation on the KF performance and accuracy improvement was 

analyzed. Given that a gyroscope array with a reasonable correlation is difficult to design and the 

gyroscope array formed by multiple separate gyroscopes is usually considered to be uncorrelated [8],  

an approach to combine several uncorrelated MEMS gyroscopes was presented to improve accuracy.  

A KF for the measurement of a single MEMS gyroscope was also designed through a steady-state gain 

to reduce the drift and measurement noise [12], which realizes self-compensation whether in a static or 

dynamic environment. 

The core aspect of designing a virtual gyroscope system through combining multiple gyroscopes is 

determining how to model the input rate signal. An analysis of the reported approaches [5,7–12] confirms 

that the outputs of MEMS gyroscopes are usually described as mixed measurements of the true rate 

signal input and random noises; in particular, the true rate signal is modeled into the KF and an optimal 

estimate is obtained. However, such direct model for the true rate signal has limitations that may 

influence the system dynamic accuracy. In the static condition, a combined rate signal with a low bias 

drift and the best accuracy can be obtained by the direct KF model. However, in the dynamic condition, 

the true rate signal and its characteristic model cannot be accurately described and obtained. Thus, a 

simple random walk process cannot always exactly reflect the dynamic behavior of the input rate signal. 
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Moreover, noise variance modeling for the true rate signal cannot be accurately obtained in advance. 

Therefore, fusing multiple gyroscope signals for a virtual gyroscope system in the dynamic condition 

also lacks theoretical support and still requires further study and resolution. 

To avoid directly modeling the true rate signal and solve the problem of obtaining the noise variance 

driving for true rate signal in the dynamic condition, a measurement differencing method was also 

presented for a virtual gyroscope that combines multiple gyroscopes, in which the true rate signal cannot 

be treated as the object of KF filtering [13]. The basic principle is that a new sequence of measurements 

for KF can be obtained by creating a differencing operation between the outputs of multiple gyroscopes, 

thus eliminating the common true rate signal included in every component gyroscopes. Afterward, the 

bias drifts of the component gyroscopes are modeled and estimated to compensate for the measurements 

of component gyroscopes in array. Nevertheless, the differencing method employs an indirect estimate 

scheme, and it can easily result in a low accuracy improvement because the true signal, which must be 

cared for and estimated, is removed. 

Based on the above analysis, two significant questions worthy of discussion are raised: (1) Whether 

direct modeling of the true rate signal is better than the indirect differencing model in a dynamic 

condition; (2) Determining how to choose a suitable KF model according to the magnitude of dynamic 

characteristics of the input rate signal in performing a virtual gyroscope system. In this study, the direct 

modeling and indirect differencing modeling approaches for the true rate signal of a virtual gyroscope 

are investigated, and an optimal KF model with six gyroscope arrays are established. As for the direct 

modeling of true rate signal, the value of noise variance modeling for input rate signal is adjusted to 

achieve fusion of the gyroscope array outputs with different dynamic properties. Lastly, simulation and 

dynamic tests are performed to evaluate and compare the performance of the two KF models. The 

objective of this paper is to make analysis and comparison of the dynamic performance between two KF 

schemes. This research will provide a useful criterion for choosing a suitable model to design and 

implement a practical system according to the input signal dynamic variation. 

2. Methodology Comparison of the Virtual Gyroscope System Model 

2.1. Direct Estimated Model for Virtual Gyroscope System 

The number N of component sensors in a gyroscope array can be selected as any integer, and from 

the results of [7,14], it demonstrated that the performance of a KF can be further improved through 

increasing number N of the component sensors. Additionally, the KF will show the best performance 

while the correlation factor ρ approaches −1/(N − 1), thus it will not need a large negative correlation 

factor to obtain the highest accuracy improvement by increasing the number N, which reduces the 

requirement of a negative correlation factor and is suitable for system implementation. However, the 

system complexity and accuracy improvement should be considered. In this study, six gyroscope arrays 

of N = 6 is selected to perform as a system and analyze the KF performance. 

The MEMS gyroscope output is corrupted and influenced by several random noises [15]. Numerous 

experiments have shown that angular random walk (ARW) and rate random walk (RRW) are the most 

dominant and important random errors for MEMS gyroscopes that have low measurement precision. 

Consequently, in the present study, the gyroscope is described by a typical model as follows [16,17]: 
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( ) ( ) ( ) ( )

( ) ( )b

y t t b t n t

b t w t

ω= + +


= 
 (1) 

where y(t) is the measured signal of the gyroscope, ω(t) is the true rate signal, b(t) is the drift driven by 

the RRW process wb, and n(t) is the ARW white noise. Allan variance is widely adopted to analyze the 

statistics of the random noise for a gyroscope [17–19]. 

As for the virtual gyroscope system modeling, to achieve an optimal estimate of the true rate signal, the 

true rate signal can be modeled by a random walk process and treated as the state of KF filtering [5,8]: 

nωω =  (2) 

where nω is the white noise with [ ( )] 0E n tω =  and [ ( ) ( )] ( )TE n t n t qω ω ωτ δ τ+ = , and qω is the noise 

variance of nω. As for a six-gyroscope array, Equation (1) can be written as [8]: 

[ ]1 11 6
1,1, ,1

T

b

ω
×

 = ⋅ + +


=



Z b v
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with: 

[ ]1 1 2 6, , ,
T

y y y= Z , [ ]1 2 6, , ,
T

b b b= b , [ ]1 1 6, , ,
T

b b b bw w w= w , [ ]1 1 2 6, , ,
T

n n n= v  (4) 

where iy  is the output of the ith gyroscope, 1( )tZ  is the measurement values of the gyroscope array, ib  

is the bias drift of the ith gyroscope, biw  is the RRW noise of the ith gyroscope, and in  is the ARW of 

the ith gyroscope. 

The true rate signal ω and bias drifts of the component gyroscopes b are set as the system estimated 

quantity to make optimal estimations. Using KF method [20], and on the basis of the Equations (2) and (3), 

the filtering state-space model for a virtual gyroscope can be formed as follows: 

[ ],1

1 1 1 1

1 1 1 1

( )

( ) ( ) ( )

( ) ( ) ( )

T
t

t t t

t t t

ω =
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
X b

X F X w
Z H X v

 (5) 

The KF coefficient matrices 1 7 7×=F 0  and 1H are given as: 

1

6 7

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1 ×

 
 
 
 =
 
 
  





     


H  (6) 

In Equation (5), w1(t)=[wb,nω]T is the system process noise vector and v1(t) is the measurement noise 

vector with the variance as: 
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Based on the state-space model of Equation (5), the continuous-time KF for obtaining the optimal 

estimates of the true rate signal and bias drifts can be given as follows: 
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 (8) 

where 1
ˆ ( )tX  is the estimation of 1( )tX , 1( )tK  is the filtering gain, and 1( )tP  is the filtering estimated 

covariance. To explain the accuracy improvement and discover the inherent system properties in a virtual 

gyroscope system, Bayard and Ploen employed an analytic approach to provide a solution to the 

continuous-time KF of Equation (8) in [5] and thus obtained a steady filtering gain. Therefore, the 

discrete-time KF for estimating the true rate signal can be formed as follows [5,8]: 
1
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 (9) 

where T is the sampling period, K is the filtering gain matrix, ζ̂  is the discrete-time KF state vector, 

D  is a diagonal matrix composed of the nonzero eigenvalues, ˆ
kω  is the true rate signal estimate, and 

vector 7 [0,0, 0,1]T= e . The concrete definition of the matrices , , ,∞S D K K  can be referred and 

obtained from [5]. 

From the above virtual gyroscope model, the input true rate signal is directly modeled by a random 

walk process with a noise variance qω and set into the system state. Thus, the performance of the virtual 

gyroscope and KF are heavily related to the value of qω. Essentially, the parameter qω reflects the 

magnitude of the dynamic behavior of the input rate signal. In practice, choosing a value of qω  

should be matched with the dynamic behavior of the input rate signal. Thus, if the input signal has a 

small dynamic variation, it should select a smaller value of the qω to perform the KF and obtain  

a higher accuracy. If the input signal has a high dynamic behavior, a larger qω value should be chosen to 

ensure that the KF results in smaller amplitude attenuation for the original signal, where the term 

“attenuation” implies that the amplitude of the estimated rate signal is smaller than that of the input 

signal in a dynamic condition. In this sense, the bandwidth of KF mainly depends on the value of qω. 

Therefore, the true rate signal can be well estimated through adjusting the qω, and thus improving the 

dynamic accuracy of KF. In the subsequent section, the relationship of the parameter qω with KF 

bandwidth will be further analyzed, and the qω will be adjusted to process the outputs of the gyroscope 

array in simulation and experiment. 
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2.2. Differencing Estimated Model for the Virtual Gyroscope System 

In the static condition, the gyroscope true rate signal can be regarded as zero. In this study, the 

differencing estimated model is designed for the virtual gyroscope system in a dynamic condition. The 

bias drift bi of the component gyroscopes taken as the filtered object of KF, and the gyroscope error 

model of Equation (1) is used to form the system state equation as follows [13]: 

[ ]1, 2, 3, 4, 5, 62

2

( )

( )

T

b

t b b b b b b

t

 =


= = 
X

X b w
 (10) 

where [ ]1 1 6, , ,
T

b b b bw w w= w . A specific differencing method is then adopted to solve the problem of 

modeling the true rate signal. The mutual subtraction of the multiple gyroscope outputs between every 

two gyroscopes in the array can eliminate the true rate signal ω. The corresponding equation for the 

measurement of KF can be formed as [13]: 

2 1 2 1

3 2 3 2
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X  (11) 

Based on Equations (10) and (11), the virtual gyroscope KF state-space model for the differencing 

estimated model can be given as: 
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with: 
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H (13)

where 2 ( )tZ  is the differencing measurements of the sensor array, 2F  and 2H  are the KF coefficient 

matrices, and 2( )tw  and 2( )tv  are white noise vectors that represent the KF process noise and 

measurement noise respectively. Given that no correlation exists between the ARW noises ni of the 
component gyroscopes, and 2

niσ  is the variance for ARW of the ith gyroscope, the measurement 

covariance matrix 2R  of vector 2( )tv  can be formed as follows: 
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Discretization of the continuous-time KF of Equation (12), which is applied here as a basic discrete 

iterative KF method as shown in Equations (15)–(18), is used to implement the filter [20]. Consequently, 

the gyroscope bias drifts b can be estimated in the following discrete iterative equations, and then the 

outputs of the component gyroscopes can be compensated by the bias drift estimate. The principle block 

diagram of the differencing KF model is shown in Figure 1: 

/ 1 , 1 1 , 1 1
T

k k k k k k k k− − − − −= +P F P F Q  (15)

1
/ 1 / 1( )T T
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k k k k k k k k k k−= − − +P I K H P I K H K R K  (17)

, 1 1 , 1 1
ˆ ˆ ˆ( )k k k k k k k k k k− − − −= + −X F X K Z H F X  (18)

Thus, the combined rate signal can be obtained by calculating the arithmetic average of the 

compensated component gyroscopes as: 

, ,
1

1 ˆˆ ( )
N

k i k i k
i

y b
N

ω
=

= −  (19)

 

Figure 1. Principle block diagram of the differencing KF model. 

3. Bandwidth Analysis of the Two KF Models 

For the direct estimated KF model, the true rate signal is directly modeled by a random walk driven 
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KF bandwidth, and attempt to establish a suitable model to represent the relationship of the KF 

bandwidth and qω. 

As for the direct estimated model, based on the continuous-time KF of Equation (5), the transfer 

relationship from the gyroscope array measurements to the virtual gyroscope output can be shown in the 

Laplace transform domain as follows [8]: 
1

7 1 1
ˆ ( ) ( ) ( )Ts s sω −

∞ ∞= +e I K H K Z  (20)

Thus, the transform function can be expressed as: 

[ ]1
7 1 1 6

( ) ( ) 1,1, 1
TTH s s −

∞ ∞ ×
= + ∗ e I K H K  (21)

When Equation (21) is used and the 95% confidence interval is taken, a linear model is obtained to 

represent the relationship of the −3 dB bandwidth of KF and qω (see in Figure 2). The fitting result is 

shown in Table 1. 

0.001027 0.04304BW qω= × +  (22)

 

Figure 2. Linear fitting result of the KF −3 dB bandwidth with parameter qω . 

Table 1 shows that the fitting error of root mean square error (RMSE) is approximately 0.1566 and 

sum of square error (SSE) is 0.1961; thus, the linear model can be used to well represent the relationship 
of the KF bandwidth with qω . The KF bandwidth will be considerably higher than that of the 

individual gyroscope when the parameter qω is set to a very large value. Therefore, the bandwidth of the 

entire virtual gyroscope system will be comparable to that of the individual gyroscope. 

Based on the established differencing estimated model derived from Equation (19) in Section 2.2, the 

bandwidth of the virtual gyroscope system is comparable to that of the component gyroscopes, in that 

only the bias drifts of sensor arrays are modeled and set into the KF estimated quantity. 
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Table 1. Fitting result of the KF bandwidth vs. parameter qω ( 1 2BW P q Pω= × + ). 

Coefficient P1 P2 SSE RMSE R2 

Value 0.001027 0.04304 
0.1961 0.1566 0.9999 

Bound (0.001018, 0.001037) (–0.1704, 0.2565) 

The above analysis confirmed that the KF bandwidth for the direct estimated model can be 

intentionally adjusted by means of choosing different qω values. Thus, the bandwidth of the virtual 

gyroscope system will either be smaller than or comparable to that of the component gyroscopes because 

a complete virtual gyroscope system is composed of two parts, namely, a sensor array and a KF  

algorithm processor. On the contrary, the KF bandwidth for the differencing estimated model cannot be 

adjusted, and the virtual gyroscope system bandwidth is comparable to that of the component 

gyroscopes. Therefore, the KF performance for the direct estimated model will be higher than that of the 

differencing estimated model through decreasing the KF bandwidth when the input rate signal has a 

small dynamic variation. 

4. Dynamic Simulation Comparison of Two KF Models 

No correlation of ARW noises with RRW noises of the component sensors exists. Hence, various 

dynamic simulations of the constant input rate and sinusoidal input rate signal based on a  

six-gyroscope array were carried out to verify the performance of the two KF models. The output signals 

of the gyroscope array were simulated by the gyroscope model of Equation (1). The Simulink model is 

shown in Figure 3. 

 

Figure 3. Simulink model for generating outputs of the gyroscope array signals. 

The standard deviation (STD, 1σ) of the rate errors is adopted to quantify the measurement precision 

of the rate signal in the dynamic condition. The mathematical expression of the STD can be defined as: 
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where ,k trueω  is the true rate signal of the kth time, ˆ
kω  is the estimation of ,k trueω , and n is the length 

number of rate samples. 
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The algorithm of the direct estimated model described by Equation (9) in Simulink is shown in  
Figure 4. Concretely, the block of “Gyros_drifts.mat” in Figure 4 refers to kZ  in Equation (9), the blocks 

of “K-discrete”, “Inv-S” and “FD” refer to K , 1−S , and 

1
2

0

0 1

Te− 
 
  

D
 respectively in Equation (9). 

 

Figure 4. Simulink model for discrete-time KF of the direct estimated model. 

4.1. Constant Rate Simulation Result 

For the constant rate simulation, a constant input rate of ω = 25°/s is given to evaluate the performance 

of the two KF models. The output signals of the gyroscope array are generated by the Simulink model 

shown in Figure 3, where the ARW and RRW noises for the component gyroscopes are assumed to  
be 0.0833°/h0.5 and 600°/h/h0.5 respectively. The qω  is chosen with different magnitude values of  

1.0 × 108, 1.0 × 104, 1.0 × 103, 1.0 × 102, and 10°/h, respectively, for the direct estimated KF model.  

The filtering results of the constant input rate signal using the Simulink model (Figure 4) are shown in 

Figures 5 and 6. The combined rate signal obtained by the differencing estimated KF model is shown in 

Figure 7. The compared results of 1σ error are illustrated in Table 2. 

 

Figure 5. Dynamic simulation of the gyroscope array signals with a constant input rate signal 

of ω = 25°/s. 
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Figure 6. Filtering results of the direct estimated KF model with a constant input rate signal 
of ω = 25°/s under different values of qω . 

 

Figure 7. Rate signals filtered by the differencing estimated KF model with a constant input 

rate signal of ω = 25°/s. 

The input rate signal in the direct estimated KF model can be well estimated, as shown in Figure 6. 

Likewise, Table 2 illustrates that the mean value of the estimated rate signal approached 25°/s  
when the value of qω  was larger than 10°/h; in particular, the 1σ error of the individual gyroscopes at 

0.1797°/s was decreased by the KF to 0.0592°/s, which reached a reduction factor of about 3.03 for the 

dynamic noise. Table 2 also shows that the different values of qω for the KF did not significantly affect 
the noise reduction and accuracy improvement when the qω  was larger than 10°/h. Therefore, a 

smaller qω value can be chosen as the constant input rate signal. The findings also indicated that the 

performance of the direct estimated KF model was better than that of the differencing estimated KF 

model for a constant input rate signal. 
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Table 2. Performance comparison of two virtual gyroscope KF models with a constant input 

rate signal (ω = 25°/s). 

Virtual Gyroscope KF Model qω  (°/h) Mean of Estimated Rate Signal (°/s) STD of Estimated Error (1σ, °/s) 

Direct Estimated Model 

1.0 × 108 24.9576 0.0594 

1.0 × 104 24.9576 0.0592 

1.0 × 103 24.9572 0.0590 

1.0 × 102 24.9161 0.0591 

10 21.3921 0.0613 

Differencing Estimated Model — 24.9576 0.0613 

It should be noted that the 1σ values of estimated error for direct KF model are smaller than that for 

indirect differencing KF model, but their difference are very small, with only about 8.3°/h. The reason 

could be analyzed as follows: as for the direct KF model, the KF performance would be higher than that 

of the indirect KF model through setting the qω to a smaller value to reduce the KF bandwidth under 

condition of a constant rate signal input. However, the approach of reducing bandwidth to improve 

accuracy and obtain a significant noise reduction is more obvious for ARW noise rather than RRW, it 

can be said that the noise reduction for the ARW will be greater than that for RRW. However, from 

Figure 5, it can be seen that the RRW is the dominant noise compared to the ARW in the component 

gyroscopes. Thus the noise characteristic in the component gyroscopes (Figure 5) would result in a small 

difference between two KF models. 

On the other hand, as illustrated in Table 2, the values of mean and 1σ error for indirect differencing 
KF model are close to the direct KF model with qω  = 1.0 × 108°/h, but the 1σ error reached to  

0.0591°/s while reducing the parameter qω to qω  = 100°/h, which is smaller than that for differencing 

KF model. Thus, as for the direct KF model, if the input signal has a constant property or small dynamic 

variation, the parameter qω can be set to a small value to reduce the KF bandwidth to obtain a higher 

accuracy improvement. 

4.2. Sinusoidal Rate Simulation Result 

As for the sinusoidal rate simulation, the input rate signal is given by a sinusoidal signal as  

ω = 50 × sin(t)°/s with frequency f = 0.1592 Hz and phase φ0 = 0. The output signals of the  

gyroscope array are generated by the Simulink model (Figure 3). The ARW and RRW noises are 
assumed to be 5.0°/h0.5 and 6000°/h/h0.5 for the component gyroscopes respectively. The parameter qω  

is chosen for different values of 1.0 × 108, 1.0 × 104, 1.0 × 103, and 1.0 × 102°/h for the direct estimated 

KF model. Figures 8 and 9 show the filtering results when the Simulink model (Figure 4) was used. The 

estimated rate signals and errors by the differencing KF model are shown in Figure 10. The compared 

results are shown in Table 3. 
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Figure 8. Dynamic simulation of the gyroscope array signals with a sinusoidal input rate 

signal of ω = 50 × sin(t)°/s. 

(a) (b) 

Figure 9. Filtering results of the direct estimated KF model with different qω  values of a 

sinusoidal input rate signal [ω = 50 × sin(t)°/s]. (a) Estimated rate signal; (b) Estimated errors. 

(a) (b) 

Figure 10. Virtual gyroscope results by the differencing estimated KF model of a sinusoidal 

input rate signal [ω = 50 × sin(t)°/s]. (a) Estimated rate signal; (b) Estimated errors. 
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Table 3. Performance comparison of two virtual gyroscope KF models with a sinusoidal 

input signal rate (ω = 50 × sin(t)°/s). 

Virtual Gyroscope KF Model qω  (°/h) Amplitude of Rate Signal (°/s) STD of Estimated Error (1σ, °/s) 

Direct Estimated Model 

1.0 × 108 50.2677 0.2506 

1.0 × 104 50.2668 0.2505 

1.0 × 103 50.1195 0.2480 

1.0 × 102 42.9318 5.0860 

Differencing Estimated Model — 50.2677 0.2506 

Original Individual Gyroscope — 51.1120 0.5072 

For the direct estimated KF model, Figure 9 shows that the estimated rate signal can reflect and 
reproduce the dynamic characteristic of the input rate signal when the parameter qω  chosen is  

1.0 × 108, 1.0 × 104 and 1.0 × 103°/h, and the measurement noise is reduced. However, when the value 
of qω  is smaller than 100°/h, it results in a larger signal attenuation for the signal amplitude.  

Such attenuation is attributed to the choice of qω  because a value of 100°/h cannot match the dynamic 

characteristic of the input rate signal. Additionally, Figure 10 shows that the estimated rate signal by  

the differencing estimated KF model can reflect the dynamic property of the input rate signal  

without attenuation. 

As indicated in Table 3, the amplitudes of estimated rate signal by the two different KF models nearly 

reached 50.1°/s, which fit the simulated setting of 50°/s without a larger attenuation. Especially, in  

Table 3, it can be seen that the KF resulted in a larger attenuation, and the amplitude of estimated rate 

signal only reached to about 42.93°/s, which is lower than that of the original gyroscope at 50°/s, 

eventually leading to a STD of 5.086°/s for estimated error, which is larger than that of the rest. 

Meanwhile, the 1σ error of the individual gyroscopes at 0.5072°/s was reduced to 0.2480°/s, which 

achieved a reduction factor of about 2.0 for the dynamic noise. In particular, this result demonstrates that 

the reduction of noise and the performances of both KF models are comparable in such sinusoidal input 

rate simulation. This finding is attributed to the large value of parameter qω of the direct estimated KF 

model, a value that ensures the KF bandwidth will reflect the dynamic proper of the input rate signal, 

and thus guarantee the estimated rate signal without amplitude attenuation. Based on the results, it 

illustrates that the feasibility and effectiveness of the direct estimated KF model will be low while 

reducing the KF bandwidth to obtain a remarkable noise reduction in a high dynamic application. 

5. Dynamic Experiment Comparison and Discussion 

Six ADXRS300 gyroscopes [21] were used to form a sensor array for the virtual gyroscope system 

with constant input rate and swing input rate tests (Figure 11).The STD of the estimated errors was also 

used to evaluate the accuracy of the gyroscope rate signal in the dynamic condition. 
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Figure 11. Prototype of the designed virtual gyroscope system with six component sensors. 

5.1. Constant Rate Signal Test Result 

A constant input rate signal of ω = 40°/s was used to test the two KF models on a turntable. The 

original gyroscope signals are shown in Figure 12. The outputs of the virtual gyroscope system filtered 
by two KF models are shown in Figure 13, where the parameter qω  was chosen as 1.0 × 108,  

1.0 × 106, 1.0 × 104, 1.0 × 103, and 1.0 × 102°/h. The STD results are given in Table 4. 

 

Figure 12. Outputs of the gyroscope array with a constant input rate signal of ω = 40°/s. 

Figure 13a indicates that the measurement noise can be significantly decreased by the direct estimated 
KF model, while the parameter qω  was chosen as 1000 and 100°/h. This finding can be attributed to 

the very small dynamic variation of input signals because of the constant rate test condition, which well 

fits the KF model. Figure 13b shows that noise were also reduced by the differencing estimated KF 

model; however, its reduction magnitude is smaller than that of the direct estimated KF model.  

In particular, Figure 13a displays a convergent region and convergence time for the estimated rate signal 
while the values of qω  was chosen within a small range. Furthermore, the convergence time was about 

0.65 s and 8.0 s for the rate signal with a choice of qω  = 1000 and 100°/h respectively, which indicate an 

increase of convergence time with decreasing qω  value. 
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(a) (b) 

Figure 13. Virtual gyroscope test results of two KF models with a constant input rate signal 

of ω = 40°/s. (a) Estimated rate signal by the direct KF model; (b) Estimated rate signal by 

the differencing KF model. 

Table 4. Compared results of two virtual gyroscope KF models with a constant input rate 

signal test (ω = 40°/s). 

Virtual gyroscope KF model qω  (°/h) Mean of Estimated Signal (°/s) STD of Rate Error (1σ, °/s)

Direct Estimated Model 

1.0 × 108 40.1457 0.5960 
1.0 × 106 40.1457 0.5857 
1.0 × 104 40.1445 0.5235 
1.0 × 103 40.1301 0.1203 
1.0 × 102 39.9752 0.0832 

Differencing Estimated Model — 40.1457 0.5974 

Original Individual Gyroscope — 40.2457 1.4558 

As shown in Table 4, the mean of estimated rate signal of the two KF models is about of 40.1°/s. The 

1σ error of the individual gyroscope at approximately 1.4558°/s was reduced to 0.1203°/s and  
0.0832°/s by the direct estimated KF model with choice of qω  = 1000 and 100°/h, respectively, which 

resulted in reduction factors of about 12.1 and 17.5. By contrast, the 1σ error was reduced to 0.5974°/s 

by the differencing estimated KF model. Thus, the findings confirmed that the performance of the direct 

estimated KF model is higher than that of the differencing estimated KF model under the input rate 

signal with a small dynamic variation because the KF bandwidth of direct estimated model can be 

adjusted. Therefore, an estimated rate signal with a low drift and noise level could be obtained by 

adjusting the parameter qω with consideration of the tradeoff accuracy for convergence time. 

5.2. Swing Rate Signal Test Result 

The swing rate signal tests were performed on a turntable, which was controlled to swing with an angle 

amplitude of A = 40° and a frequency of f = 0.25 Hz. Thus, the input signal is ω = 62.8 × sin(1.57t)°/s.  

The outputs of gyroscope signals were collected with a sampling rate of 200 Hz. The output signals of 
the gyroscope array are shown in Figure 14. With the choice qω  of 1.0 × 1010, 1.0 × 108, 1.0 × 106,  
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1.0 × 105, 1.0 × 104, and 1.0 × 103°/h, the test results of the virtual gyroscope with two KF models are 

shown in Figures 15 and 16 respectively. The detailed results are illustrated in Table 5. 

 

Figure 14. Output signals of the gyroscope array with a sinusoidal input signal of  

ω = 62.8 × sin(1.57t)°/s. 

(a) (b) 

Figure 15. Test results of the virtual gyroscope by the direct estimated KF model  
with different values of qω  of a sinusoidal input signal [ω = 62.8 × sin(1.57t)°/s].  

(a) Estimated rate signal; (b) Estimated errors. 

Figure 15 shows that the estimated rate signal by the direct KF model can reflect and reproduce the 
dynamic property of the input signal while the qω  is chosen as 1.0 × 105, 1.0 × 106, 1.0 × 108, and  

1.0 × 1010°/h, and the amplitude of estimated rate signal reaches 61.3°/s. This value is basically in 
accordance with the input signal of 62.8°/s without a large attenuation. However, when the qω  was 

chosen as 1.0 × 104 and 1.0 × 103°/h, the estimated rate signal could not reproduce the dynamic property 

of the input signal, especially resulting in a severe amplitude attenuation and phase delay because, in 
such case, the KF bandwidth determined by the qω  cannot satisfy the requirement of accurately 

reflecting the dynamic property of the input rate signal. This point is consistent with the simulation 
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analyses in Section 4.2, and the only difference is that the value of qω obtained in the amplitude 

attenuation is different from the simulation. This variation is due to the different values of KF parameters 
in the simulation and experiment test. Concretely, there are two aspects that result in a different qω  

for simulation and experiment test: (1) The ARW and RRW noises statistics of the ADXRS300 are 

different from the noises variance setting in the simulation; (2) The dynamic characteristic of the input 

rate signals are different from the simulation because of the various signal amplitude and frequency. 

(a) (b) 

Figure 16. Test results of virtual gyroscope by the indirect differencing KF model of a sinusoidal 

input signal [ω = 62.8 × sin(1.57t)°/s]. (a) Estimated rate signal; (b) Estimated errors. 

Table 5. Compared results of two virtual gyroscope KF models with a sinusoidal input rate 

signal [ω = 62.8 × sin(1.57t)°/s]. 

Virtual Gyroscope Model qω  (°/h) Amplitude of Rate Signal (°/s) STD of Rate Error (1σ, °/s) 

Direct Estimated Model 

1.0 × 1010 61.2876 0.6195 
1.0 × 108 61.2876 0.6011 
1.0 × 106 61.2876 0.5428 
1.0 × 105 61.2554 0.5202 
1.0 × 104 60.6423 0.9140 
1.0 × 103 58.7606 9.7288 

Differencing Estimated Model — 61.2876 0.6079 

Original Individual Gyroscope — 62.6428 1.6231 

In particular, compared with the simulation in Section 4.2, which aimed to obtain an optimal rate 

signal estimate, the parameter qω in the swing test is chosen with a larger value because the dynamic 

variation of input rate signal in the test is higher than that of the input rate signal in the simulation. 

Table 5 indicates that the 1σ error of the individual gyroscopes at approximately 1.6231°/s  

was reduced to 0.5202°/s and 0.5428°/s by the direct estimated KF model with choice of  
qω  = 1.0 × 105°/h and 1.0 × 106°/h respectively, which made a reduction factor of about 3. By contrast, 

a reduction factor of about 2.6 was obtained by the differencing estimated KF model. Consequently, this 

finding demonstrates that the performances of the two KF models are comparable because of the high 

dynamic property of the input rate signal. Therefore, the simulation conclusion is clearly confirmed. 
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6. Conclusions 

The performance of virtual gyroscope for the two different KF models was explored and analyzed in 

the dynamic condition. Simulations and experiments were carried out to quantify the accuracy of the 

combined rate signals. Six MEMS gyroscopes were utilized to develop a virtual gyroscope system.  

A gyroscope 1σ rate error was reduced from 1.4558°/s to 0.1203°/s by the direct estimated KF model in 

a constant rate test, which made a reduction factor of about 12.1, while the 1σ error by the differencing 

estimated KF model was 0.5974°/s. The findings also demonstrated that the estimated rate signal 

combined by two KF models could reflect the dynamic characteristic of the input rate signal in the swing 

rate test, and displayed a reduction factor of about 3 for the dynamic noise. Note that the choice of qω 

should be based on the practical application environment, i.e., the bandwidth of the input signal. One of 

the important aspects of the technology of MEMS gyroscope is how to adaptively tune the parameter qω 

online. In the successive work, the technology of fuzzy logic inference system will be adopted to 

dynamically adjust the value of qω by using of the variance of the input rate signal in a specific 

measurement period as the input variable for a fuzzy logic adaptive controller. 

The performance of direct estimated KF model is, therefore, much higher than that of the differencing 

estimated KF model with a constant or lower input rate signal dynamic characteristic because the  

KF bandwidth of direct estimated KF model can be adjusted. Nevertheless, both KF models have a 

similar performance, while the input rate signal has a higher dynamic characteristic. Thus, if the input 

rate signal has a lower dynamic behavior, the direct estimated KF model should be selected to obtain a 

high accuracy improvement. This can provide a useful guidance to choose the KF model for the 

implementing system. 

In addition, the noise correlation in the gyroscope array is the most important factor for a system to 

remarkably reduce noise and improve accuracy. The accuracy improvement will be much higher than 

that of the paper if there is a favorable correlation of component gyroscopes. This issue needs to be 

further studied in our future work. 
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