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Abstract: Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing 

both a single waveband algorithm and multi-spectral algorithms, were developed in order 

to discrimination between sound and discolored lettuce. Reflectance spectra for sound and 

discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained 

in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between 

discolored and sound lettuce surfaces were determined using one-way analysis of variance. 

Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted 

in enhanced classification accuracy of above 99.9% for discolored and sound areas on both 

adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) 

algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better 
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classification performances compared to results obtained for all possible two-waveband 

combinations. These results suggest that hyperspectral reflectance imaging techniques can 

potentially be used to discriminate between discolored and sound fresh-cut lettuce. 

Keywords: hyperspectral imaging; multispectral imaging; lettuce; discoloration;  

image processing 

 

1. Introduction 

The commercial market for fresh-cut agricultural products in Korea was worth $7000 million in 

2012 and is growing every year. Fresh-cut products are divided into three types: lettuce, salad, and 

other fresh-cut food. The demand for lettuce, which accounts for one of the largest portions of  

fresh-cut agricultural products, is constantly increasing. In the last 10 years, lettuce production did  

not show a significant increase and its price increased more than six-fold in Korea. Accordingly, 

minimizing the loss and sorting high-quality raw lettuce has become ever more important. Browning is 

an important factor in terms of quality loss during post-harvest storage of lettuce heads and minimally 

processed lettuce [1,2]. This browning is mainly due to the presence of the polyphenol oxidase enzyme 

(PPO, enzyme number: EC 1.14.18.1), a mixed function oxidase that first catalyzes the hydroxylation 

of monophenols to o-diphenols, and then the o-quinones of colorless o-diphenols to highly colored  

o-quinones [3,4]. Damage generally induces an increase in phenylalanine ammonia-lyse (PAL,  

EC 4.3.1.5) activity and increased phenolic metabolism in plant tissues [5,6]. In addition, damage 

induces cellular decompartmentalization, which allows the mixing of phenolic substrates and PPO, 

leading to the development of browning [4,7]. 

The appearance of leafy vegetables is very important in terms of the consumer [8]. Defects such as 

browning occur during storage, with foreign materials in lettuce, such as worms and slugs, also 

causing consumer complaints, although the complete removal of these defects during the cleaning 

process is difficult. Surface defects such as browning of fresh-cut lettuce are inspected by operators 

using the naked eye. Therefore, non-destructive, rapid techniques for the evaluation of surface defects 

on fresh-cut lettuce are required. 

Various studies aiming to determine external and internal quality and analyze the defects of 

agricultural products such as vegetables and fruits have been performed using near-infrared (NIR) 

spectroscopy, machine vision, multispectral imaging, and hyperspectral imaging techniques [9–13]. 

The conventional image system is incapable in inspecting specimens with similar color and 

discriminate complex objectives [14]. Hyperspectral imaging is a promising nondestructive 

measurement technique [15], which involves the acquisition of spatial and spectral information 

simultaneously for each pixel in a sample image. Hence, hyperspectral imaging can provide physical 

and chemical information beyond that provided by the simple optical R/G/B regions used by 

conventional imaging systems. This technique can also be employed in order to determine the subtle 

physical and chemical characteristics of an object, and to visualize the spatial distributions of its 

chemical components. 
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Hyperspectral imaging and multispectral technology has been examined as a potential method for 

food defects and safety assessment, such as in the detection of fecal contamination and defects on 

apples and defects on tomatoes, and the detection of microbial contamination such as bacterial biofilms 

on a food-processing surface [16–20]. A method for estimating the tissue damage during the processing 

of fresh-cut vegetables was developed using optical imaging technology [21]. A multispectral fluorescence 

imaging technique was employed in order to develop two-waveband algorithms for the detection of 

bovine fecal contaminants on the surface of romaine lettuce and baby spinach leaves [22]. 

Hyperspectral imaging is used to find two- or three-wavebands to detect the defects. In order to design 

a low-cost multispectral camera with the two- or three-wavebands optimized for quality measurement 

of lettuce, the hyperspectral imaging technique can be used to find two- or three-waveband to detect 

the quality such as the defects. 

In this study, a rapid method for detecting discoloration on lettuce surfaces was developed using  

a near-infrared hyperspectral imaging technique. Hyperspectral reflectance imaging analysis was used 

in order to determine the appropriate multispectral bands for use in detecting surface defects on lettuce. 

The objectives of this study were to determine the most significant wavelengths for defect evaluation 

and to develop multispectral imaging algorithms with the function of ratio and subtraction for 

detecting discoloration on fresh-cut lettuce, to be used in online inspection applications in fresh-cut 

vegetable processing plants. 

2. Experimental Section 

2.1. Materials 

Lettuce (Lactuca sativa) produced in the southern part of Korea in 2014 was purchased and used in 

the experiments. The samples were stored in a refrigerator at 2 °C for 4 day after harvesting as the 

optimum temperature for storage of lettuce is 0~2 °C [23], and lettuce leaves that exhibited discolored 

areas with browning and defects were taken for use in the experiments. A total of 60 discolored and  

60 sound lettuce leaves were cut in order to produce samples with dimensions of 5 cm × 5 cm. 

Hyperspectral images of each adaxial and abaxial surface of the samples were obtained in order to 

develop methods that can be used on both surfaces of a leaf sample, immediately after cutting. The 

samples were equilibrated at room temperature before cutting, in order to obtain the hyperspectral 

images. There were 30 calibration samples (Set A) used for algorithm development and 30 validation 

samples (Set B) used to test the algorithms. 

2.2. Hyperspectral Imaging System 

Figure 1 shows a schematic diagram of the hyperspectral line-scan imaging system equipped  

with the critical components. This imaging system was composed of a low-light sensitive electron 

multiplying charge-coupled device (EMCCD) camera (MegaLuca, Andor Technology Inc., Belfast, 

Northern Ireland), an imaging spectrograph (VNIR Hyperspec, HeadwallPhotonics Inc., Fitchburg, 

MA, USA), a Schneider-Kreuznach Xenoplan 1.4/23 C-mount lens (Schneider Optics, Hauppauge, 

NY, USA), and a pair of light sources. The EMCCD camera with a resolution of 1002 vertical and 

1004 horizontal pixels was thermo-electrically cooled to a temperature of −20 °C using a two-stage 
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Peltier device. The imaging spectrograph with a 25-µm slit was attached, together with a C-mount lens 

with focus adjustment and an aperture diaphragm. Passing through the 25 µm × 18 mm  

(width × length) aperture slit, light from the scanned line of a field-of-view (FOV) was dispersed by 

the dispersive grating and projected onto the EMCCD. A two-dimensional image with the spatial 

dimension along the horizontal axis and the spectral dimension along the vertical axis of the EMCCD 

was created. In the case of reflectance imaging, the spectral image amplified by the EMCCD camera 

was captured only in the wavelength range from 400 to 1000 nm. 

 

Figure 1. Schematic representation of the hyperspectral reflectance imaging system. 

2.3. Hyperspectral Image Spectra Acquisition 

Twelve individual sets of hyperspectral images were obtained for lettuce, 6 for the adaxial and 6 for 

the abaxial surfaces, each set consisting of a 5 × 2 cut leaf arrangement on a lined tray. Line-scan 

images were captured for exposure times of 6 ms at 0.5 mm intervals, and each set consisted of  

600 line scans corresponding to 600 × 502 pixels per spectral band. The hyperspectral images were 

composed of a total of 125 spectral bands in the range from approximate 400 to 1000 nm, with  

a waveband interval of 4.8 nm. 

The dark reference images were acquired in the absence of a light source in order to correct for the 

noise incurred by the EMCCD camera. The white reference images were obtained using a 99% diffuse 

reflectance standard (Spectralon™, SRT-99-120, Labsphere, NH, USA) in order to calibrate the 

intensity of the light source for each vertical pixel. The dark and white reference images were used in 

order to convert raw reflectance images of lettuce into corrected reflectance images, according to the 

following equation:  
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Ireflectance (i) =  (1)

where Ireflectance is the corrected reflectance image at the ith wavelength, Iraw is the raw hyperspectral 

image at the ith wavelength, Idark is the dark reference image at the ith wavelength, and Iwhite is the white 

reference image at the ith wavelength. 

In terms of the hyperspectral images corrected, the reflectance spectra of the pixels composed of 

sound and discolored areas of a lettuce surface were extracted and used to calculate an average 

reflectance spectrum. 

The degree of discoloration of the lettuce was divided into three levels (slight, intermediate and 

severe) based on the visual inspection of two trained human inspectors. The area where the 

discoloration degree is greater than the minimum level with light pink color was determined to be 

discolored area. Note that there has not been a standard reference for discoloration of lettuce and no 

imaging instrument exceeds the performance of inspection by human eyes. Average spectra were 

obtained by manual selection of sound and discolored areas. The region of interest (ROI) was selected 

in a polygonal shape to freely select indeterminate shapes of sound and discolored areas. 

In order to classify sound and discolored areas on lettuce surfaces, simple single waveband and  

two-waveband multispectral imaging algorithms were developed. The single waveband imaging (SWI) 

algorithm was developed using the reflectance value (R) of a single waveband. In the case of  

two wavebands, two-waveband ratio imaging (RI) and subtraction imaging (SI) algorithms were 

developed using the ratio image (Ra/b) and subtraction image (Sa-b) of reflectance values at  

two wavebands, respectively. 

In order to determine the optimal waveband pairs for use in the detection of discolored and sound 

areas in the samples employed in this study, one-way analysis of variance (ANOVA) was performed 

using 23,599 spectra extracted within the region of interest (ROI) from sound and discolored areas on 

30 abaxial and adaxial lettuces from Set A were used for calibration. In order to select the optimal 

wavebands for detecting discoloration, the ANOVA F-values were calculated for the single waveband, 

two-waveband ratio, and two-waveband subtraction approaches for all possible two-waveband 

combinations. Using these optimal wavebands, each of these three types of algorithms were developed 

for use with the average spectrum and pixel spectra. The optimal global threshold was then determined 

at the highest classification accuracy. The validation of the developed algorithms was conducted  

using three types of average spectrum, pixel spectra, and waveband images from 30 Set B samples.  

The MATLAB software (version 7.0.4, the Mathworks, Natick, MA, USA) was used to extract and 

analyze the hyperspectral image data. 

3. Results and Discussion 

3.1. Spectral Characteristics of Sound and Discolored Lettuce 

Representative spectra, extracted from corrected hyperspectral lettuce images that included 

discolored and sound areas containing primary veins, secondary veins, and leaf interveins, were 

measured in the wavelength range from 400 to 1000 nm (Figure 2). These features are also indicated 

on the reflectance images of the adaxial and abaxial leaf surfaces. Each spectral image depicts a mean 

for the spectra obtained for 60–100 individual pixels of interest. The reflectances of sound areas of leaf 
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vein and intervein for both adaxial and abaxial surfaces in the range from 483 to 540 nm (with  

a blue–green color), which included the absorbance wavelength of carotenoids with the inhibition 

characteristics of an enzymatic browning reaction, increased more sharply than those of the discolored 

areas [24]. However, the reflectance of discolored areas of leaf vein and intervein for both surfaces in 

the range from 540 to 640 nm (yellow–orange color), which included the wavelength related to 

enzymatic browning of anthocyanin, increased more sharply than those of the sound areas [25]. 

Moreover, the reflectance of the sound lettuce area in the range from 640 to 685 nm exhibited a sharp 

reduction compared to the reflectance of the discolored area. The dominant chlorophyll absorption 

feature in the spectra was observed at approximately 681 nm [26]. 
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Figure 2. (a) Images of lettuce leaves and (b) representative reflectance spectra of 

discolored and sound areas on the veins and inter-vein regions of adaxial and abaxial 

lettuce leaf surfaces. 
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3.2. Algorithm for Distinguishing Discoloration on Lettuce Using Spectra 

Algorithms using single bands or the function of ratio and subtraction used to detect discoloration 

on the lettuce surface were developed using hyperspectral reflectance spectra. Discoloration detection 

methods using single and multi-waveband spectra were investigated using one-way ANOVA. The 

discrimination results and classification values of three algorithms in terms of discoloration detection 

capacity using an average spectrum and the pixel spectra for sound and discolored areas on the abaxial 

and adaxial lettuce surface are shown in Tables 1 and 2 and Figures 3 and 4. 

 

 

Figure 3. Classification accuracy of adaxial surface, abaxial surface and both surfaces 

using a single waveband algorithm and a combination of a two-waveband algorithm and 

average spectra: (a) calibration (Set A) and (b) validation (Set B). 
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Table 1. Discoloration discrimination results using a single waveband algorithm and a combination of a two-waveband algorithm and average spectra. 

 Type of Surface 
 

Calibration (Set A) Validation (Set B) 

Single Waveband Two-Waveband Ratio 
Two-Waveband 

Subtraction 
Single Waveband Two-Waveband Ratio

Two-Waveband 

Subtraction 

Optimal Wavebands 547 nm 552 nm, 701 nm 557 nm, 701 nm 547 nm 552 nm, 701 nm 557 nm, 701 nm 

No. of total sample 

Adaxial 
Discoloration 23 26 

Sound 30 30 

Abaxial 
Discoloration 26 29 

Sound 29 30 

1) CA (%) 

Adaxial 

2) CV 0.44~0.45 0.85–0.89 −0.086 ~ −0.074 0.44 0.85 −0.086 ~ −0.084 

Discoloration 95.7 >99.9 >99.9 >99.9 >99.9 >99.9 

Sound 93.3 96.7 96.7 66.7 96.7 >99.9 

Abaxial 

2) CV 0.44 0.79–0.85 −0.098 0.44 0.85 −0.086 ~ −0.084 

Discoloration 84.6 96.2 96.2 72.4 >99.9 >99.9 

Sound 89.7 >99.9 >99.9 60.0 >99.9 >99.9 

Both 

2) CV 0.44 0.85 −0.086 ~ −0.084 0.44 0.85 −0.086 ~ −0.084 

Discoloration 89.8 98.0 98.0 85.5 >99.9 >99.9 

Sound 91.5 98.3 94.9 63.3 98.3 >99.9 

Note: 1) CA, classification accuracy; 2) CV, classification value. 
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Table 2. Discoloration discrimination results using a single waveband algorithm and a combination of a two-waveband algorithm and pixel spectra. 

 Type of Surface 
 

Calibration (Set A) Validation (Set B) 

Single Waveband Two-Waveband Ratio 
Two-Waveband 

Subtraction 
Single Waveband Two-Waveband Ratio 

Two-Waveband 

Subtraction 

Optimal Wavebands 547 nm 552 nm, 701 nm 557 nm, 701 nm 547 nm 552 nm, 701 nm 557 nm, 701 nm 

No. of total pixels 

Adaxial 
Discoloration 2694 1213 

Sound 6919 16,917 

Abaxial 
Discoloration 3882 2836 

Sound 10,147 4854 

1) CA (%) 

Adaxial 

2) CV 0.44 0.78 −0.089 0.43 0.81 −0.106 

Discoloration 83.1 98.8 98.1 86.0 99.7 90.0 

Sound 84.1 97.8 96.3 63.6 99.9 99.6 

Abaxial 

2) CV 0.41 0.81 −0.106 0.43 0.81 −0.106 

Discoloration 72.0 99.1 95.1 58.2 99.4 96.2 

Sound 87.7 99.9 98.4 64.2 >99.9 >99.9 

Both 

2) CV 0.43 0.81 −0.106 0.43 0.81 −0.106 

Discoloration 78.4 99.1 95.4 66.5 99.5 94.4 

Sound 83.4 98.7 97.8 63.7 99.9 99.7 

Note: 1) CA, classification accuracy; 2) CV, classification value. 
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Figure 4. Classification accuracy of adaxial surface, abaxial surface and both surfaces 

using a single waveband algorithm and a combination of a two-waveband algorithm and 

pixel spectra: (a) calibration (Set A) and (b) validation (Set B). 

3.2.1. Single Waveband Algorithm 

The single waveband algorithm for detecting lettuce discoloration was developed using one 

waveband. Figure 5 shows the F-value of each waveband from the ANOVA results for distinguishing 

discolored and sound areas on lettuce samples, using one waveband in the range from 400 to 1000 nm. 

The F-values for discolored and sound portions of lettuce were calculated for all 125 wavebands in the 

400–1000 nm region in order to determine the most appropriate waveband. The optimal waveband 

with the highest F-value (F) of 14,299.3 was at 547 nm, which is on the boundary between green and 

yellow, and is the waveband related to cellular browning of anthocyanin [25]. The reflectance intensity 

of sound lettuce at 547 nm was lower than that of the discolored lettuce, as shown in Figure 2b. 

Degradation of anthocyanin pigments has been reported as a possible mechanism for color loss in 

strawberries [27]. The peaks in the F-value were at approximately 470 nm and 710 nm, which are 

related to carotenoids and chlorophyll, respectively [26,28]. 
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Figure 5. One-way ANOVA results for classifying sound and discolored areas of lettuce 

using the single waveband algorithm in the wavelength range from 400 to 1000 nm. 

As shown in Figure 6a,b, the classification accuracies of sound and discolored areas on both adaxial 

and abaxial lettuce surfaces were indicated by the reflectance of a 547 nm single band for the average 

spectrum and the pixel spectra of the calibration sample (Set A). The threshold values for the abaxial 

and adaxial lettuce surfaces with the best classification using the average spectrum were 0.44 and 0.42, 

respectively, as shown in Table 1 and Figure 4a. The classification accuracies of the abaxial surface 

were above 99.9% for discolored areas and 66.7% for sound areas, which were higher than those of the 

adaxial surface (Figure 3b). The classification accuracies of discolored and sound areas on both the 

adaxial and abaxial surfaces were 78.2% and 73.3%, respectively. The developed algorithm was 

verified using the validation samples (Set B). The validation results for this algorithm on the average 

spectrum, using classification values determined for detecting surface defects of Set A samples, 

showed that the classification accuracies for discolored and sound areas on abaxial and adaxial 

surfaces were improved by 89.8% and 91.5%, respectively. The classification accuracies on abaxial 

surfaces for validation samples (Set B) were higher than those on adaxial surfaces. 

The single waveband algorithm used to discriminate between sound and discolored areas of lettuce 

was developed using pixel spectra. The discrimination accuracies of the sound and discolored areas on 

both surfaces were 78.3% and 83.4%, respectively, lower than those using average spectra (Table 2, 

Figure 6b). This may be attributed to the noise reduction for each pixel spectrum caused by averaging 

the total pixel spectrum. Threshold values for pixel spectra were also shifted to lower values than those 

of average spectra, and the threshold values of both the average and pixel spectra were higher for 

abaxial surfaces than for adaxial surfaces. The validation results of this algorithm for sound and 

discolored areas on both surfaces were 66.5% and 63.7%, respectively (Figure 4b). The classification 

performances of the both sound and discolored groups on both surfaces using the pixel spectra for 

calibration samples (Set A) were higher than those for validation samples (Set B) given in Table 2. 
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Figure 6. Classification rates for sound and discolored areas on both adaxial and abaxial 

surfaces using the reflectance of a 547 nm single waveband with calibration samples:  

(a) average spectrum and (b) pixel spectra. 

3.2.2. Two-Waveband Ratio Algorithm 

The ratio discrimination algorithm for predicting the discoloration of lettuce surfaces was developed 

using two reflectance wavebands. Figure 7 shows the F-values calculated by one-way ANOVA for all 

possible two waveband ratios for the spectra of the discolored and sound areas described by a contour 

plot. The contour image indicated the most effective spectral wavebands for discriminating between 

discolored and sound surfaces. A larger F-value designated a more statistically significant mean 

separation between the two groups. The optimal wavebands of the ratio were 552 nm and 701 nm with 

an F-value of 155,522.3. These wavebands near the F-value peak of a single waveband are associated 

with the characteristics of anthocyanin and chlorophyll [29–31]. The results indicated that the F-values 

of the two-waveband ratio combinations for detecting discoloration on a lettuce surface produced were 

higher than those of the single waveband. These two peaks were close to the F-value peaks of the 

single waveband with a high correlation used to discriminate between the discolored and sound lettuce 

areas, as shown in Figure 5. As shown in Figure 6b, the ratio values (R552/701) of the discolored lettuce 

areas were higher than those of the sound areas. 

Figure 8a,b shows the correlation between the classification accuracy of sound and discolored areas 

on both adaxial and abaxial lettuce surfaces, the value of the ratio between 552 nm and 701 nm for an 

average spectrum, and the pixel spectra for the calibration samples (Set A). Threshold values of 

adaxial and abaxial surfaces (Set A) from 0.79 to 0.83 and from 0.82 to 0.83, respectively, gave the 

best classification results for the average spectrum (Table 1, Figure 8a). The classification accuracies 

of discolored and sound areas on both surfaces were above 99.9% higher than those obtained using the 

single waveband algorithm (Figure 3b). The results using this algorithm were validated using the 

validation sample (Set B), using a classification value determined for detecting defects on both Set A 

surfaces, with classification accuracies for discolored and sound areas on adaxial and abaxial surfaces 
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of 98.0% and 98.3%, respectively. The classification accuracies of the adaxial and abaxial surfaces for 

the validation samples (Set B) were similar to these values, and perhaps the difference between both 

surfaces was reduced due to the ratio treatment. 

 

Figure 7. Waveband selection for the ratio spectra and imaging algorithm. One-way 

ANOVA results for classifying sound and discolored areas of the lettuce surface using the 

ratio of two wavebands in the wavelength range from 400 to 1000 nm. 
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Figure 8. Classification rate results for sound and discolored areas on both adaxial and 

abaxial surfaces using the ratio of two wavebands (R552/701): (a) average spectrum and  

(b) pixel spectra. 
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The two-waveband ratio algorithm used to predict the presence of sound and discolored areas of 

lettuce surfaces were developed using pixel spectra. The classification performances of sound and 

discolored areas on both surfaces of the pixel spectra were 99.1% and 98.7%, respectively. These were 

lower than those values obtained using average spectra for the calibration samples (Set A), but higher 

than those obtained using average spectra for the Set B validation samples (Table 2, Figure 8b). This 

may be attributed to a reduction in the noise of each pixel spectrum caused by taking the average of the 

total pixel spectrum. The threshold values for detecting discoloration in the pixel spectra (Figure 8b) 

were also shifted to lower values than those of the average spectrum (Figure 8a). The threshold values 

for both the average spectrum and pixel spectra for abaxial surfaces were higher than those of the 

adaxial surfaces. The validation results for this algorithm for sound and discolored areas on both 

surfaces indicated accuracies of 99.5% and 99.9%, respectively (Figure 4b). The two-waveband 

R552/701 ratio algorithm was able to detect lettuce discoloration. 

3.2.3. Two-Waveband Subtraction Algorithm 

The two-waveband subtraction algorithm developed in order to predict lettuce discoloration 

employed two reflectance wavebands. The one-way ANOVA F-values for all possible two waveband 

subtractions (125 × 125) for the sound and discolored areas are illustrated in the contour plot in  

Figure 9. The discoloration of lettuce as correlated to reflectance subtraction for the waveband pairs is 

shown in Figure 9. The F-values for distinguishing between discolored and sound lettuce surfaces were 

calculated for all 58 × 58 wavebands in the 400–1000 nm region in order to find the best combination 

for two-waveband subtraction. The subtraction image at wavebands of 557 nm and 701 nm (S557-701) 

exhibited the highest F-value of 88756.0. The wavebands near the F-value peak of the single waveband 

are associated with the characteristics of anthocyanin and chlorophyll [25–27]. The F-value obtained 

when subtracting between these two wavebands in order to classify discolored lettuce was greater than 

that of the single waveband. Figure 10b indicates that the two-waveband subtraction (S557-701) values 

for sound lettuce were lower than those of discolored lettuce. 

The relation between the classification rates for sound and discolored lettuce, and the value of  

the subtraction between the 557 nm and 701 nm wavebands are given in Figure 10 for the average 

spectrum and pixel spectra on both adaxial and abaxial calibration sample surfaces (Set A). The 

threshold values for adaxial and abaxial Set A sample surfaces for the best classification values 

obtained using the average spectrum were from −0.086 to −0.074 and −0.098, respectively  

(Figure 10a). The classification accuracies for discolored and sound areas on both surfaces were 98.0% 

and 94.9%, respectively, and showed an improvement compared to those obtained using the single 

waveband algorithm (Figure 3a). The classification performance for discriminating discoloration on 

the adaxial surface and sound areas on the abaxial surface exceeded that of sound areas on the abaxial 

surfaces and discoloration areas on the adaxial surfaces, respectively. The validation results for this 

algorithm using the validation sample (Set B) and a classification value determined for the calibration 

samples (Set A) show that the classification accuracies for discolored and sound areas on both surfaces 

increased by above 99.9% (Figure 3b). As the two-waveband subtraction algorithm was more accurate 

than the single waveband algorithm, the difference in the classification accuracies for the adaxial and 

abaxial surfaces of the validation samples (Set B) was reduced. 
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Figure 9. Waveband selection for the subtraction spectra and imaging algorithm. One-way 

ANOVA results for classifying sound and discolored areas of lettuce using the subtraction 

of two wavebands in the wavelength range from 400 to 1000 nm. 
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Figure 10. Classification rate results for the sound and discolored areas on both adaxial 

and abaxial surfaces using the subtraction of two wavebands (S557-701): (a) average spectrum 

and (b) pixel spectra. 

The two-waveband subtraction algorithm for predicting the presence of sound and discolored areas 

of lettuce was developed using pixel spectra (Table 2). The classification accuracies for sound and 

discolored areas on both surfaces of the calibration samples (Set A) were 95.4% and 97.8%, 

respectively (Figure 10b). The validation results for this algorithm for sound and discolored areas on 

both surfaces were 94.4% and 99.7%, respectively (Figure 4b). The threshold values for the pixel 

spectra (Figure 10b) were shifted to lower values than those of the average spectra (Figure 10a).  
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The classification performances of calibration Set A for discolored areas on both surfaces using the 

pixel spectra were higher than those of validation Set B (Table 2). The S557-701 two-waveband 

subtraction algorithm indicated a capacity for detecting lettuce discoloration. 

The classification results for the single waveband algorithm showed that the calibration set for both 

the average spectrum and the pixel spectra exhibited higher accuracy than the validation set. The 

classification results for the two-waveband ratio and subtraction algorithms, however, indicated that 

the prediction set for both types of extraction spectrum exhibited higher accuracy than the calibration 

set. The classification performances of both the two-waveband ratio and two-waveband subtraction 

algorithms were improved when these algorithms were applied to the validation samples. In case of 

two-waveband ratio and two-waveband subtraction algorithms, detection of discoloration on adaxial 

surfaces and sound areas on abaxial surfaces exhibited better performances. The best threshold values 

obtained for adaxial surfaces for the three types of algorithms under examination using the average 

spectrum and pixel spectra were lower than those of abaxial surfaces, except in the case of the  

two-waveband ratio algorithm when using the pixel spectra. 

3.3. Development of Imaging Algorithms for Discoloration Discrimination 

The algorithms for predicting discoloration on lettuce were developed using hyperspectral reflectance 

imaging. Discoloration discrimination methods were examined using single and multi-waveband 

images, determined using ANOVA analysis. Table 3 shows the discoloration discrimination results  

for single waveband, two-waveband ratio, and two-waveband subtraction imaging algorithms with 

validation samples (Set B) using the classification values for pixel spectra shown in Table 2. 

3.3.1. Single Waveband Imaging (SWI) Algorithm 

Figure 11 shows a sequence of representative images processed using single waveband images in 

order to classify discolored areas. The images for the 547 nm single waveband (I547 in Figure 11b) 

were converted into binary images (Figure 11c), where reflectance values greater than 0.07 were given 

a value of “1” and those less than 0.07 were given a value of “0”. The backgrounds were then 

eliminated and a masking image was produced in order to select only lettuce image areas. The 547 nm 

waveband image (Figure 11d) was created by applying the masking image and then converted into the 

binary form using a threshold reflectance value of 0.44 (Figure 11e). As shown in Figure 7, which 

indicates the classification rate of sound and discolored areas using the SWI algorithm for both adaxial 

and abaxial lettuce surfaces, this threshold value yielded the best accuracy for discriminating between 

sound and discolored areas when using the calibration samples (Set A). If the pixel number of positive 

area is more than 4, this area was considered to the discoloration area. The positive area in the binary 

image represented the discolored areas of the lettuce. 
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Figure 11. Illustration of the image processing sequence using a single waveband:  

(a) sample image; (b) grayscale I547 image; (c) masking images obtained by applying  

a threshold of 0.07 reflectance to an I547 image; (d) grayscale and color images of I547 after 

masking; and (e) resulting detection images after the application of a 0.44 threshold. 

3.3.2. Ratio Imaging (RI) Algorithm 

Figure 12 shows a sequence of images corresponding to the image processing method used to 

distinguish the discolored areas of lettuce samples using the two-waveband ratio imaging (RI) 

algorithm. Figure 12a shows the RGB images of the adaxial and abaxial lettuce samples obtained by 

conventional digital camera with one image. The 701 nm image with the greatest difference in 

intensity between the background and the lettuce for the two wavebands was selected as the masking 

image (Figure 12b). The binary image using the 701 nm image for masking was created following the 

same method as was described for the case of the SWI algorithm (Figure 12c). A threshold value  

of 0.1 was obtained using the Otsu threshold method. The ratio images for 552 nm and 701 nm 

(R552/701) (Figure 12e) were created using 552 nm and 701 nm images after the application of the 

masking image (Figure 12d). The ratio images were transformed into binary images using the 

threshold value (Figure 12f). The classification rate of sound and discolored areas using the  

two-waveband ratio is shown in Figure 8. The threshold value of 0.82 was determined as yielding the 

best classification accuracy for the sound and discolored areas using the calibration sample of Set A.  

If the pixel value of the ratio image was higher than the threshold value of 0.82, the pixel was assigned 

a value of 1. If the pixel value of the ratio image was lower than the threshold value of 0.82, the pixel 

value was assigned a value of 0. The positive areas of these binary images represent discoloration. 
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Figure 12. Illustration of image processing sequence for the RI algorithm using  

two wavebands: (a) sample images; (b) grayscale I701 images; (c) masking images obtained 

by applying a threshold of 0.10 reflectance to an I701 image; (d) I552 and I701 images after 

masking; (e) the grayscale and color ratio images of I552 and I701 after masking; and  

(f) resulting detection images after the application of a 0.82 threshold. 

3.3.3. Two-Band Subtraction Imaging (SI) Algorithm 

Figure 13 shows a sequence of images corresponding to the image processing performed in order to 

classify discolored lettuce using the two-waveband subtraction imaging (SI) algorithm. The 701 nm 

masking images were created using the same method as was described for the case of the ratio imaging 

(RI) algorithm (Figure 13b,c). The subtraction images (Figure 13e) were obtained after the 557 nm and 

701 nm lettuce images were masked (Figure 13d). The subtraction images were converted into binary 

images using a threshold value of −0.106, which gave the best classification accuracy (Figure 13f). 

Figure 8 shows the classification rate of the sound and discolored areas using two-waveband 

subtraction. If the pixel value of the ratio image was higher than the threshold value of −0.106, the 

pixel was assigned a value of 1. If the pixel value of the ratio image was lower than the threshold value 

of −0.106, the pixel value was assigned a value of 0. The positive parts of the binary images show the 

areas of each lettuce that were identified as being discolored. 
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Figure 13. Illustration of image processing sequence for the subtraction imaging (SI) 

algorithm using two wavebands: (a) sample images; (b) grayscale I701 images; (c) masking 

images obtained by applying a threshold of 0.10 reflectance to the I701 image; (d) I557 and 

I701 images after masking; (e) the grayscale and color subtraction images between I557 and 

I701 after masking; and (f) resulting detection images after the application of a 0.82 threshold. 

3.3.4. Classification Results for the Three Imaging Algorithms 

The imaging prediction results of the three algorithms obtained using validation samples are shown 

in Table 3. Figure 14 shows the discoloration detection results for validation sample B, using the SWI 

algorithm with a 547 nm image, the RI algorithm with the R552/701 ratio image, and the SI algorithm 

with the S557-701 subtraction image. The prediction results for the SWI algorithm indicated that the 

positive areas of the prediction image, the discoloration, were larger than the discolored areas of the 

samples (Figure 14b). The prediction accuracies of discoloration area for adaxial and abaxial surfaces 

were above 46.4% and 42.4%, respectively. The sensitivity, classification accuracy of true positive for 

the detection of discoloration areas of adaxial and abaxial surfaces, were above 99.9% and 86.2%, 

respectively. The specificity, true negative rate meaning misclassification of the discoloration area as 

the sound ones, were 0% for the adaxial and abaxial surfaces. The reason of the low classification 

accuracy is because the white and green color regions of discoloration areas were recognized as sound 

surfaces with the single waveband images. The prediction image obtained using the SWI algorithm 

presented difficulties in distinguishing discoloration from sound areas. The detection of discoloration 

using the imaging algorithm exhibited better accuracy than that obtained using two types of extraction 

spectra, but discriminating between sound and discolored areas using single waveband images 

algorithm affords a lower accuracy than that obtained using two types of extraction spectra. 
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Figure 14. Prediction results for (a) an RGB picture of the validation samples; (b) SWI 

algorithm (I547); (c) RI algorithm (R552/701); and (d) SI algorithm (S557-701) using fresh-cut 

lettuce samples. 

Table 3. The results of discoloration detection using images of lettuce surfaces for  

three imaging algorithms. 

 
No. of Samples 

CA 1) (%) 
SWI 2) RI 3) SI 4) 

Discoloration Sound SE 5) SP 6) PA 7) SE 5) SP 6) PA 7) SE 5) SP 6) PA 7) 
Adaxial 

surface 
26 30 >99.9 0 46.4 >99.9 >99.9 >99.9 >99.9 >99.9 >99.9 

Abaxial 

surface 
29 30 86.2 0 42.4 >99.9 >99.9 >99.9 >99.9 >99.9 >99.9 

Note: 1) CA, classification accuracy; 2) SWI, single-waveband image; 3) RI, two-waveband ratio image; 4) SI, 

two-waveband subtraction image; 5) SE, sensitivity; 6) SP, specificity; 7) PA, predictive accuracy. 

In case of the RI and SI algorithms, the predictive accuracy for detecting discoloration areas was 

above 99.9% for both adaxial and abaxial surfaces. The sensitivity and the specificity for adaxial and 
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abaxial surfaces were also above 99.9%. As indicated in red in Figure 14c,d, the sound areas of  

four samples of adaxial surfaces and one sample of an abaxial surface gave false positives that 

indicated discoloration. The reverse sides of the sound areas of these samples did exhibit discoloration. 

In the case of thin samples, the RI and SI algorithms indicated the possibility to detect discoloration on 

the reverse sides of the measured surfaces. The classification performances of both the RI and SI 

algorithms using images also surpassed those of the two-waveband ratio and subtraction algorithms 

using an average spectrum or pixel spectra. The best algorithms in terms of discrimination between 

discolored and sound areas of lettuce were the RI and SI algorithms. The classification accuracy for 

lettuce discoloration exhibited by each of these methods using two-waveband spectra and images also 

surpassed the validation results of image of (680 nm–450 nm)/(680 nm + 450 nm), combination of red 

and blue wavelengths, obtained using a multispectral vision system with 3-CCD camera designed to 

detect enzymatic browning in fresh-cut apple slices, which exhibited 84% classification accuracy, as 

reported by Lunadei et al. [32]. These results show that the RI and SI algorithms exhibit the capacity to 

detect lettuce discoloration. 

The results of this study indicate that the combination of two spectral images of the visible range is 

more suitable than using a single spectral image to detect discolored part in the lettuce. In addition, the 

combination of two spectral images is possible to detect discolored area on the opposite side of the 

target surface, which is not possible with a single spectral image. Thus, the spectral information found 

by the hyperspectral image can be applied to the development of the economic online multispectral 

imaging system to detect the discoloration of lettuce. 

4. Conclusions 

Nondestructive methods based on visible/near-infrared (VNIR) hyperspectral imaging techniques 

and employing a single waveband algorithm and multispectral algorithms were developed in order to 

discriminate between sound and discolored lettuce. The optimal wavebands for discriminating between 

discolored and sound lettuce surfaces were investigated using the one-way ANOVA method. The 

multispectral imaging algorithms developed using ratio and subtraction functions resulted in  

a classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial 

lettuce surfaces. The R552/701 RI algorithm and S552-701 SI algorithm using images exhibited better 

classification performances than in cases where an extraction spectrum such as the average spectrum 

or pixel spectra were used. The overall results suggest that hyperspectral reflectance imaging 

techniques have the potential to discriminate between discolored and sound fresh-cut lettuces. In the 

future, our research will focus on quantitatively predicting the progress of browning on fresh-cut 

lettuce, in order to improve discrimination accuracy by detecting small defects. 
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