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Abstract: In order to guarantee the stable operation of shearers and promote construction 

of an automatic coal mining working face, an online cutting pattern recognition method 

with high accuracy and speed based on Improved Ensemble Empirical Mode 

Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An 

industrial microphone is installed on the shearer and the cutting sound is collected as the 

recognition criterion to overcome the disadvantages of giant size, contact measurement and 

low identification rate of traditional detectors. To avoid end-point effects and get rid of 

undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is 

conducted on the sound. The end-point continuation based on the practical storage data is 

performed first to overcome the end-point effect. Next the average correlation coefficient, 

which is calculated by the correlation of the first IMF with others, is introduced to select 

essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted 

as features and PNN is applied to classify the cutting patterns. Finally, a simulation 

example, with an accuracy of 92.67%, and an industrial application prove the efficiency 

and correctness of the proposed method. 
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1. Introduction 

Nowadays, cutting pattern recognition for shearers, which aims at determining whether the shearer 

is cutting coal or rock, plays an important role in increasing coal output and avoiding cutting hard rock 

in fully-mechanized coal mining working faces. However, due to the poor working conditions during 

the production process, online cutting pattern recognition is always a tough technical problem [1]. 

Since the 1970s, domestic and international scholars have proposed a variety of methods, with little 

effects on solving the problem [2]. In order to ensure the shearer works safely in the long term, manual 

intervention is still necessary at present [3]. In industry practice, the shearer operators judge whether it 

is cutting coal, the rock, or coal gripping gangue, generally through the integration of geological 

conditions and the shearer cutting sound [4]. Then the operators adjust the shearer according to their 

comprehensive judgment. In fact, the cutting sound signal has its unique advantages relative to 

traditional vibration and current signals, such as ease of installation and maintenance, non-contact 

measurement and convenience for online analysis. 

The preliminary analysis on the cutting sound shows that initial signal has strongly nonlinear,  

non-stationary and intermittent characteristics. With signal processing methods such as Short-time 

Fourier Transform (STFT), Wavelet Transform (WT) and Wavelet Packet Transform (WPT) it is 

difficult to satisfy these conditions [5]. Empirical Mode Decomposition (EMD) was proposed by 

Huang et al., in 1998 [6]. EMD is an adaptive method to decompose any data into a set of IMFs, which 

become the basis of the data. As the basis is adaptive, the basis usually offers a physically meaningful 

representation of the underlying processes [7]. EMD is especially suitable for non-linear and non-stationary 

signal processing compared to the Short-Time Fourier Transform method [8,9], and superior to the 

Wavelet Transform and Wavelet Packet Transform methods for intermittent signals [10]. In 2004, 

Ensemble Empirical Mode Decomposition was proposed by Wu et al., to deal with the mode mixing 

problem during EMD [11]. After ten years of rapid development, EEMD is nowadays  widely applied 

in fault diagnosis [12], vibration analysis [13], signal denoising [14], speech recognition [15], 

forecasting [16] and so on, although there still exist some problems during EEMD, such as end-point 

effects and undesirable IMF components [17]. 

With the rapid development of electronic techniques in recent decades, Artificial Neural Networks 

(ANNs) have developed as an important tool in many fields [18–21]. Probabilistic Neural Networks 

(PNNs), which are a significant part of ANN, were proposed by Specht [22]. Since PNNs were 

proposed in 1988, they have been widely applied in classification [23] and pattern recognition [24]. 

PNNs have a feed-forward architecture and a supervised training process similar to back propagation. 

Each training input pattern of a PNN is used as the connection weight to a new hidden unit instead of 

adjusting the input layer weights using the generalized delta rule. Training of PNNs is much faster 

compared to Back Propagation Neural Networks (BPNNs), and PNNs allow true incremental  

learning where new training data can be added at any time without requiring retraining of the entire  
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network [25]. PNNs also have better self-adaption, self-organization and self-learning ability compared 

with support vector machines (SVMs) and K-nearest neighbour (KNN) [26,27]. 

Enlightened by the above knowledge, this paper aims to propose an online cutting pattern 

recognition method using the cutting sound to overcome the disadvantages of high volume, low 

efficiency and low reliability of traditional ways. The shearer cutting sound is decomposed by an 

improved EEMD method to avoid end-point effects and eliminate undesirable IMF components. Then 

several key feature parameters, such as the energy of the reminder IMFs and standard deviation, are 

extracted from the real-time cutting sound. The cutting pattern is subsequently recognized by the PNN 

classifier. Finally, a simulation example and an industrial application are carried out to validate the 

effectiveness and correctness of the proposed method, and a comprehensive comparison and discussion 

are conducted to demonstrate the superiority in recognition speed and accuracy. 

2. Literature Review 

Recent publications relevant to this paper are mainly concerned with two research streams:  

coal-rock cutting pattern recognition methods and EEMD. In this section, we try to summarize the 

relevant literature. 

2.1. Coal-Rock Cutting Pattern Recognition Methods 

Coal-rock cutting pattern recognition is the biggest technical bottleneck in the shearer auto-control 

field. To solve this problem, more than 20 kinds of approaches have been proposed. The most 

influential methods are γ-ray detection means [28], radar detection means [29], infrared detection 

means [30], image detection means [31], mechanical vibration means [32], memory cutting means [33], 

etc. The first three methods recognize the coal and the rock by installing special signal emitters and 

receivers, and the judgment result is obtained by analyzing the received signal. Up to now, these 

methods mainly focus on the theoretical field [34]. In [31], a recognition method based on image feature 

extraction was proposed, whereby a coal-rock image was decomposed with use of Daubechies wavelet 

and texture orientation degrees were structured, and the cutting pattern recognition results proved the 

method was efficient. In [32], a new approach based on the wavelet packet energy spectrum via the 

vibration signal was proposed to identify the coal-rock interface in top coal caving.  Wang et al. [33] 

proposed a self-adaptive memory cutting method for shearers, where key technologies of memory  

cutting were studied and actual production tests show that the absolute error of the cutting path was less  

than 0.06 m. 

2.2. Ensemble Empirical Mode Decomposition 

Since EEMD is an adaptive method, it has an extensive applications in industry practice. While 

there still exists some problems in EEMD such as the end-point effect and undesirable IMF 

components, generally, end-point effects can be solved effectively by end-point continuation based on 

the practical storage data [35]. Undesirable IMF components contain redundant and contradictory 

IMFs, which will increase the computational computation and decrease the recognition accuracy for 

subsequent processing. An ideal IMF contains only single-frequency components and the same 
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frequency components are distributed only in single-IMF [36]. To eliminate undesirable IMF 

components, many approaches were proposed. In [17], a modified EEMD was presented to achieve 

more accurate and reliable sensor data. By comparing the threshold value and correlation coefficients 

between IMFs and the initial signal, it could be determined whether the IMF should be retained or not, 

then the signal was reconstructed by the remainder IMFs. Jiang et al. [37] proposed a novel approach 

of condition monitoring and fault diagnosis for rolling element bearings based on an improved EEMD. 

The primordial signal was decomposed by the improved EEMD, key components were reserved and 

then the correlation analysis was introduced to extract statistical features. In [38], a novel bearing fault 

diagnosis method based on EEMD and the Teager energy operator was proposed. The EEMD was 

firstly applied to obtain monocomponents, then the IMF of interest was selected according to its 

correlation with original signal and its kurtosis, and the Teager energy operator was applied to detect 

fault-including periodic impulses. Two years later, Yi et al. [39] introduced IMF confidence index 

arithmetic to overcome the limitation of needing users with experience to select desirable IMFs. The 

index consisted of self-correlation quality, absolute skewness, kurtosis and impact allowance. 

2.3. Discussion 

Although many cutting pattern recognition methods have been developed, they share some common 

disadvantages. Firstly, the coal-rock detectors used in the prior literature are complex and bulky, which 

cannot satisfy the needs for wide application in practical production. The recognition rate is specially 

influenced under the conditions of coal seam gripping gangue. Moreover, the shearer operators take 

the cutting sound as an important measure to distinguish the coal and the rock during coal mining, but 

few are engaged in the related academic research. 

There also exist the problems of end-point effects and undesirable IMF components during normal 

EEMD. Some scholars select IMFs though the correlation of IMF components and the initial signal, 

but the correlation between the IMFs is rarely studied. Moreover, the first IMF during EEMD always 

contains much key information, but the correlation coefficients between IMF1 and others have also 

rarely been researched. 

Previously, the authors have carried out much research on memory cutting and coal seam terrain 

prediction through intelligent algorithms such as D-S evidence theory, neural network and artificial 

immune algorithms, although in practice the effect is unsatisfactory, as the geological conditions of the 

coal seam are always changing with the mining production and frequent manual intervention is still 

inevitable in practical application. Moreover, the relationship between the cutting sound and its 

corresponding pattern has never been studied in depth. In this paper, the shearer cutting sound is 

collected as the cutting pattern recognition criterion. In order to avoid end-point effects and eliminate 

undesirable IMF components, an improved EEMD is proposed. The end-point continuation based on 

the practical storage data is implemented first, and correlation coefficients between the first IMF and 

others are calculated to select essential IMFs. Then the energy and standard deviation of the selected 

IMFs are extracted as the feature vector. Finally, PNN is utilized as the classifier to realize the cutting 

pattern recognition. 
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3. The Proposed Method 

3.1. Improved Ensemble Empirical Mode Decomposition 

In order to eliminate the mode mixing problem, EEMD was put forward on the basis of EMD. 

According to Huang et al., the key of EMD and EEMD is the concept of IMF, which contains the local 

information embedded in the original signal. Any complex time series can be decomposed into several 

IMFs and a residue component through the decomposition. The IMF must satisfy the following  

two conditions: 

(a) The number of extremes and number of zero crossings must either be equal or differ at most  

by one. 

(b) The mean value of the envelopes defined by the local maxima and minima is zero at any point. 

Based on the principles of IMF, the algorithm of EEMD is given as below: 

Step 1.1: Add a random white noise yi(t) to the original signal series X(t): 

( ) ( ) ( )i iX t X t y t= +  (1) 

where Xi(t) is the noisy-added signal, i = 1, 2… k, and k is the number of attempts. 

Step 1.2: For the noisy-added signal Xi(t), all extrema are searched at first. The upper and the lower 

envelopes are respectively constructed by connecting all the maxima and the minima 
through cubic splines. The mean of the two envelopes is defined as 1

im , then subtract the 

1
im  from Xi(t) to get a component 1

ih , which can be described as follows: 

1 1( )i i
ih X t m= −  (2) 

If 1
ih  satisfies the two conditions of IMF, then 1

ih  is the first IMF of Xi(t), called 1
iC . Else 

1
ih  is treated as the original signal Xi(t) and repeat the above step. Generally, 1

iC  contains 

the highest frequency component of the signal. 
Step 1.3: Separate 1

iC  from Xi(t), the remainder 1
ir  can be defined as follows: 

1 1( )i i
ir X t C= −  (3) 

Then Xi(t) is replaced by 1
ir , repeat the above operation until Ni-th remainder, namely i

Nir , 

becomes a monotonic function. i
Nir  can be expressed as follows: 

1i i i

i i i
N N Nr r C−= −  (4) 

Step 1.4: Xi(t) can be decomposed by the sum of Ni IMFs and a residual, which can be shown  

as follows: 

1

( ) ,    1,2,3...
i

j i

N
i i

i N
j

X t C r i k
=

= + =  (5) 

where i
Nir  is the residual, represents average trend of Xi(t). 

Step 1.5: Calculate N = min{N1, N2… Nk} and the ensemble means of corresponding IMFs of the 

decomposition as the final result: 
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1

( ) / ,    1,2,3...
k

i
n n

i

C C k n N
=

= =  (6) 

where Cn(n = 1,2…N) is the ensemble means of corresponding IMFs of the 

decomposition. In addition, the number of attempts is 100 and the standard deviation of 

the added noisy is 0.2 times that of the original signal, as suggested by Wu and Huang. In 

practical use, EEMD has a better effect than EMD. In this paper, an improved EEMD is 

presented to settle the problems of end-point effect and undesirable IMF components, 

which can be elaborated as follows: 

Step 2.1: The redundancy threshold ξ is introduced at first. M data series are selected and the length 

of each sequence is set as L. Based on the original storage data, extension is operated on 

the left and right of the data series with the length of l respectively. So the length of each 

analytic data is computed as L + 2l. 

Step 2.2: The data series are decomposed by EEMD to obtain a suite of IMFs. Considering the 

number of IMF may differ from each other, the biggest number is selected as Tmax. If the 

IMF number is smaller than Tmax, some zero vectors are supplemented in low frequency. 

Step 2.3: The extended data on both sides of every IMF are eliminated, so the result of EEMD can 

be expressed as follows: 

max

,
1

,    1,2,3...
T

m m t m
t

X IMF re m M
=

= + =  (7) 

where Xm is m-th series, IMFm,t is t-th IMF of m-th series, rem represents the residual, and 

the length of Xm is L. 

Step 2.4: IMF1 is set as the first IMF, then correlation coefficients of IMF1 and IMF2, IMF1 and 

IMF3, ..., IMF1 and IMFT are calculated. The average correlation coefficient named rt  

is introduced and can be defined as follows: 

1

/ ,    2,3...
M

m
t t

m

r corcoe M t T
=

 = = 
 
  (8) 

where m
tcorcoe  represents the correlation coefficient between IMFt and IMF1 of  

m-th series. 

Step 2.5: The average correlation coefficients with the redundancy threshold ξ are compared and the 

coefficients greater than ξ are deleted. Also, IMFs correspond to the deleted coefficients 

are removed and the number of reminder IMFs can be marked as T. 

Obviously, the key point of the improved EEMD is choosing an appropriate redundancy threshold 

ξ, the flowchart of the proposed process can be shown in Figure 1. 
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Figure 1. Flowchart of improved EEMD. 

3.2. Feature Extraction 

In order to extract critical features from the IMFs decomposed by the EEMD, the energy Et and the 

standard deviation SDt are calculated as follows: 

2
2

1 1

1
   ( ( ) )

l

L L

t t l
l l

E x SD x x
L= =

= = − ，  (9) 

where Et represents the energy of t-th IMF, SDt is the standard deviation, L is the length of the IMF, xl 

is l-th point of the IMF, x  is the average value and the number of IMF is T. 

Then the feature vector Y is generated with the normalized energy and normalized standard 

deviation as the elements: 

{ }1 1 2 2, , , ... , ... ,N N N N Nt Nt NT NTY E SD E SD E SD E SD=  (10) 

where ENt stands for the normalized energy of t-th IMF, and SDNt represents the normalized  

standard deviation. 
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3.3. Probabilistic Neural Network 

The Probabilistic Neural Network (PNN) is a supervised feed-forward neural network that is widely 

applied in the field of pattern recognition. A typical PNN contains input layer, model layer, summation 

layer and output layer. It is assumed that a d-dimensional input vector x could be expressed as  

x = [x1, x2… xd]T, and the vector can be classified into one of the c categories(ω1, ω2… ωc). The neuron 

number of input layer is identical to the dimension of x, the input layer takes charge of receiving and 

transporting the test samples. There exist c groups of neurons in the model layer, where each group 

corresponds to a category. The neuron number of each group is equal to the test sample amount of the 

corresponding category, and each neuron connects to the input layer completely. The output of j-th 

neuron in i-th group can be expressed as follows: 

/2 2

( ) ( )1
( ; ) exp[ ]

(2 ) 2

j T j
i i

ij d d

x x x x
x

− −φ σ = −
π σ σ

 (11) 

where i = 1, 2…c, j = 1, 2… Ni, Ni is the sample number of i-th group, σ is the smooth factor, j
ix  is j-th 

training sample of category ωi. In summation layer, there are c nodes, and each node connects to the 

homologous neuron in model layer. The result of i-th node can be calculated as follows: 

1

1
( ; ) ( ; )

iN

i ij
j

f x x
N =

σ = φ σ  (12) 

The final output of each model in output layer can be expressed as follows: 

( ) ( ; )i i iO P f x= ω × σ  (13) 

where P(ωi) is the prior probability of i-th category. For the input vector x, if i ≠ j (i, j ∈ [1, 2, 3… c]) 

and Oi > Oj, then the vector can be classified into ωi. 

3.4. Processing Method Based on IEEMD and PNN 

According to the end-point extension and average correlation coefficients, an online cutting  

pattern recognition approach through the cutting sound based on IEEMD and PNN can be presented  

as follows: 

(1) Acquire N sample sound series in different cutting patterns and divide them into N1 training 

data and N2 testing data. 

(2) Extend the N series and decompose them into several IMF components. Then eliminate the 

continuation data and select essential IMF components. The selection process is confirmed by 

the relationship between the average correlation coefficients and the redundancy threshold ξ. 

(3) Extract the energy and standard deviation of the reminder IMFs as features, and normalize the 

feature vector of the sound series. Input the extracted vectors of N1 training series into the initial 

PNN, and the cutting pattern is the output of PNN. 

(4) Input the feature vectors of the testing series into the trained PNN, and acquire the cutting 

pattern of each testing sample finally. The flowchart of cutting pattern recognition method can 

be shown in Figure 2. 
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Figure 2. Flowchart of the cutting pattern recognition method based on IEEMD and PNN. 

4. Simulation and Analysis 

In this section, a simulation example is put forward to verify the efficiency and correctness of the 

proposed method. Sound of five different kinds of cutting pattern was collected, respectively. Then 

IEEMD, feature extraction and PNN classification processing were performed in order. Some 

comparison and analysis were conducted according to the simulation example. 

4.1. Sample Data Acquisition 

The sample data were acquired from the National Coal Mining Equipment Research and 

Experiment Center at the China Coal Zhangjiakou Coal Mining Machinery Co., Ltd. A 70 m long 

cutting wall, with the height of 1.2 m, was built to simulate real geological conditions, and the shearer 

model was an MG500/1130-WD. The cutting wall contained four sections: a 20 m long pure coal seam 

with a Protodikonov hardness coefficient of f2 (C1), a 20 m long pure coal seam with a hardness of  

f3 (C2), a 15 m long pure hard rock seam (C3) and a 15 m long coal seam including rocks (C4). The 

traction speed of the shearer was a constant 3 m/min and the cutting drum rotate speed was 25 r/min. 

An industrial microphone was utilized to record the cutting sound of C1, C2, C3, C4 and the condition 

with no-load (C5), as shown in Figure 3. The sampling frequency of the sound signals was 44.1 kHz 

and 600 sample series, each with a duration time of 0.5 s (L = 22.05 × 103) were collected. Half  

(300 series) were treated as the training samples and the remaining 300 series were the testing samples. 

 

Figure 3. The experimental site. 
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4.2. Sound Decomposition and Feature Extraction 

The cutting sound of the shearer for different cutting patterns was decomposed according to the 

IEEMD. The initial data series of the training samples is shown in Figure 4. Extension was first 

applied the initial series and l was set as 100. Then the standard EEMD was conducted and the 

extended parts were eliminated subsequently, where the result of C1 is shown in Figure 5. 

 

Figure 4. The initial sound series of the five patterns. (a) pure coal seam with the hardness 

of f2; (b) pure coal seam with the hardness of f3; (c) pure hard rock seam; (d) coal seam 

gripping gangue; (e) no-load. 

 

Figure 5. The decomposition result of C1. 
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After decomposing 600 sound series, the biggest IMF component number Tmax was 14, so an 

arbitrary signal Xm can be described by Equation (14) and zero vectors were supplemented in low 

frequency for series without Tmax IMFs. 

14

,
1

m m t m
t

X IMF re
=

= +  (14) 

where IMFm,t was t-th IMF component of m-th sound series, m = 1, 2, 3... 600. 

The average correlation coefficients of the training series were calculated and are listed in Table 1. 

The preliminary redundant threshold ξ was 0.1 times the biggest average correlation coefficient, so the 

threshold value was 0.0024. The remainder IMF components were IMF1, IMF2, IMF4, IMF6, IMF7, 

IMF9, IMF10 and IMF13. 

Table 1. The average correlation coefficients of the training samples. 

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 

0.0020 0.0029 0.0016 0.0035 0.0007 0.0012 0.0047 0.0021 0.0020 0.0031 0.0240 0.0019 0.0075 

The IEEMD eliminated undesirable IMF components from the original sound signal according to 

the redundant threshold ξ. The energy and standard deviation of the remainder IMFs were extracted as 

the features according to Equation (9). In order to facilitate computation and training of the PNN, 

normalization was operated subsequently. For an arbitrary xi ∈  [b, a], the normalization process could 

be shown as follows: 

i
Ni

x a
x

b a

−=
−

 (15) 

where b was maximum value of xi, a was minimum value and xNi was the normalized value of xi. 

After normalizing the energy and standard deviation of the eight IMFs, a 16-dimensional vector was 

obtained according to Equation (10). The 16 elements were organized as the feature vectors 

representing each sound series and all 600 feature vectors are shown in Table 2. 

Table 2. Feature vectors of the 600 sound samples. 

Training Sample Number Feature Vector 

1 
[0.0672, 0.1010, 0.3673, 0.0809, 0.6901, 0.1071, 0.7625, 0.946,  
0.9218, 0.3012, 0.0362, 0.0421, 0.0043, 0.056, 0.0026, 0.0192] 

2 
[0.7037, 0.1662, 0.8445, 0.1760, 0.2710, 0.3091, 0.7370, 0.2522,  
0.3111, 0.1631, 0.0063, 0.0172, 0.0353, 0.0132, 0.0084, 0.0006] 

3 
[0.9808, 0.0153, 0.0395, 0.3762, 0.6742, 0.0559, 0.7328, 0.0186,  
0.6364, 0.0138, 0.1120, 0.0022, 0.5197, 0.8962, 0.58806, 0.0015] 

...... 

599 
[0.0650, 0.0163, 0.3948, 0.0138, 0.1327, 0.0096, 0.2402, 0.0033,  
0.6132, 0.7146, 0.3410, 0.0004, 0.0578, 0.0053, 0.0297, 0.0307] 

600 
[0.0118, 0.0023, 0.03407, 0.0038, 0.1841, 0.0087, 0.7196, 0.0622,  
0.0343, 0.0566, 0.5617, 0.0059, 0.2671, 0.0036, 0.0644, 0.0016] 
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4.3. PNN Training and Testing 

The initial PNN was trained with the 300 training series, where the inputs of the network were the 

extracted vectors and the outputs were the corresponding cutting patterns. The node number of the 

input layer was 16, and there were five groups of nodes in the model layer, where each group 

contained 60 training samples. Obviously, five nodes corresponding to the cutting patterns existed in 

the summation layer, and the output of the PNN was one of C1, C2, C3, C4 and C5. The smoothing 

factor σ in the PNN was 0.1, the prior probability of each category was 1/5 in the model layer and the 

iteration number was set as 1000. Then testing samples were treated by the trained PNN and 

comparison was made between the actual cutting pattern and PNN prediction results, as shown in 

Figure 6. Twenty two misjudgments occurred in the 300 testing samples so the simulation accuracy 

was 92.67%. 

 

Figure 6. Comparison between actual pattern and PNN prediction result. 

Seen from Figure 6, C1 and C2 were misidentified nine times, C2 and C3 were misjudged seven 

times, C1 and C4 were confused three times, C1 and C3 were mistaken two times and C4 was 

classified as C2 once. The reason lies in the fact the sound of cutting objects with similar hardness had 

small differences, and those with obvious distinction could be recognized accurately. 

Finally, to obtain the change rule of the reminder IMF number and the prediction accuracy at 

different redundancies, seven thresholds were selected and compared according to the distribution rule 

of the average correlation coefficients, and the results are shown in Table 3. 

Table 3. Change rule of the reminder IMF number and the prediction accuracy at different ξ. 

ξ Reminder IMF Number Dimension of Feature Vector Simulation Accuracy 

0.05 3 6 47.33% 
0.08 5 10 73.00% 
0.10 8 16 92.67% 
0.15 11 22 83.33% 
0.20 12 24 92.00% 
0.35 13 26 83.67% 
1.00 14 28 85.00% 
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In Table 3, the reminder IMF number was increased along with ξ, and the simulation accuracy was 

firstly increasing and then vibrating. Moreover, two peak values appear at ξ = 0.1 and ξ = 0.2 

respectively, the former being slightly bigger than the second. Obviously, the computational 

complexity will increase with ξ, which means more elements are extracted as the PNN input nodes,  

so 0.1 can be treated as the optimum value. 

4.4. Discussion 

In order to demonstrate the superiority of the proposed method to those proposed by other similar 

researchers, a comparison and analysis was presented in this paper. According to the relevant 

literature, natural γ-ray detection, WPT and PNN, traditional EEMD and PNN, and the improved 

method in [17] were selected as representative approaches to make a comparison to the IEEMD and 

PNN. The recognition accuracy of the 300 testing samples and recognition time were treated as 

evaluation criteria, and the results are shown in Table 4. Limited by the poor working conditions, 

natural γ-rays and WPT showed poor performance, both in recognition accuracy and time. It is 

necessary to point out that any electrical equipment used at a coal mining face must satisfy the 

explosion-proof standard and consequently a special structure was needed, which resulted in the 

volume of the γ-ray detector being about 25 times that of the microphone. As the sound signal was 

strongly non-stationary, it was difficult for WPT to extract key information due to the fixed wavelet 

function and decomposition layer. On the other hand traditional EEMD and Yu’s methods were 

obvious improvements compared to the former approaches. The reason lies in that the EEMD have 

complete self-adaptiveness and local ability, both in physical space and frequency space. Moreover, 

Yu’s method eliminated some undesirable IMFs, and the recognition time decreased significantly. 

Compared with the above approaches, the proposed method removed undesirable IMFs and retrained 

essential ones to the maximum degree. In summary, the proposed IEEMD and PNN had the best 

comprehensive performance in the comparison. 

Table 4. Comprehensive performance of related methods. 

Compared Methods Reminder IMF Number Recognition Accuracy Recognition Time (s) 

Natural γ-ray detection — 66.67% 92.7469 

WPT and PNN — 78.33% 65.0264 

Traditional EEMD and PNN 14 86.00% 50.3133 

Yu’s method 9 87.67% 46.1962 

The proposed method 8 92.67% 45.0917 

5. Industrial Application 

In this section, an online system based on the proposed method had been developed and applied  

in the field of automatic coal mining as shown in Figure 7. The application was tested at the 2115  

coal mining face in the No. 13 Mine of the Pingdingshan Coal Industrial Group Corporation. An  

explosion-proof microphone was installed to collect the cutting sound, and the sound was transformed 

by an Ethernet switch. The ground monitoring and control platform consisted of a ground control 

center, a 3-dimensional virtual reality platform and an online sound monitoring interface. In order  
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to illustrate the effectiveness of the contrasted system, the left cutting current of the shearer was  

collected and the curve is shown in Figure 8. The current data was from 19:26:00 to 20:26:00 on  

10 August 2015. As seen from Figure 8, the left cutting current was changed in the scope of 25.7716 A 

to 31.0185 A as the time elapsed, and the average value was 27.9600 A. The maximum current was 

only about 10.9388% larger than that of the average value. The cutting load was uniform and the 

occurrence of cutting rock was avoided, which proved the stability and reliability of the online system. 

 

Figure 7. Industrial application of the proposed method. 

 

Figure 8. Left cutting current curve in an hour. 

6. Conclusions and Future Work 

In order to realize online cutting pattern recognition during coal mining, this paper proposes a novel 

approach using the cutting sound based on an improved EEMD and PNN. Improved strategies on the 
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basis of end-point continuation and correlation of IMF1 with other IMF components were applied in 

EEMD to avoid end-point effects and eliminate undesirable IMF components, and then PNN was used 

as the classification algorithm. To verify the feasibility and superiority of the proposed approach, a 

simulation example was provided and some comparisons were conducted. The simulation example and 

comparison results showed that the online cutting pattern recognition method could effectively 

distinguish the cutting pattern and the proposed approach outperformed others. 

However, there are also some limitations and bugs in this method that may be listed as follows:  

(1) The redundant threshold of the average correlation coefficient is selected by extensive simulations. 

Strict mathematical derivation is absent in the process, which increases blindness of the recognition 

system; (2) the traction speed of the shearer is a constant 3 m/min, which does not match the changing 

practical conditions; (3) the online system still has the problem of response delay in the present model. 

In future studies, the authors plan to investigate some improvements to the proposed approach. These 

may include an adaptive algorithm to select an appropriate redundant threshold, a cutting pattern 

recognition method for changing cutting speeds and higher execution efficiency of the algorithm code. 
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