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Abstract: With its unique structure, the Akiyama probe is a type of tuning fork atomic 

force microscope probe. The long, soft cantilever makes it possible to measure soft 

samples in tapping mode. In this article, some characteristics of the probe at its second 

eigenmode are revealed by use of finite element analysis (FEA) and experiments in a 

standard atmosphere. Although the signal-to-noise ratio in this environment is not good 

enough, the 2 nm resolution and 0.09 Hz/nm sensitivity prove that the Akiyama probe can be 

used at its second eigenmode under FM non-contact mode or low amplitude FM tapping 

mode, which means that it is easy to change the measuring method from normal tapping to 

small amplitude tapping or non-contact mode with the same probe and equipment. 
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1. Introduction 

Quartz tuning forks are designed for high-precision frequency control and are widely used in clocks, 

watches, and digital circuit frequency standards. By taking advantage of their extreme stability in 

frequency, their high quality factor, their self-sensing and self-actuating capabilities, and the ease with 

which the vibration signal may be obtained with fewer components than the conventional atomic force 
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microscopy (AFM) probes, and so on, they can be used as force sensors in AFM [1–4]. The tuning fork 

AFM probes are typically realized in two forms (Figure 1). The tip of the probe could be a carbon 

nanotube, a fiber, a conventional AFM cantilever, or another type of stylus. 

 

Figure 1. Typical tuning fork probe structures. 

These probes retain their high quality factor and high prong stiffness which makes them a stable 

source for small vibration amplitudes. On the other hand, the high stiffness is a drawback when 

measuring soft samples. To couple a soft cantilever to the quartz tuning fork, Bayat et al. designed a 

novel probe [5] which has been commercialized by the Nanosensors Corporation (Neuchatel, 

Switzerland). As shown in Figure 2, a U-shaped silicon nitride cantilever is combined in a symmetrical 

arrangement with a quartz tuning fork. A slant probing tip is at the free end of the cantilever. The two 

legs of the cantilever are fixed to the two prongs of the tuning fork respectively. The parameters of the 

Akiyama probe are as follows: the resonant frequency is 45–55 kHz; the spring constant is about 5 N/m; 

the cantilever’s length, width, thickness are respectively 310 μm, 90 μm, 3.7 μm; and the diameter of 

the tip is less than 15 nm. The tip point is vertical, and lies perpendicular to the lateral plane defined by 

the tuning fork and cantilever. Under the excitation of the tuning fork, the probe is self-sensing by 

converting the deflection of the cantilever to a change in charge. 

 

Figure 2. The appearance and motion of an Akiyama probe. 

For the long, soft cantilever, this Akiyama probe cannot be used in non-contact AFM at its first 

eigenmode like the conventional tuning fork probe can [6]. As is well known, a cantilever working at 

higher eigenmode frequencies can increase the effective stiffness [7,8]. Thus, working at a higher 

eigenmode can extend the range of application of the Akiyama probe. 
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2. Finite Element Analysis of the Probe 

To account for realistic probe geometries and the electric field distribution, finite element  

analysis (FEA) can be a powerful tool. ANSYS was used in this FEA and the parameters [2] are shown 

in Table 1. 

Table 1. FEA parameters. 

Parameters Tuning Fork (Quartz) Cantilever (SiN) 
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Permittivity F/m 4.43, 4.43, 4.63 (x-, y-, z-directions, respectively)  

Young modulus, GPa None 180 

Poisson’s ratio None 0.28 

Density kg/m3 2290 2300 

Length, μm 2690 310 

Width, μm 220 90 

Thickness, μm 100 3.7 

Finite element SOLID226 SOLID95 

Figures 3 and 4 are the results of the physical and electric analysis at the first and the second 

eigenmodes respectively. As shown in Figure 5, the vibration amplitude of the second eigenmode is 

much smaller than that of the first eigenmode, but the electric charge outputs are of the same order of 

magnitude, which means that the Akiyama probe can obtain detectable low-level outputs. 

1st Eigenmode

2nd Eigenmode

 

Figure 3. The vibration analysis of the Akiyama probe. 
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Figure 4. The electric field analysis of the Akiyama probe. 

(a) (b) 

Figure 5. The frequency response curve predicted by FEA. (a) The first eigenmode;  

(b) The second eigenmode. 

Conventional small-amplitude AFMs often use short, stiff cantilevers to keep the small vibrations 

on a low level and ensure that the vibration can be detected. This Akiyama probe, with its long 

cantilever, may manifest unique behavior while working as a small-amplitude AFM. 

3. Results and Discussion 

The Akiyama probe uses an amplification board based on a typical circuit [2] for I-V conversion 

and capacitance compensation, as shown in Figure 6 and the influence of the parasitic capacitance is 

shown in Figure 7. 

 

 

Figure 6. Typical circuit diagram for an Akiyama probe amplification board. 
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(a) (b) 

Figure 7. The electrical amplitude-frequency response of an Akiyama probe. (a) The first 

eigenmode; (b) The second eigenmode. 

3.1. Frequency Response of the Probe 

The vibration amplitude of the cantilever is measured by laser Doppler vibrometer (LDV). As 

shown in Figure 8, the amplitude of the first eigenmode is about 85 nm, the second eigenmode’s 

amplitude is about 1.5 nm which is of the same order of magnitude as the conventional small 

amplitude AFM. The LDV controller (OFV-3001, Polytec, Waldbronn, Germany) had a velocity decoder 

resolution of 0.5 μm/s (RMS), a maximum frequency of 250 kHz, and a measuring range of 5 mm/s/V. 

(a) (b) 

Figure 8. The vibration amplitude-frequency response of an Akiyama probe. (a) The first 

eigenmode; (b) The second eigenmode. 

Differing from the FEA prediction, the electrical output from the second eigenmode was only 10% 

of that of the first eigenmode, the sensitivity is 0.030 against 0.465 as shown in Figure 9; however, the 

signal was still easily obtained with the same amplification as that for the first eigenmode, so the 

amplification board can remain the same for different tests. This meant that the same system could 
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accomplish both normal tapping and small-amplitude tapping modes by changing the excitation signal 

frequency alone. 

(a) (b) 

Figure 9. The scale (sensitivity) of the first and second eigenmodes. (a) The first 

eigenmode; (b) The second eigenmode. 

3.2. The Approach Curve 

The tuning fork probes can work in FM non-contact mode [1]. In the test system, a phase-locked  

loop (PLL) was used to trace the resonant frequency of the Akiyama probe during its approach to the 

sample surface. The PLL (HF2PLL, Zurich Instruments, Zurich, Switzerland) had a frequency 

resolution of 0.8 μHz. The approach curve shown in Figure 10 lay in the attraction region within which 

non-contact AFM worked. 

 

Figure 10. The approach curve for the second eigenmode in FM mode. 

Compared with the 0.8 Hz/nm sensitivity of the first eigenmode in the repulsion region, the 

sensitivity of the second eigenmode was about 0.09 Hz/nm; however, under standard atmospheric 

conditions, the signal-to-noise ratio was not good enough to obtain a higher resolution. 
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3.3. The Resolution of the Probe 

This test used a piezo-stage to raise the sample in steps of 2 nm after the probe touched the surface 

with measurements taken at 20 points per step, the measured data and average data of each step are 

shown in Figure 11. 

 

Figure 11. The resolution of an Akiyama probe (2 nm increments). 

Although the noise was apparent, the 2 nm steps in the average data plot are visible in Figure 11, 

which meant that this mode can realize a resolution of 2 nm. 

4. Conclusions 

For a special structure, an Akiyama probe can be used as an FM-mode, non-contact AFM sensor in 

its second eigenmode, although its cantilever is long and soft. According to the results, the second 

eigenmode Akiyama probe was similar to the conventional tuning fork AFM probe working under 

non-contact mode for which the signal-to-noise ratio is not good enough to obtain a better resolution 

under atmospheric conditions. One advantage of the self-sensing, self-actuating AFM probe based on a 

tuning fork was the simplicity with which it could be assembled for vacuum AFM to improve the 

signal-to-noise ratio. Thus, it was appropriate for the measurement of different samples, such as soft or 

movable samples, and for the use of the Akiyama probe in small-amplitude tapping mode or in non-contact 

mode, under vacuum, without changing either the probe or the equipment. 
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