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Abstract: In oceans, the limited acoustic spectrum resource is heavily shared by marine 

mammals and manmade systems including underwater sensor networks. In order to limit the 

negative impact of acoustic signal on marine mammals, we propose an environmentally 

friendly power control (EFPC) scheme for underwater sensor networks. EFPC allocates 

transmission power of sensor nodes with a consideration of the existence of marine 

mammals. By applying a Nash Equilibrium based utility function with a set of limitations to 

optimize transmission power, the proposed power control algorithm can conduct parallel 

transmissions to improve the network’s goodput, while avoiding interference with marine 

mammals. Additionally, to localize marine mammals, which is a prerequisite of EFPC, we 

propose a novel passive hyperboloid localization algorithm (PHLA). PHLA passively 

localize marine mammals with the help of the acoustic characteristic of these targets. 

Simulation results show that PHLA can localize most of the target with a relatively small 

localization error and EFPC can achieve a close goodput performance compared with an 

existing power control algorithm while avoiding interfering with marine mammals. 
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1. Introduction 

Under Water Sensor Networks (UWSNs) have become a very active research area during the past 

decade because of their wide applications including scientific/commercial exploration, disaster 

prediction, environmental monitoring and oceanography data collection [1–3]. All these applications 

have motivated research on UWSN design. 

As for long-range wireless communication underwater, acoustic communication is considered to be 

efficient [4]. However, the low attenuation of acoustic signal leads to inefficient spatial reuse, which 

ultimately decreases the throughput of underwater sensor networks. In [5], the authors concluded that, 

compared with radio based network, the throughput of UWSNs can be highly decreased because of the 

lower attenuation characteristic of acoustic signal. The reason is that lower attenuation signal can enlarge 

the interference area and decrease the spatial reuse efficiency. Spatial reuse efficiency is defined as the 

number of parallel transmissions, which can be conducted in one network. With less number of parallel 

transmissions, the throughput of the network is decreased. 

In order to reduce the interference among sensors and improve the goodput of one network, power 

control is considered to be an efficient method. The aim of power control is to better reuse spatial 

resource and save power. Therefore, power control schemes for wireless networks can be generally 

classified into two classes: energy oriented [6,7] and throughput oriented [8,9]. Many existing power 

control schemes dedicated to UWSNs [10–12] aim to save network energy. However, these approaches 

may not maximize the network throughput, which is one of the most important metric of network 

performance. To improve the system’s performance, UPC-MAC (Underwater Power Control MAC), 

which is proposed in [13], leverages transmission power and long propagation delay to enhance spatial 

reuse efficiency. 

However, to date, most research on power control for UWSNs only focuses on the single network 

scenario. Nevertheless, in oceans, there exist both natural acoustic systems, for example marine 

mammals, and artificial acoustic systems such as sonar systems and UWSNs. These acoustic systems 

might share the same water area using sound for communication, sensing, detection or navigation. 

Unfortunately, due to the frequency-dependent attenuation feature underwater, the available 

communication frequency is usually from tens of hertz to hundreds of kilo hertz [14], which has been 

heavily shared by all existing underwater acoustic systems, as shown in Figure 1. 

 

Figure 1. Spectrum share in underwater [15]. 
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To efficiently utilize the spectrum resource while avoiding negative interference with other acoustic 

systems, especially marine mammals, smart UWSNs should be aware of surrounding environment and 

be able to reconfigure their operation parameters. In [15], the authors advocated cognitive acoustic (CA) 

as a promising technique to develop environmentally friendly UWSNs. 

Furthermore, many studies have illustrated that anthropogenic noise including sonar, ship and 

acoustic communication can affect marine mammals by causing hearing injuries, masking of biological 

sounds or behavioral responses [16,17]. Jepson et al. [18] investigated the reasons for fourteen beaked 

whales being stranded in the Canary Islands, Spain, 2002, which is close to the site of an international 

naval exercise (Neo Tapon, 2002). They presented evidence of acute and chronic tissue damage in 

stranded cetaceans that resulted from the formation in vivo of gas bubbles. The incidence of such cases 

during a naval sonar exercise indicates that acoustic factors could be important in the aetiology of 

bubble-related disease. 

Therefore, the impact on marine mammals should be taken into consideration when we develop 

underwater communication systems. 

In this paper, we propose an environmentally friendly power control (EFPC) scheme. The proposed 

scheme aims to better reuse spatial resource while avoiding negative impact of acoustic signal on marine 

mammals by controlling transmission power. In order to limit the impact on marine mammals, the 

knowledge of their positions is a prerequisite. However, most of the existing localization schemes, which 

are designed to localize nodes in artificial systems, cannot be applied directly to localize marine 

mammals. The cross-correlation based methods such as [19,20] are some important methods that show 

good performance for marine mammals’ localization. However, the cross-correlation method needs 

synchronization at sample level between receivers and the transfer of a large amount of data between the 

nodes (or to a master node). This is hard to implement in real systems due to the energy and computation 

limitations. Therefore, to solve this problem, we propose a simple localization method in this paper that 

reduces data transmission among nodes and does not require stringent synchronization. We first propose 

a novel passive hyperboloid localization algorithm (PHLA). PHLA is a distance measuring based 

localization algorithm that does not need to known the sending time or the sending power level of the 

acoustic signal produced by marine mammals. Based on the acoustic characteristic of marine mammals, 

PHLA searches possible sending power levels of the signal, and then verify all these potential sending 

power levels to find the most likely position with a series of criterions. With the known position of 

marine mammals, EFPC can allocate the transmission power level of sensor nodes. Specifically, working 

with the reservation MAC protocol, EF-MAC, sensor nodes collect channel gains between senders and 

receivers in a distributed manner. With the gathered channel’s attenuation information, EFPC formulates 

an optimum problem. The objective of such problem is to maximize the goodput of the network while 

preventing interference with the detected marine mammals. Finally, by solving a N.E. (Nash Equilibrium) 

equation, each sensor’s optimal sending power is acquired. 

The rest of the paper is organized as follows. In Section 2, we briefly introduce the acoustic 

characteristic of marine mammals. Then we present our novel passive localization scheme and power 

control algorithm in Section 3. Section 4 evaluates the performance of PHLA and EFPC. Finally, we 

draw conclusions in Section 5. 
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2. Impact of Anthropogenic Noise on Marine Mammals 

To illustrate our motivation of the research on environmentally friendly power control scheme, we 

will first introduce the acoustic characteristic of marine mammals in this section. For most of marine 

mammals, sound is the main tool to collect environmental information, either through active 

echolocation or passive listening. However, these marine mammals, having a good sense of hearing, are 

vulnerable to human disturbance. Due to a mechanical coupling between the swim bladder and hearing 

organ, many species of marine mammals have optimum hearing sensitivity from several Kilohertz to a 

hundred Kilohertz [16].  

From [16], we can observe that the frequency band on which marine mammals are most sensitive is 

the band used for underwater acoustic communication (1–40 KHz). Furthermore, many studies on sonar 

systems with the operating frequency of 1–10 KHz have demonstrated that such signal can affect marine 

mammals by changing their normal behaviors [16]. 

To prevent injury on marine animals by exposing them to anthropogenic noise, National Marine 

Fisheries Services (NMFS) has developed guidance on sound characteristic that are likely to cause 

damage and behavioral disruption (Table 1), where PTS is permanent threshold shift and TTS is 

temporary threshold shift. 

Based on the guidance, we should develop a power control scheme for UWSNs that can avoid causing 

injury to marine mammals by underwater sensor nodes. The scheme will be introduced in the next section. 

Table 1: National Oceanic and Atmospheric Administration fisheries current in-water 

acoustic thresholds [21]. 

Criterion Criterion Definition Threshold 

Level A PTS (injury) conservatively based on TTS 180 dB re µPa a 
Level B Behavioral disruption for impulsive noise 160 dB re µPa a 

3. EFPC Power Control Scheme 

Considering underwater communication systems can affect marine mammals, we develop a framework 

of environmentally friendly power control scheme involving two components, namely environment 

sensing and Medium Access Control (MAC) with dynamic power control, as shown in Figure 2. For the 

environment sensing component, it is mainly responsible for marine mammals’ detection and 

localization with our proposed passive localization algorithm: PHLA. For the MAC with dynamic power 

control component, it is used for scheduling packet transmission with our proposed power control 

scheme: EFPC. The transmission power level of sensor nodes should be limited by the sound threshold 

guidance shown in Table 1. To better protect marine mammals, we adopt level B (160 dB re µPa) as 

the threshold of received power level in our algorithm design. This means that the proposed power 

control scheme should limit the received power level of marine mammals bellowing below this threshold. 
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Figure 2. Power control framework. 

3.1. Power Control Scheme Overview 

We assume that there are four anchor nodes which know their positions with existing localization 

techniques [22]. Each of them is within the maximum transmission range of others in order to exchange 

message. Sensor nodes are randomly deployed in a three-dimension area. 

The purpose of our proposed Environmentally Friendly Power Control algorithm (EFPC) is to limit 

the negative effect of acoustic signal produced by underwater sensor nodes on marine mammals. 

Therefore, the knowledge of marine mammals’ position is a prerequisite. To detect and localize marine 

mammals, anchor nodes cooperate in a detection mode periodically and synchronically with the help of 

some existing synchronization algorithms, such as [23,24]. If an anchor node operates in the detection 

mode, it will listen to a specific channel that is used for marine mammal communication. Once anchor 

nodes receive a signal that is produced by marine mammals, they will run our proposed Passive 

Hyperboloid Localization Algorithm (PHLA) to localize these marine mammals. After that, the position 

information will be broadcasted to other sensor nodes in the network. With the position information of 

these marine mammals, EFPC can allow sensor nodes to transmit messages efficiently with a 

consideration of limiting the impact on the marine mammals. 

3.2. Environmentally Friendly Power Control Scheme 

With the known position of marine mammals, underwater sensor nodes can allocate their transmission 

power with the EFPC power control algorithm. Specifically, based on the known distance between 

senders and marine mammals, sensor nodes can calculate the corresponding signal attenuation from 

senders to marine mammals, which is the key factor for power control. The goals of EFPC are three 

folds: maximize network throughput, reduce energy consumption and avoid interfering with marine 

mammals. In order to improve network’s throughput, EFPC should efficiently reuse space resource by 

allowing for as many concurrent transmissions as possible. However, scheduling concurrent 

transmission relies on sending request collection among sensor nodes, which is a great challenge for 

underwater sensor networks without central nodes. To solve this problem, a related MAC protocol, 

named Environment-Friendly MAC (EF-MAC), dedicated to underwater sensor network was proposed 

by us previously. By working combined with EF-MAC, EFPC can adjust transmission power in a 

distributed manner. 
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3.2.1. EF-MAC 

Environmentally Friendly Medium Access Control (EF-MAC) is a kind of reservation MAC protocol 

that employs slotted division in the time scheduling. Based on the exchanging of control packets,  

EF-MAC can gather nodes’ sending request and attenuation information between theses receivers and 

senders. With the collected information, sensor nodes can schedule their transmission, and then allocate 

the transmission power by EFPC. The overall work flow of the EF-MAC combined with EFPC can 

be explained by an example, as shown in Figure 3. 

 

Figure 3. Environmentally Friendly Medium Access Control (EF-MAC) workflow. 

In Figure 3, four nodes, which are within the same collision domain, are deployed in the network. 

Here, TYPEsender−receiver is used to denote a packet and hsender receiver to represent the channel gain. 

TYPE can be one of RTS, CSI, DATA or ACK. For example, A and C request to send a packet with 

destinations to B and D, respectively. 

In EF-MAC, in order to avoid the impact of long propagation delay of acoustic signal and save energy, 

time is divided into slots. The detail design of the length of a slot can be found in [25]. The length 
of one slot is τ γ α+ + , where τ  is the maximum propagation delay of transmitted signal, and γ  is 

the transmission time of one CSI (Channel State Information) packet. To compensate clock drift in the 

system, α , the length of guard time, is applied. When a node needs to send packets, it waits until the 

end of the present slot and then senses the channel. Once the channel is detected as idle, the node will 

send an RTS packet at the beginning of next slot (defined as slot 1). In this example, nodes A and C send 
RTSA−B and RTSC−D with the maximum power level to nodes B and D. Both of the destinations will 

receive these two packets. Each RTS contains two elements: the packet’s priority and the level of sending 

power. The packet’s priority, which is set by sensor nodes, is related to the packet’s generation time. 

The earlier the packet is generated, the higher priority it has. Then, with the receiving and original 
sending power levels of one packet, node B obtains channel gain: hAB, hCB with Equation (1) and 

node D can calculate the channel gain: hAD, hCD: 

( ) ( ) ( )r sh dB p dB p dB= −  (1)

where h denotes channel gain in dB, rp denotes receiving power and sp  denotes the transmission power. 
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In this paper, Thorp attenuation model, which can be replaced by any other more realistic and 

advanced models (e.g., raytracing or normal modes), is applied as attenuation model. In those cases, 

since A(d) will not be in general monotonic, the solution of the distance may be more difficult.  

Nodes B and D will schedule CSI packets at the beginning of the next slot (slot 2). The CSI packets 

contain the channel gain, which is calculated in the previous slot (slot 1). Thus, at the end of slot 2, A 

and C construct a matrix of channel state, named H . Every sender node will construct an N × N of H  

as Equation (2), where N is the number of sending nodes: 

AB AD

CB CD

h h
H

h h

 
=  
 

 (2)

After that, with the channel state matrix, every sender allocates it sending power of DATA in a 

distributed manner at the beginning of slot 3 by the power control scheme named EFPC. At the beginning 

of slot 4, B and D will schedule ACK (Acknowledgment) packet if they correctly receive DATA 

previously. Otherwise, they need to back off a random number of slots to retransmit the RTS. 

The basic idea of the proposed MAC scheme is that the sending request from one sender should be 

jointly considered with the request from other senders. With such MAC scheme and related power 

control scheme (EFPC), many parallel communication can be accomplished in the network. 

3.2.2. Power Control Algorithm: EFPC 

Based on the channel state matrix and given positions of marine mammals (if there is any), sensor 

nodes can calculate their proper transmission power for DATA packet’s transmission. With a 

consideration of marine mammals that may not be always around the network, we apply a two-mode 

power control scheme including a share mode and an exclusive mode. 

Share Mode 

If the network has detected that there are some marine mammals, sensor nodes in the network will 

switch to the share mode to control their transmission power. In this mode, when a node requests sending 

a packet, its transmission power should not be higher than the threshold that can affect the behavior of 

marine mammals. In this paper, we adopt TTS (160 dB re µPa in Table 1) as the threshold. 

In networks, each node is considered to be selfish but rational, which means that they want to 

maximize their own interest. Therefore, the transmission power allocation problem can be treated as a 

game that can be solved by game theory. To fulfill the goals of EFPC, a utility function that contains 

both utility term and pricing term is defined as Equation (3). We assume that every node shares the same 

bandwidth B. Based on this assumption, B is omitted when we construct the utility function. The first 

part of the utility function denoting the relationship between the sending power level and corresponding 

link’s capacity is based on Shannon theory [26]. As for the second part of the utility function, it reflects 

the price of consuming a certain power budget: 

i 1 2

1

( , P ) (1 )i i
i i i iN

j jj

h p
u p log p

h p σ− −

=

⋅= + − α ⋅
⋅ +

 (3)
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where ip  is transmission power on the link i , ih  is the channel gain in channel i , iP−  is transmission power 

on other links except link i , and iα  [bit/Watt], is the bit price for one unit transmission power. 2σ  denotes 

noise power (variance). The noise model presented in [27] is applied. 

Finally, the power allocation problem is formulated as Equation (4) and substitution is in Equation (5):  

i 1 2

1

( , P ) (1 )i i
i i i iN

j jj

h p
max u p log p

h p σ− −

=

⋅= + − α ⋅
⋅ +

 
(4)

[ ]

1 2

1

1

. .

0, (1 )

(1 )

i max

i i
thN

j jj

N

mi i
i

s t

p P i N

h p
S I N R i N

h p

h p T

σ−

=

=

∈ ≤ ≤

⋅ ≥ ≤ ≤
⋅ +

⋅ ≤





 (5)

where Pmax is the maximum sending power limited by hardware design, thS I N R  is the decoding 

threshold of acoustic modem, T is the behavioral interruption threshold (TTS), and hmi is the channel 

gain between sender and marine mammals. The third constraint denotes that the receiving power level 

from all senders should not be larger than the behavioral interruption threshold (TTS). 

The optimal power allocation problem can be solved by Nash Equilibrium (N.E.). Before we solve 

the problem, the existence of N.E. of this problem should be proved. As stated in [26], N.E. exists only 

if the following two conditions are satisfied: 

1. iS , the set of transmission power of every sending node, is a convex subset of Euclidean space. 

2. iu , for every sending node, is a continuous and quasi-concave function for variable pi. 

Condition 1 is obviously satisfied. Therefore, we will prove condition 2 is satisfied next. The second-order 
derivation of iu is: 

2 2

12 2 2

1
( )

i i
N

i i i j jj

u h

p h p h p σ−

=

∂ = −
∂ ⋅ + ⋅ +

 (6)

Since 
2

2
i

i

u

p

∂
∂

 < 0, we can conclude that condition 2 is also satisfied. Therefore the existence of N.E.  

is proven. 

With the game theory, the optimal transmission power of each sender can be seemed as the players’ 

response function, which is defined as Equation (7). 

1 2

1

0
( )

i i
N

i i i j jj

u h

p h p h p σ−

=

∂ = − − α =
∂ ⋅ + ⋅ +

 (7)

Solving Equation (7) gives: 
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1 2

11
N

j jj
i

i i

h p
p

h

σ−

=
⋅ +

= −
α


 (8)

In order to guarantee i maxp P≤ , we choose 
1

i
maxP

α = . 

For all the sending nodes, after rearranging Equation (8), we can derive Equation (9): 
1∗ −= ⋅P H G  (9)

H  is a square matrix; ∗P  is the unique N.E. solution; and G = [g1, g2...gn]T is an N × 1 vector, 

where gi = 2i

i

h σ−
α

. 

If the final ip  cannot satisfy constraint 3, all the senders, except the one with lowest priority of 

sending request, will back to the power allocation algorithm. 
After ∗P  is derived, we should check every entry of the matrix to make sure all the three limitations are 

satisfied. If some of these limitations are not satisfied, the sensor node with highest priority of its request can 

only be allowed to transmit data. The transmission power can be calculated by Equation (10): 

/i mip T h=  (10)

Exclusive Mode 

If the network does not detect any marine mammal, sensor nodes can transmit their packets in an exclusive 

mode. In this mode, the aim of EFPC is to maximum the network throughput while reducing energy 

consumption. Thus, we can formulate the optimization problem as Equation (11) with two limitations. 

i 1 2

1

( , P ) (1 )i i
i i i iN

j jj

h p
max u p log p

h p σ− −

=

⋅= + − α ⋅
⋅ +

 (11)

[ ]

1 2

1

. .

0, (1 )

(1 )

i max

i i
thN

j jj

s t

p P i N

h p
S I N R i N

h p σ−

=

∈ ≤ ≤

⋅ ≥ ≤ ≤
⋅ +

 

(12)

The only difference compared with share mode is that the third constraint, which is used for limiting 

the impact on marine mammals, is deleted. Based on the similar deduction, we can also allocate the 

transmission power by Equation (13): 
1∗ −= ⋅P H G  (13)

where H  is a square matrix; ∗P  is the unique N.E. solution; and G = [g1, g2...gn]T is an N × 1 vector, 

where gi = 2i

i

h σ−
α

. 

Similar to the share mode, if some of these limitations are not satisfied, the sensor node with highest 

priority of its request can be allowed to transmit data. However, in this mode, it can transmit the data 

packet with a full power. 
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3.3. PHLA: Passive Hyperboloid Localization Algorithm 

We will present our novel passive hyperboloid localization algorithm (PHLA) in this sub-section. 

PHLA is a passive localization scheme, which is based on distance measuring. The basic idea for a 

localization algorithm with distance measuring is that if the distances between a target (marine mammal) 

and the anchors are given, then the position of the target can be solved. For an instance, as shown in 

Figure 4, S is the target to be localized and A, B, C, D are four anchor nodes with known positions.  

If d1−d4 are given, the position of S can be solved by a spherical localization or a hyperboloid localization 

algorithm [28,29]. To estimate the distance of d, methods such as Time of Arrival (TOA) [30] and 

Received Signal Strength Indicator (RSSI) [31] have been proposed. However, none of these approaches 

can be applied for marine mammals localization directly. The reason is that these approaches measure 

distance relying on the known sending time or sending power level of the signal. However, none of these 

parameters can be obtained directly from marine mammals. To solve this problem, we propose a 

searching based RSSI algorithm to localize the target passively. A searching based RSSI algorithm 

searches possible sending power levels of the target in a finite interval, and then verifies these values to 

find the most likely power level. 

PHLA is a three phase scheme including signal detection, message exchange and localization.  

In signal detection phase, anchor nodes detect a specific frequency channel, which is related to the 

hardware design of acoustic modem and strength of particular acoustic signal produced by marine 

mammals, for example the signal of dolphins [32]. Signal detection and classification of marine 

mammals is critical for PHLA. Fortunately, many studies have been study in this field [33,34]. 

Therefore, in this paper, we assume that the detected signal has been classified. 

If anchor nodes have detected the signal, they will switch to the message exchange phase. In this 

phase, each anchor node broadcast a packet that carries the frequency and strength of the signal it received 

and the position of itself. These parameters are used for distance’s calculation, which will be discussed 

later. Finally, with the information of the signal, each anchor nodes estimate the position of marine 

mammals by PHLA algorithm in a distributed manner in the localization phase. 

Here we use an example to illustrate PHLA in detail. For example, we suppose the target is a dolphin. 

Base on the acoustic characteristic of dolphins, the transmission power of their communication signal 

ranges from 150 dB re µPa to 170 dB re µPa [32], which can be transferred to power level as 0.01–1 W. 

Therefore, anchor nodes can search possible transmission power levels with a step (e.g., 0.01 W) from 

0.01 W to 1 W.  

In our localization algorithm, we first consider range of the source, says 0.01 W to 1 W, which means 

that the actual source level should value between 0.01 W and 1 W. Then the anchor nodes try to search 

the right source level with a step (e.g., 0.01 W). For every tested source level (the tested source level is 

denoted as Ps in Equation (14)), the anchor nodes can obtain a corresponding distance between anchor 

and target based on Equations (14) and (15): 

10 ( )s

r

P
log A d, f

P
=  (14)

( ) 10 10 ( )
1000

d
A d, f k logd log f= ⋅ + ⋅ α  (15)
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where d is the distance between the target and anchors, sP  is the tested transmission power level, rP  is 

the received power level, A is the channel gain, k is the spreading factor with a typical value 1.5 in 

underwater [35,36], f is the frequency of the acoustic signal, and α  is the absorption factor. 

Since the tested source level may be or may not be the real source level, we should verify the tested 

source level by following steps: 

Once the distances between the target and anchor nodes are given, for any two of the distance, for 
example d1 and d2 in Figure 4, in order to set up a triangle, they should be first verified by Equation (16): 

1 2 ABd d d+ >  (16)

 

Figure 4. Passive Hyperboloid Localization Algorithm (PHLA) algorithm. 

Only the qualified transmission power level will be used for localization next. With the distance 

information, we can apply hyperboloid localization algorithm to localize the target [27,37]. The basic idea of 

hyperboloid localization method is to utilize the difference of the distance from target to reference nodes 

(anchor nodes) to establish a hyperboloid formula. Then, the focus of three hyperboloids is the position of 
the target. For example, as in Figure 4, 1 1 ( 2,3,4)i id d d i= − =  are known. For each 1 ( 2,3,4)id i = , we can 

set up a hyperboloid formula, and then calculate the position of the focus. The related process can be founded 

in [29]. After hyperboloid localization process, three circumstances may exist: 

1. Only one SP  and a corresponding position ( , , )s s sP x y z  exist. This value can be concluded as 

the position of the target; 
2. None of SP  exists. This may result from the blind area in hyperboloid localization, which will 

be discussed later. The PHLA algorithm failure; 
3. More than one SP  exists. Then a best qualified node is selected based on Equations (17)–(21). 

2 2 2
1( ) ( ) ( )s a s a s a ax x y y z z d− + − + − − = ε  (17)

2 2 2
2( ) ( ) ( )s b s b s b bx x y y z z d− + − + − − = ε  (18)

2 2 2
3( ) ( ) ( )s c s c s c cx x y y z z d− + − + − − = ε  (19)

2 2 2
4( ) ( ) ( )s d s d s d dx x y y z z d− + − + − − = ε  (20)
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1
2 2 2 2 2( )a b c dε = ε + ε + ε + ε  (21)

where , ,s s sx y z  is the potential positions of the target, , , ; , , ; , ,a a a b b b c c cx y z x y z x y z  are the position of 

anchor A, B, C, respectively. The potential position with the minimum ε  is selected, which means 

that the selected position is the one with minimum localization error. 
The work flow of PHLA is shown in Figure 5, where p is the potential position of target and thP  is 

the maximum threshold of received power level. The outputs of this work flow are some qualified 

position. From these potential positions, the one with minimum ε  is considered as the position  

of the target. 

 

Figure 5. PHLA work flow. 

4. Evaluation 

In this section, we will first evaluate PHLA algorithm in terms of localization precision and success 

ratio, which is defined as the ratio of the number of points that are correctly localized to the total number 

of points that need to be localized. Furthermore, we evaluate the performance of a network that applies 

EFPC algorithm combined with EF-MAC to control transmission power. As a comparison, we also 

evaluate the performance of SFAMA, a classic slotted based MAC protocol without power control [25] 

and EF-MAC, respectively. In this section, we will evaluate (a) the goodput of the network, which is 

defined as the number of bits of successful transmitted data in unit time; and (b) end-to-end delay, which 

is defined as the average end-to-end delay from source to destination. 

The simulations of EFPC protocols are evaluated by an NS2 based simulator: Aqua-sim [38]. Some 

modules in physical layer are modified to adjust transmission power level. We adopt the hardware 

parameters from real implemented underwater OFDM modems [39], which are listed in Table 2. 

Table 2. Simulation parameters. 

Maximum Transmission Range 3000 m
Simulation time 104 s 

Full power 40 W 

 

1 2 3 4( , , , )d d d d

( , )sP p

sP

s thP P>
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To evaluate both localization algorithms and MAC protocols in a more realistic underwater 

environment, the characteristic of underwater channel is obtained by Bellhop model, which accurately 

models the underwater sound propagation by a specific ray tracing algorithm. The Bellhop model 

provides an accurate model of the propagation of acoustic signal in ocean environments for a good 

characterization of the signal propagation behavior. 

Real environmental data are used, from a deployed UAN testbed named Ocean-TUNE [40]. It locates in 

the Atlantic Ocean off the coast of the Long Island Sound (CT, USA) (Figure 6). The simulation parameters 

set in Bellhop are as follow: bottom reflection coefficient is 1; the surface reflection coefficient is −1. The 

depth of four anchor nodes is set to be 30 m below the water surface. The depth of water is 50 m. Sound 

speed profiles (SSP), bathymetry profiles and information on the type of bottom sediments of the selected 

area are obtained from the World Ocean Database [41], from the General Bathymetric Chart of the Oceans 

(GEBCO) [42] and from the National Geophysical Data Center’s Deck41 database [43], respectively. With 

Bellhop model, the channel attenuation feature is shown in Figure 7. 

 

Figure 6. Area of collected channel data.  

 

Figure 7. Transmission loss in the selected area. 
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4.1. PHLA Evaluation 

To evaluate the impact of different anchor’s deployment schemes on the PHLA algorithm, we evaluate 

the following two scenarios as show in Figure 8. In each scenario, 1000 points are selected randomly in 

the localization area as potential positions of marine mammals. By comparing the outcomes of the 

estimation with the real ones, we can evaluate the performance. In both scenarios, the distance between 

anchors is fixed to 2000 m. We assume that the frequency and SPL (sound pressure level) of acoustic signal 

produced by marine mammals are 15 kilo Hz and 160 dB re µPa, respectively [32]. 

As we know, the frequency of the received signal is related with the velocity of marine mammals due 

to the Doppler effect, which may further influence the performance of the localization algorithm.  

In order to evaluate this impact, we take into account sixteen different velocities including four different 

directions, each of which has four different magnitudes. The directions are [1,1,0], [−1,−1,0], [1,0,0], 

and [−1,0,0], which are denoted by v1, v2, v3, and v4, respectively. The reasons why we choose these four 

directions are that most of time marine mammals swim at the same depth and the projection of reference 

nodes are symmetric about the line y = x in plane. Besides, the four magnitudes of velocity are 5 m/s, 

10 m/s, 15 m/s, and 20 m/s in reference to the speed range of marine mammals [44].  

 
(a) (b) 

Figure 8. Anchors’ deployment: (a) Senario 1; and (b) Scenario 2 (normal triangular pyramid). 

4.1.1. Success Rate of Localization 

Table 3 illustrates the success rate of localization with different velocities in scenario 1. We show the 

results for scenario 1 and 2 in this paper. As shown in Table 3, it is obvious that both the magnitude and 

direction of velocity of the marine mammal have effect on the success rate of localization, but there is 

no regular relationship between the magnitude of velocity and the success rate. This is because the 

success rate of localization depends on the error of distance estimation, which is mainly determined by 

velocity. However, in the proposed localization algorithm, we substitute the average frequency of 

received signals for the real transmission frequency of the signal. When the magnitude of velocity 

increases, the absolute frequency offset of all received signals increases with different extents, whether 

it is negative or positive, which leads to the uncertainty of change trend of average frequency. 
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Table 3. Success rate of localization with different velocities in scenario 1 (2). 

Velocity v1 v2 v3 v4 
5 m/s 0.918 (0.893) 0.897 (0.889) 0.917 (0.891) 0.917 (0.890) 
10 m/s 0.901 (0.878) 0.899 (0.873) 0.889 (0.875) 0.897 (0.876) 
15 m/s 0.896 (0.873) 0.875 (0.860) 0.897 (0.858) 0.893 (0.851) 
20 m/s 0.916 (0.884) 0.879 (0.861) 0.907 (0.870) 0.870 (0.862) 

Due to the discussion above, we introduce average success rate of localization, the mean of success 

rates of localization with different velocities in a certain scenario to analyze the approximate influence 

of deployment on the performance of localization. As shown in the Table 4, we can get that the 

deployment of anchor nodes does affect success rate of localization. 

Table 4. Average success rate of localization in different scenarios. 

Deployment Average Success Rate of Localization 
Scenario 1 89.8% 
Scenario 2 87.4% 

Furthermore, Figure 9 shows the blind area of two scenarios. The four red points denotes anchor 

nodes with known positions. The positions marked by blue dots are the points that cannot be correctly 

localized by PHLA. We can observe that most of the un-localized positions locate around anchor nodes. 

The reason is that hyperboloid localization method localizes a target based on the focus of three 

hyperboloids. However, a target near the anchor nodes may lead to large curvature on some of the 

hyperboloids. In that case, a tiny error, which results from the step searching scheme in PHLA, on 

distance measurement will result in a failure of the localization. After collecting statistical results, the 

success ratio of localization is 89.8% and 87.4%, respectively, for two different scenarios, which means 

PHLA can cover most of the area in both scenarios. 

(a) (b) 

Figure 9. Blind areas: (a) scenario 1 and (b) scenario 2. 

4.1.2. Accuracy of PHLA Localization Algorithm 

Localization accuracy is another significant metric of a localization algorithm. From the deduction of 

PHLA, we can find that a known frequency of the transmission signal is a prerequisite for distance 
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measurement from Equations (14) and (15). However, due to the Doppler effect, which results from the 

movement of marine mammals, the frequency of the received signal may not be coincident among 

anchor nodes. As a result, the distance measurement may be imprecise. Therefore, we evaluate the 

relationship between the speed of marine mammal’s movement and the localization error, which is 

defined as Equation (22): 

, ,
1

1 N

v i v i ve s s
N

∗= −  (22)

where ,i vs  and ,i vs∗  are the accurate position and estimated position, respectively, and N is the number of 

total localized positions. 

Figure 10 illustrates the average localization error with varying the velocity of marine mammals in 

different scenarios. Generally, a similar variation trend is observed in the three scenarios that average 

localization error increases as the magnitude of velocity increases. This is because the increase in the 

magnitude of velocity enlarges the frequency offset of received signals, which finally causes the increase 

in the error of distance estimation. Additionally, the direction of velocity has an impact on the 

localization performance and the two opposite directions make little difference, as the gap between the 

green line and the red one corresponding with v1 and v2 show. This is because the direction of the velocity 

affects velocity component on the line determined by the reference node and the position of the marine 

mammal, the essential factor to frequency offset of the received signal. Since the velocities with the 

opposite directions have the same magnitude, the only difference of the velocity component is the 

direction, whose influence is relatively small. 

For both of the metric’s evaluations, we observe that PHLA can localize marine mammals with 

a relatively high success ratio and accuracy. 

 
(a) (b) 

Figure 10. Average localization error vs. value of velocity: (a) scenario 1 and (b) scenario 2.  
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4.2. EFPC Evaluation 

The topology of the network is shown in Figure 11. A1–A4 are four anchor nodes, which are used for 

localizing sensor nodes and marine mammals. Sinks D1–D3 locate on the water surface and are the 

destinations of data packets. Other nodes are deployed in a three-dimensional area. In the network, we assume 

that S1–S3 are data sources and R1–R6 are relay nodes. Each sensor node is deployed in the middle of a field 

with a size 1 km × 1 km × 1 km. We assume a marine mammal, M, moves with a speed, v. 

To evaluate the impact of v on the performance of the network, we evaluate the goodput performance 

with a set of v as Table 5. Figure 12a depicts the network goodput with varying speed v of marine 

mammal represented by M. 

Table 5. Velocity setting. 

v1 (1, 0, 0) 
v2 (2 ,0, 0) 
v3 (0, 1, 0) 
v4 (0, 2, 0) 

 

Figure 11. Network topology. 

(a) (b) 

Figure 12. Network goodput. (a) Packet length 100 B; (b) Packet length 500 B. 
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This figure shows that the existence of marine mammals does lower the goodput of the network. The 

reason is that, by employing EFPC, if the network has detected that there are marine mammals, sensor nodes 

will switch to the share mode. In share mode, some of the potential communication between sensor nodes 

may be postponed or prevented if the received power level by marine mammals goes beyond the threshold. 
However, even for the worst case (v = v1), the goodput of the network can still achieve 88% of 

that in EF-MAC, which does not consider the existence of marine mammals. There are two main 

factors attribute to the result. The first reason is that only parts of the network may be affected by 

the marine mammals. Many of the sensor nodes can still schedule their transmission by EFPC 

algorithm. The second reason is that moving marine mammals will not always be affected by the 
network. For example, even for the slowest speed v1, M will go across the network in about 5000 s, 

which is 50% of the total simulation time. 

Furthermore, compared with SFAMA, EFPC can improve the goodput of the network by about  

33%–53% for different velocity settings. The reason is that the power control scheme can efficiently 

reuse the spatial resource by allowing for as much parallel transmissions as possible. 

By comparing the goodput performance among different sets of v, we observe that both the value and 

the direction of velocity can affect the performance of the network. For the same direction, the faster the 

M moves, the higher the goodput the network can achieve. This is because that a faster speed reduces 

the time when M is affected by the network. With the same reason, the direction of velocity can also 
affect the goodput of the network. For example, with v2,  node M goes through the network with a less 

time compared with v1, which results a less reduction of the goodput of the network. 

For a longer packet scenario, 500 B in Figure 12b, the curves have similar trends to Figure 12a. 

Furthermore, the goodput of network has about five times better achievement compared to Figure 12a. 

The reason is mainly because that EFPC works combined with a slotted based MAC protocol:  

EF-MAC. For EF-MAC, both 100 B and 500 B packets can be conducted in one slot. The length of 

packet has little impact on the transmission scheduling in MAC. Therefore, if we double the packet’s 

length, the goodput of the network will be doubled. Compared with SFAMA, the improvement of 

goodput performance for the longer packet length setting is about 30%–51%. 

(a) (b) 

Figure 13. Network delay. (a) Packet length 100 B; (b) Packet length 500 B. 
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The end-to-end delay is also important metric of network; therefore, we also compare it with the set 

of velocities shown in Table 3. Figure 13 show that the network which is affected by marine mammals 

leads to a higher end-to-end delay. For the same direction of velocity, the lower speed leads to a higher 

end-to-end delay. The reason is that a lower speed leads to a longer duration that the network is impacted 

by marine mammals. During that time duration, some of the packets were postponed for transmission, 

which increase the end-to-end delay. 

5. Conclusions and Future Work 

In this paper, we develop a novel environmentally friendly power control scheme, EFPC, and a 

corresponding passive localization algorithm, PHLA, for UWSNs. EFPC is a power control scheme that 

can switch between a share mode and an exclusive mode to tradeoff between network performance and 

marine mammal protection. In the share mode, EFPC can avoid negative impact on marine mammals by 

limiting transmission power level. To improve the network performance, if there are no marine mammals 

around the network, EFPC will switch to the exclusive mode. In this mode, EFPC can fully utilize spatial 

resource to maximize the goodput of network. Simulation results show that PHLA can localize most of 

the targets with a relatively small error and EFPC can achieve a close goodput performance compared 

to an existing power control algorithm, while avoiding interfering with marine mammals. 

Regarding future works, considering that underwater channel state may change a lot during packet 

transmission, and the movement of marine mammals can impact on localization accuracy, a joint design 

of power control algorithm channel estimation and movement prediction will improve the overall 

performance of the network.  

Acknowledgments 

This work was supported in part by the following projects: the National Natural Science Foundation 

of China through the Grant No. 61571318; Hainan science and technology planning key Project  

No. ZDXM2014086; Hainan Natural Science Foundation Project No. 614229; and Qinghai Science and 

Technology Project No. 2015-ZJ-904. 

Author Contributions 

Q.Y. conceived and designed the experiments; G.Y. performed the experiments; Y.S. analyzed the 

data; and Y.S. and Z.J. wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Akyildiz, I.F.;  Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research 

challenges. Ad Hoc Netw. 2005, 3, 257–279.  

2. Cui, J.-H.;  Kong, J.; Gerla, M.;  Zhou, S. Challenges: Building scalable mobile underwater 

wireless sensor networks for aquatic applications. IEEE Netw. 2006, 20, 12–18.  



Sensors 2015, 15 29126 

 

 

3. Chitre, M.; Shahabudeen, S.; Stojanovic, M. Underwater acoustic communications and networking: 

Recent advances and future challenges. Mar. Technol. Soc. J. 2008, 42, 103–116. 

4. Stojanovic, M. Underwater Acoustic Communication—For the Wiley Encyclopedia of Electrical 

and Electronics Engineering. Avaible online: http://millitsa.coe.neu.edu/sites/millitsa.coe.neu.edu/ 

files/ency3_0.pdf (accessed on 4 November 2015). 

5. Partan, J.; Kurose, J.; Levine, B.N. Spatial Reuse in Underwater Acoustic Networks Using RTS/CTS 

Mac Protocols. Available online: http://forensics.umass.edu/pubs/Partan.UM-CS-2010-045.pdf 

(accessed on 11 November 2015). 

6. Singh, S.; Raghavendra, C.S. PAMAS—Power aware multi-access protocol with signalling for ad 

hoc networks. ACM SIGCOMM Comp. Commun. Rev. 1998, 28, 5–26. 

7. Agarwal, S.; Katz, R.H.; Krishnamurthy, S.V.; Dao, S.K. Distributed power control in ad-hoc 

wireless networks. In Proceedings of the International Symposium on Personal, Indoor and Mobile 

Radio Communications, San Diego, CA, USA, 30 September–3 October 2001; pp. 59–66.  

8. Muqattash, A.; Krunz, M. POWMAC: A single-channel power-control protocol for throughput 

enhancement in wireless ad hoc networks. IEEE J Sel Area Comm. 2005, 23, 1067–1084. 

9. Kim, T.S.; Lim, H.; Hou, J.C. Improving spatial reuse through tuning transmit power, carrier 

sense threshold, and data rate in multihop wireless networks. In Proceedings of the 12th Annual 

International Conference on Mobile Computing and Networking, Los Angeles, CA, USA,  

23–26 September 2006; pp. 366–377. 

10. Jornet, J.; Stojanovic, M. Distributed power control for underwater acoustic networks. In 

Proceedings of MTS/IEEE OCEANS Conference, Kobe, Japan, 8–11 April 2008; pp. 1–7. 

11. Rodoplu, V.; Park, M.K. An energy-efficient MAC protocol for underwater wireless acoustic 

networks. In Proceedings of MTS/IEEE OCEANS conference, Washington, WA, USA, 18–23 

September 2005; pp. 1198–1203. 

12. Zhou, Z.; Zhou, S.; Cui, J.-H.; Cui, S. Energy-efficient cooperative communication based on power 

control and selective single-relay in wireless sensor networks. IEEE Trans. Wirel. Commun. 2008, 

7, 3066–3078. 

13. Su, Y.; Zhu, Y.; Mo, H.; Cui, J.-H.; Jin, Z. UPC-MAC: A power control mac protocol for 

underwater sensor networks. In Wireless Algorithms, Systems, and Applications; Springer Berlin 

Heidelberg: Berlin, Germany, 2013; pp. 377–390. 

14. Stojanovic, M. On the relationship between capacity and distance in an underwater acoustic 

communication channel. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 11, 34–43. 

15. Luo, Y.; Pu, L.; Zuba, M.; Peng, Z.; Cui, J.-H. Challenges and opportunities of underwater 

cognitive acoustic networks. IEEE Trans. Emerg. Top. 2014, 2,198–211. 

16. Doksæter, L. Behavioural Effects of Naval Sonars on Fish and Cetaceans. Ph.D. Thesis,  

The University of Bergen, Bergen, Norway, 2011.  

17. Wright, A.J.; Soto, N.A.; Baldwin, A.L.; Bateson, M.; Beale, C.; Clark, C.; Deak, T.; Edwards, T.; 

Godinho, A.; Fernandes, A.; et al. Do marine mammals experience stress related to anthropogenic 

noise? Int. J. Comp. Psychol. 2007, 20, 274-316. 

18. Jepson, P.D.; Arbelo, M. Deaville, R.; Patterson, I.A.P.; Castro, P.; Baker, J.R.; Degollada, E.; 

Ross, H.M.; Herráez, P.; Pocknell, A.M.; et al. Gas-bubble lesions in stranded cetaceans. 

Nature 2003, 425, 575–576. 



Sensors 2015, 15 29127 

 

 

19. Buchner, H.; Aichner, R.; Stenglein, J.; Teutsch, H.; Kellermann, K. Simultaneous localization 

of multiple sound sources using blind adaptive MIMO filtering. In Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 

18–23 March 2005; pp. iii/97–iii100. 

20. Dmochowski, J.P.; Benesty, J.; Affes, S. Broadband MUSIC: Opportunities and challenges for 

multiple source localization. In Proceedings of the 2007 IEEE Workshop on Applications of Signal 

Processing to Audio and Acoustics, Hamilton, ON, Canada, 21–24 October 2007; pp. 18–21. 

21. Southall, B.L.; Bowles, A.E.; Ellison, W.T.; Finneran, J.J.; Gentry, R.L.; Greene J.R.C.; 

Kastak, P.; Ketten, D.; Miller, J.; Nachtigall, P.; et al. Marine mammal noise-exposure criteria: 

Initial scientific recommendations. Bioacoustics 2008, 17, 273–275. 

22. Chandrasekhar, V.; Seah, W.; Choo, Y.S.; Ee, H.V. Localization in underwater sensor 

networks: Survey and challenges. In Proceedings of the 1st ACM International Workshop on 

Underwater Networks, Los Angeles, CA, USA, 25 September 2006; pp. 33–40. 

23. Syed, A.; Heidemann, J. Time synchronization for high latency acoustic networks. In Proceedings 

of the International Conference on Computer Communications, Barcelona, Spain, 23–29 April 

2006; pp. 1–12. 

24. Liu, J.; Wang, Z.; Zuba, M.; Peng, Z.; Cui, J.-H.; Zhou, S. JSL: Joint time synchronization and 

localization design with stratification compensation in mobile underwater sensor networks. In 

Proceedings of the 9th Annual IEEE Communications Society Conference on Sensor, Mesh 

and Ad Hoc Communications and Networks, Seoul, Korea, 18–21 June 2012; pp. 317–325. 

25. Molins, M.; Stojanovic, M. Slotted FAMA: A MAC protocol for underwater acoustic 

networks. In Proceedings of the IEEE OCEANS 2006-Asia Pacific Conference, Singapore, 16–

19 May 2007; pp. 1–7. 

26. Saraydar, C.U.; Mandayam, N.B.; Goodman, D.J. Efficient power control via pricing in 

wireless data networks. IEEE Trans. Commun. 2002, 50, 291–303. 

27. Harris, A.F.; Zorzi, M. Modeling the underwater acoustic channel in NS-2. In Proceedings of 

the 2nd International Conference on Performance Evaluation Methodologies and Tools, 

Nantes, France, 22–27 October 2007; p. 18. 

28. Challa, R.N.; Shamsunder, S. 3-D spherical localization of multiple non-Gaussian sources using 

cumulants. In Proceedings of Statistical Signal and Array Processing, Corfu, Greece, 24–26 June 

1996; pp. 101–104. 

29. Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans.  

Signal Process. 1994, 42, 1905–1915. 

30. Güvenç, İ.; Chong, C.C. A survey on TOA based wireless localization and NLOS mitigation 

techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. 

31. Awad, A.; Frunzke, T.; Dressler, F. Adaptive distance estimation and localization in WSN using 

RSSI measures. In Proceedings of the 10th Euromicro Conference Digital System Design 

Architectures, Methods and Tools, Lubeck, Germany, 29–31 August 2007; pp. 471–478. 

32. Janik, V.M. Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) 

whistles in the Moray Firth, Scotland. J. Comparative Physiol. A 2000, 186, 673–680. 

33. Schusterman, R.J. Low false‐alarm rates in signal detection by marine mammals. J. Acoust.  

Soc. Am. 1974, 55, 845–848. 



Sensors 2015, 15 29128 

 

 

34. Datta, Sl.; Sturtivant, C. Dolphin whistle classification for determining group identities.  

Signal Process. 2002, 82, 251–258. 

35. Brekhovskikh, L.M.; Lysanov, Y.P. Fundamentals of Ocean Acoustics; Springer-Verlag New York: 

New York, NY, USA, 2003.  

36. Sozer, E.M.; Stojanovic, M.; Proakis, J.G. Underwater acoustic networks. IEEE J. Oceanic Eng. 

2000, 25, 72–83. 

37. Tellakula, A.K. Acoustic Source Localization Using Time Delay Estimation. M.Sc. Thesis. 

Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India, 2007. 

38. Xie, P.; Zhou, Z.; Peng, Z.; Yan, H.; Hu, T.; Cui, J.-H.; Shi, Z.; Fei, Y.; Zhou. S. Aqua-Sim: 

An NS-2 based simulator for underwater sensor networks. In Proceedings of the Biloxi-Marine 

Technology for Our Future: Global and Local Challenges, Biloxi, MS, USA, 26–29 October 

2009; pp. 1–7. 

39. Yan, H.; Zhou, S.; Shi, Z.J.; Li, B. A DSP implementation of OFDM acoustic modem.  

In Proceedings of the 2nd Workshop on Underwater Networks, Montreal, QC, Canada,  

14 September 2007; pp. 89–92. 

40. Cui, J.H.; Zhou, S.; Shi, Z.; O’Donnell, J.; Peng, Z.; Gerla, M.; Baschek, B.; Roy, S.; 

Arabshahi, P.; Zhang, X. Ocean-TUNE: A community ocean testbed for underwater wireless 

networks. In Proceedings of the 7th ACM International Conference on Underwater Networks 

and Systems, Los Angeles, CA, USA, 5–6 November 2012; p. 17. 

41. Guerra, F.; Casari, P.; Zorzi, M. World Ocean Simulation System (WOSS): A simulation  

tool for underwater networks with realistic propagation modeling. In Proceedings of the 4th 

ACM International Workshop on UnderWater Networks, Berkeley, CA, USA, 25 November 

2009; p. 4. 

42. General Bathymetric Chart of the Oceans. Available Online: www.gebco.net (accessed on  

4 November 2015).  

43. National Geophysical Data Center, Seafloor Surficial Sediment Descriptions. Available Online: 

www.ngdc.noaa.gov/mgg/geology/deck41.html (accessed on 25 June 2015). 

44. Rohr, J.J.; Fish, F.E.; Gilpatrick, J.W. Maximum swim speeds of captive and free-ranging delphinids: 

Critical Analysis of extraordinary performance. Mar. Mamm. Sci. 2002, 18, 1–19. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


