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Abstract: Road detection is an essential component of field robot navigation systems. Vision
sensors play an important role in road detection for their great potential in environmental
perception. In this paper, we propose a hierarchical vision sensor-based method for robust
road detection in challenging road scenes. More specifically, for a given road image
captured by an on-board vision sensor, we introduce a multiple population genetic algorithm
(MPGA)-based approach for efficient road vanishing point detection. Superpixel-level seeds
are then selected in an unsupervised way using a clustering strategy. Then, according to
the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors.
After convergence, the initial road segment is obtained. Finally, in order to achieve a
globally-consistent road segment, the initial road segment is refined using the conditional
random field (CRF) framework, which integrates high-level information into road detection.
We perform several experiments to evaluate the common performance, scale sensitivity and
noise sensitivity of the proposed method. The experimental results demonstrate that the
proposed method exhibits high robustness compared to the state of the art.
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1. Introduction

Road detection is a fundamental issue in field robot navigation systems, which have attracted keen
attention in the past several decades. Vision sensors play an important role in road detection. Image
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data captured by vision sensors contains rich information, such as luminance, color, texture, etc. Thus,
vision sensors have a great potentiality in road detection [1]. Moreover, vision sensors are inexpensive
compared to other popular road detection sensors, such as LiDAR and millimeter-wave radar [2].

For these reasons, many state-of-the-art field robot systems employ vision sensors for road detection.
For example, Xu et al. [3] presented a mobile robot using a vision system to navigate in an unstructured
environment. The vision system consisted of two cameras; one is used for road region detection, and
the other is used for road direction estimation. Rasmussen [4] introduced a vehicle-based mobile robot
system, which has achieved success in the DARPA Grand Challenge. Vision sensors mounted on the top
of the windshield were used to detect the road vanishing point for steering control.

Vision sensor-based road detection is a binary labeling problem trying to label every pixel in the
given road image with the category (road or background) to which it belongs [5]. However, vision
sensor-based road detection is still a challenging job due to the diversity of road scenes with different
geometric characteristics (varying colors and textures) and imaging conditions (different illuminations,
viewpoints and weather conditions) [5].

The problem of vision sensor-based road detection has been intensively studied in recent years. Some
methods are based on color and texture features, e.g., the method presented in [6] uses the HSI color
space as the features for road detection, while the algorithm proposed in [7] combines texture and color
features. However, in many off-road environments, the texture and color features of the road and its
surroundings are quite complex and diverse, and sometimes, it is extremely difficult to distinguish road
regions from the surroundings by using only texture and color features. Another approach for road
detection is based on road boundaries; the proposed method in [8] used road boundaries to fit a road
curvature model for road detection. Nevertheless, this kind of approach does not appropriately behave
when there is no evident borders (e.g., unstructured roads). More recently, the vanishing point was used
for road detection in [9]. This kind of method does not work well when there is no obvious road vanishing
point or the road has curved boundaries [5]. To deal with curved boundaries, in [10], the authors proposed
using the illuminant invariance to detect road regions. This approach is robust to illuminations, shadows
and curved roads. However, it contain less information on road shape priors and is sensitive to noise.
To make sensible use of prior information, in [11], road priors obtained from geographic information
systems (GISs) are combined with the road cues estimated from the current image to achieve robust road
segmentation. However, the method may fail when there is no GIS database. Without GIS or a map,
Sotelo et al. [12] used road shape restrictions to enhance the road segmentation. To make better use of
road shape priors, He et al. [5] proposed to use road shape priors for the road segmentation by encoding
the priors into a graph-cut framework, but the method would be suboptimal when the features of the road
and background are similar.

In this paper, we introduce a hierarchical vision sensor-based road detection model to address this
problem. More specifically, the proposed approach is depicted in Figure 1, which consists of three
main components:

(1) Road vanishing point detection based on MPGA: We propose an efficient and effective road
vanishing point detection method, which employed the multiple population genetic algorithm
(MPGA) to search for vanishing point candidates heuristically. The value of the fitness function
of MPGA is obtained by a locally-tangent-based voting scheme. In this way, we only need to
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estimate the local dominant texture orientations and calculate voting values at the positions of
vanishing point candidate. Thus, the proposed method is highly efficient compared to traditional
vanishing point detection methods. In this paper, the road vanishing point is a key element of
subsequent image processing tasks.

(2) GrowCut-based road segmentation: The initial road segments are obtained using GrowCut [13],
which is an interactive segmentation framework based on cellular automaton (CA) theory [14]. The
seed points of GrowCut are selected automatically by using the information of the road vanishing
point, which makes GrowCut become an unsupervised process without an interactive property.
Seed selection and GrowCut are performed at the superpixel level. Each superpixel is regarded as
a cell with a label (road or background), the initial road segment is obtained when the proliferation
of cells stops.

(3) Refinement using high-level information: In order to get rid of the shortcomings of the illuminant
invariance-based method [11] and to ensure that the road segments are globally consistent, inspired
by [5], we employ a conditional random field (CRF) [15] to integrate some high-level information
into the road segments.

GrowCut结果 恢复 Top

Image Captured by
Vision-based Sensor

Road Vanishing Point Detection

Superpixel

Unsupervised
Seeds Selection

GrowCut
Road

Labelling Refinement

Result

 

Probability Map
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Figure 1. Diagram of our vision sensor-based road detection model.

The rest of this paper is organized as follows. In Sections 2–4, we introduce the proposed road
detection method. Experimental results and a discussion are presented in Section 5, and conclusions are
drawn in Section 6.

2. Road Vanishing Point Detection Based on MPGA

In a 2D image data captured by a vision sensor, the road vanishing point is the intersection of the
projections of certain parallel lines (e.g., road edges, lane markings) in the real world. The road vanishing
point plays an important role in road detection. The information of road direction can be obtained from
the road vanishing point. Rasmussen et al. [16] use it for navigation directly. Moreover, the road
vanishing point provides a strong clue to the localization of the road region. Hui Kong et al. [9] use the
road vanishing point for road segmentation. In this paper, road vanishing point detection is a vital step
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for the whole road detection task. This section presents a robust method for the fast estimation of the
road vanishing point.

2.1. Searching Based on MPGA

Most texture-based vanishing point detection methods [9,16,17] obtain vanishing point candidates in
a greedy way, which is computationally expensive. In the proposed method, the multiple population
genetic algorithm (MPGA) is employed to search vanishing point candidates heuristically. After the
vanishing point candidates are obtained, we just need to estimate the local dominant texture orientations
of the vanishing point candidates and their voters, after which the voting value of the vanishing point
candidate can be obtained by the local dominant texture orientations.

There are some modern optimization algorithms (such as the multiple population genetic algorithm
(MPGA), particle swarm algorithm optimization (PSO), the simulated annealing algorithm (SA), etc.)
that are mainly employed for difficult optimization problem solving. The work in [18] performed
experiments to evaluate the performance of some modern optimization algorithms. It concluded that
these modern optimization algorithms are effective, but the genetic algorithm (GA) is more efficient
than PSO and SA. The genetic algorithm [19] is widely used in optimization problems. In the algorithm,
problem parameters are encoded to chromosomes, and the solution can be obtained when the evolution
of the chromosomes is stopped. However, the traditional genetic algorithm may lead to local optimal
solutions, and its convergence speed is slow. The multiple population genetic algorithm (MPGA) was
proposed to overcome the shortcomings of the traditional genetic algorithm. Instead of starting from one
population, MPGA starts from two or more populations, and each population evolves in parallel. For
this reason, we apply MPGA to search for vanishing point candidates.

In order to obtain chromosomes, the coordinates of the pixels are transformed to a binary encoding.
Having obtained chromosomes, we next generate M initial populations, and each population contains N
chromosomes. The fitness function f(x, y) of the MPGA is defined as follows:

f(x, y) =
n∑
i=1

V ote(Pi, Vj) (1)

where V ote(Pi, Vj) represents the voting value of the vanishing point candidate Vj at (x, y), Pi is a voter
of Vj and n denotes the number of voters in the voting region of Vj . The obtainment of voting values
will be discussed in the next subsection.

2.2. Voting Scheme

After a vanishing point candidate is obtained, the local dominant texture orientation of the vanishing
point candidate and its voters need to be estimated. Similar to the work in [16], Gabor filter banks are
applied to estimate the local dominant texture orientation. For an orientation φ and a scale w, the Gabor
kernels are defined by:

ψw,φ(x, y) =
w√
2πc

e−w
2(4a2+b2)/(8c2)(eiaw − e−c2/2) (2)

where a = x cosφ + y sinφ, b = −x sinφ + y cosφ. The local dominant texture orientation of each
vanishing point candidate is obtained by Gabor filter banks of 36 orientations (180 divided by five). The
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estimation method is explained in detail in [9]. In our work, the local dominant texture orientation of a
pixel is only computed once, and the value is saved for the subsequent computing.

After the local dominant texture orientation of the vanishing point candidate Vj is obtained, its voting
value V ote(Pi, Vj) can be computed. As shown in Figure 2, V is a vanishing point candidate, P is a
voter of V and

−→
PA is the local dominant texture orientation vector of P . β equals 6 V AP . We define

Vproj as the distance of V and A.

α
β

V A

P

projV

Figure 2. Illustration of the voting scheme.

As shown in Figure 2, (Vx, Vy) and (Px, Py) are defined as the coordinates of V and P , respectively.
Vproj can be obtained as follows:

Vproj = Px − Vx +
Vy − Py

tan(180− α)
(3)

After getting the value of Vproj , our voting scheme can be defined as follows:

V ote(P, V ) =


0 Vproj >

ImageWide

2
1

1 + V 2
proj

otherwise
(4)

where ImageWide represents the width of the image, V is a vanishing point candidate and P is a voter
of V . The definition of the local voting region is similar to the soft-voting scheme in [9], which defines
the voting regions as the half-disk below V . All of the pixels in the local voting region are used as voters.

For better comparison, like traditional texture-based vanishing point detection methods, we compute
V ote (P, V ) at every pixel in the test image using Equation (4), where Vproj is obtained from
Equation (3). The results are shown in Figure 3b, which illustrates that the vanishing point is the
maximum value in the voting space. For MPGA-based voting, we only compute the voting value at
the vanishing point candidate using Equation (4) and then search the next vanishing point candidate
based on MPGA according to the result of Equation (4). Each vanishing point candidate is shown in
Figure 3c (marked with red color). From Figure 3, we can see that every population experiences the
processes of selection, reproduction and mutation by the fitness function; the maximum value could be
found at last, and the road vanishing point is estimated at the location of the maximum value.
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Figure 3. Illustration of voting: (a) the original road image; (b) the greedy voting map;
(c) the MPGA voting map.

As we just need to estimate the local dominant texture orientations and compute voting values at
the positions of the vanishing point candidate, the proposed method is more efficient than traditional
texture-based methods. For a quantitative comparison, let MP and NI denote the number of initial
populations and the number of chromosomes in each population, respectively. The number of vanishing
point candidates is denoted by NV . For the road images of size 320 × 240, the NV of traditional
texture-based methods is about:

NV = 320× 240 = 76, 800 (5)

We perform an experiment to validate the efficiency of our MPGA-based voting strategy. As shown in
Table 1, NV of our voting strategy is much less than that of traditional texture-based methods (76,800).
This means that our voting strategy spends less time on voting. Thus, the proposed method is more
efficient than the traditional one.

Table 1. The result of efficiency validation.

MP

NV NI
10 20 30 40 50

10 418 1009 1553 2139 2674
20 731 1767 2716 3738 4594
30 1004 2439 3761 5132 6313
40 1290 3098 4717 6427 7797
50 1537 3681 5597 7571 9177

Figures 4 and 5 are some examples of MPGA vanishing point detection in structured roads and
unstructured roads, respectively. The red points in the first rows of the figures are the obtained road
vanishing point. The second rows are the corresponding MPGA voting maps.
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Figure 4. Examples of MPGA-based vanishing point detection in structured roads.
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Figure 5. Examples of MPGA-based vanishing point detection in unstructured roads.

3. GrowCut-Based Road Segmentation

The initial road segments are obtained using GrowCut [13], which is an interactive segmentation
framework based on cellular automaton (CA) theory [14]. GrowCut starts with a set of seed points,
and the seed points iteratively try to occupy their neighbors according to cellular automaton, until
convergence. Because of its robustness, GrowCut is widely used in image segmentation [13], object
detection [20], etc. In this paper, the seed points of GrowCut are selected automatically by using the
information of the road vanishing point, which makes GrowCut become an unsupervised process without
an interactive property.

3.1. Seed Selection at the Superpixel Level

Seeds are the starting points of GrowCut. In our work, the seeds are selected automatically by using
the K-means clustering algorithm [21]. The road and the background clustering region are defined by
using the information of the road vanishing point, which can be obtained efficiently by the method
introduced in Section 2. As shown in Figure 6a, V denotes the road vanishing point of the given image
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and AB is the horizontal line crossing the road vanishing point V (called the vanishing line). Let C and
D denote the bottom left corner and the bottom right corner of the given image, respectively. The lines
between V , C and D divide the area below AB into three regions: V AC, V CD and V BD.

For images captured by on-board cameras, most pixels in the region V CD belong to the road surface,
and most pixels in the region V AC and V BD belong to the background. The region V CD is defined
as the road clustering region, while V AC and V BD are the background clustering region. As shown in
Figure 6b, the red area is the road clustering region; the green area is the background clustering region;
and the blue area is the sky region (the region above vanishing line AB).

VA B

C D

(a) (b)

Figure 6. Clustering region: (a) illustration of the clustering region definition; (b) example
of the clustering region definition.

We use three channels (R, G and B) of the given color road image as the features of clustering. After
the clustering region is defined, the K-means clustering algorithm [21] is applied to the road and the
background clustering regions, respectively (the initial points of clustering are selected randomly). Road
and background region clustering is illustrated in Figure 7, where Figure 7a is the original road image
and Figure 7b,c are the results of RGB feature-based K-means clustering. For the result of road region
clustering in Figure 7b, the proportion of the red category is larger than that of the green category. This
means that in the result of road region clustering, the category with a larger proportion can be seen as
the representative of the road surface. According to this assumption, road seeds of GrowCut are selected
from the category with a larger proportion in the result of the road region clustering (the red category in
Figure 7b). Similarly, background seeds are selected from the category with a larger proportion in the
result of the background region clustering (the green category in Figure 7c).

(a) (b) (c)

Figure 7. Road and background region clustering: (a) test road image; (b) road region
clustering; (c) background region clustering.
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In order to produce spatially more appealing road segments, inspired by [22], we select seeds and
apply GrowCut at the superpixel level. We perform a preliminary over-segmentation of the given road
image into superpixels using the SLICalgorithm [23]. Rather than using the pixel grids and rectangular
patches, superpixels are likely to be uniform in color and texture and tend to preserve boundaries, so they
are more perceptually meaningful and representationally efficient [24]. Furthermore, using superpixels
may dramatically reduce the computational complexity of subsequent image processing tasks (such as
GrowCut) [22].

In the given road image, for the k-th superpixel Sk, Crk denotes the ratio of the number of pixels
belonging to road seeds and the total number of pixels in this superpixel and takes the form:

Crk =

∑
i∈Sk

li

Nk

(6)

where li ∈ {0(background), 1(road)} denotes the label of the i-th pixel and Nk is the total number of
pixels in Sk.

Let (xk, yk) denote the mean coordinates of the pixels in Sk and (xm, ym) be the coordinates of the
pixel in the bottom center of the given road image. For the selection of road seeds, the normalized
distance between Sk and (xm, ym) is denoted by Drk, which can be defined as follows:

Drk =

√
(xm − xk)2 + (ym − yk)2√

x2m + y2m
(7)

Let Prk be the probability of Sk being selected as a road seed:

Prk =
Crk + (1−Drk) · Tr

1 + Tr
(8)

where Tr is the factor controlling the weight of (1−Drk) in computing Prk (Tr = 0.01 in this work).
Due to the fact that superpixels closer to the bottom center of the on-board road image have a higher
probability of being road seeds, Drk should be taken into consideration in computing the probability of
being road seeds.

For the result of the road region clustering in Figure 8a, the probability of each superpixel being
selected as a road seed can be obtained by Equation (8) (see Figure 8b, which is called the probability
map). The result of superpixel-level road seed selection is illustrated in Figure 8c.

(a) (b) (c)

Figure 8. Illustration of superpixel-level road seed selection: (a) the result of road region
clustering; (b) the probability of being road seeds (the brighter the superpixel, the higher the
probability); (c) the result of superpixel-level road seed selection.
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Compared to most traditional seed selection methods, the proposed method is highly robust. With
the common assumption [25], traditional methods define a “safe” window in the road image and assume
that the pixels in the “safe” window belong to the road pattern (see Figure 9; the “safe” window is a
semi-circular region at the center-bottom of the on-board road image). As shown in Figure 9, traditional
methods may not work well when the features of the road and its surroundings are complex and diverse,
where they are likely to select seeds in some incorrect regions, such as shadow and some parts of the car.

On-Board Road Image Traditional Methods The Proposed Method 

1

2

3

 Probability Map

Figure 9. Comparisons with the traditional seed selection method.

Similarly, for background seeds, let Cgk be the ratio of the number of pixels belonging to background
seeds and the total number of pixels in the superpixel Sk:

Cgk =

∑
i∈Sk
|li − 1|

Nk

(9)

In order to make background seeds be equally distributed on the left and right side of the road image,
the background clustering region is divided into two parts, denoted by Bl and Br, which represent the
parts on the left and right side of the road clustering region, respectively. Let (xl, yl) and (xr, yr) be the
coordinates in the top left corner and top right corner of the background clustering region, respectively.
(xmax, ymax) denote the coordinates in the bottom right corner of the given road image. For the selection
of background seeds, the normalized distance Dgk takes the form:

Dgk =



√
(xl − xk)2 + (yl − yk)2
√
xmax2 + ymax2

k ∈ Bl√
(xr − xk)2 + (yr − yk)2
√
xmax2 + ymax2

k ∈ Br

(10)

The probability of Sk being selected as a background seed can be defined as follows:

Pgk =
Cgk + (1−Dgk) · Tg

1 + Tg
(11)

where Tg is the factor controlling the weight of (1−Dgk) in computing Pgk (Tg = 0.01 in this work).
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Clustering-based background seed selection aims at selecting background seeds outside the road
regions. Although clustering regions have many kinds of textures, background seeds are only selected
from the category with a larger proportion in the result of the background region clustering, which is less
likely to belong to the road pattern. Besides, Equations (10) and (11) penalize the superpixels close to
road regions. In these ways, clustering-based background seed selection is able to work well.

For on-board road images, according to the fact that the sky is likely to appear in the region above
the vanishing line (the blue area in Figure 6b) and that the features of this region are quite different
from that of the road and background clustering region, we need to select two background seeds in the
region above the vanishing line. Let Ssky1 and Ssky2 be two superpixel-level background seeds, which
are selected by Equation (12).

sky1 = argmin
k

√
(xk − 1)2 + (yk − 1)2

sky2 = argmin
k

√
(xk − xmax)

2 + (yk − 1)2
(12)

where (1, 1) and (xmax, 1) are the coordinates in the top left corner and top right corner of the road
images. The selection of Ssky1 and Ssky2 is illustrated in Figure 10, and some qualitative results of seed
selection at the superpixel level are illustrated in Figure 11.

(a) (b) (c)

Figure 10. The selection of superpixel-level background seeds above a vanishing line:
(a) test road image; (b) superpixels above the vanishing line (colored in red); (c) the result
of the selection (colored in yellow).

Figure 11. The results of superpixel-level seed selection (road seeds are colored in red;
background seeds are colored in green).
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3.2. Segmentation Using the GrowCut Framework

After seed points are obtained, the seed superpixels iteratively try to occupy their neighbors according
to GrowCut [14] at the superpixel level until convergence. For the superpixel Si, let Sli be its label (road
or background), where Sli ∈ {−1(background), 0(undetermined), 1(road)}.

−→
Fi denotes the feature

vector of the superpixel Si and θi denotes the strength (θi ∈ [0, 1]), which stands for the ability to attack
or defend. Thus, the state of the superpixel Si can be defined by a triplet (Sli, θi,

−→
Fi). Initially, the label

of each superpixel is set as:

Sli =


1 Si ∈ Sr
−1 Si ∈ Sg
0 Si ∈ Sr ∪ Sg

(13)

where Sr and Sg denote the sets of road and background seeds, respectively. the initial value of strength
is set as:

θi =

{
1 Si ∈ Sr ∪ Sg
0 Si ∈ Sr ∪ Sg

(14)

Moreover, we need to define the distance between two feature vectors. Álvarez et al. had
demonstrated that intraclass variability caused by lighting conditions is a major challenge for road
detection [10]. As a field robot may work under different lighting conditions (e.g., different
illuminations, weather and shadow conditions), in this work, illuminant invariance features [10] and
RGB color features are used to describe each superpixel. Illuminant invariance features are able to make
the road detection more robust in shadowy and varying illumination conditions. For each pixel in a color
image, illuminant invariance feature Ii can be obtained by:

Ii = eβ

β = log(
Ri

Gi + 1
) · cos(θ) + log(

Bi

Gi + 1
) · sin(θ)

(15)

where (Ri, Gi, Bi) denotes the RGB color feature of the i-th pixel. The illuminant invariance feature of
the i-th superpixel is defined as follows:

FIi =

n∑
k∈Si

Ik

ni
(16)

where ni denotes the number of pixels in superpixel Si. Similarly, the RGB color feature of the i-th
superpixel can be obtained by:

FRi =

n∑
k∈Si

Rk

ni
, FGi =

n∑
k∈Si

Gk

ni
, FBi =

n∑
k∈Si

Bk

ni
(17)

The distance between feature vectors i and j is denoted by Dmi,j and takes the form:
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Dmi,j =
|FIi − FIj|+Km ·

√
(FRi − FRj)

2 + (FGi − FGj)
2 + (FBi − FBj)

2

1 +Km
(18)

where Km is the factor controlling the weight of the RGB color feature in computing Dmi,j (Km = 0.2

in this work).
According to the GrowCut [14] framework, each superpixel is regarded as a cell, and cells with

labels 1 and −1 proliferate from seeds. In the process of proliferation, they attack and occupy
their differently-labeled neighbors. Let Si and Sj be two neighbor cells with different labels
((Sli 6= Slj) ∧ (Sli 6= 0) ∧ (Slj 6= 0)). Let Si be the attacking cell and Sj the attacked cell; then,
Si occupies Sj if:

g(Dmi,j) · θi > θj (19)

where g(x) is a monotonically-decreasing function:

g(x) = 1− x

max ‖Dmi,j‖2
(20)

If Si occupies Sj , then the label and strength of Sj will change according to the state of Si:{
Slj = Sli

θj = g(Dmi,j) · θi
(21)

Each superpixel in the given road image tries to occupy its differently-labeled neighbors iteratively
until all of the superpixels converge to a stable configuration. As shown in Figure 12, the road segment
is obtained after convergence.

(a) (b) (c)

Figure 12. Illustration of segmentation using GrowCut: (a) the proliferation of seeds; (b) the
convergence of the iteration; (c) the contour of the obtained road segments.

4. Refinement Using High-Level Information

Due to the complexity of the road scene, there still may exist some isolated superpixels or unsmooth
edges in the road segments obtained by GrowCut (see Figure 13). The initial road segments still need to
be refined by some high-level information. Olga Veksler [26] used the information called the “star shape
prior” for image segmentation. Similarly, He et al. [5] proposed to use the information of road shape
priors for the road segmentation by encoding the information into a graph-cut framework.
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(a) (b)

Figure 13. Problems with initial road segments obtained by GrowCut: (a) the convergence
of the iteration; (b) the contour of road segments.

Inspired by these previous works, we implement the conditional random field (CRF) [15] at the pixel
level to integrate some high-level information (e.g., shape prior, road vanishing point) to achieve a more
robust detection.

In this work, the high-level information integrated in the refinement is listed as follows:

• There exist no isolated area in the road segments nor background segments;
• In on-board road images, road segments are shrinking from bottom to top;
• The direction of the road is relevant to the position of the road vanishing point.

To build the CRF model at the pixel level, let li denote the label (road or background) of the pixel i
and l denote the set of all label assignments. The CRF energy to minimize can be written as:

E(l) =
∑
i∈V

φi(l̂i, li) + λ
∑
dij∈D

ψij(li, lj)+
∑
dij∈D

ϕ(li, lj) + w
∑
i∈V

ηi (22)

where φi(l̂i, li) is the unary term enforcing the label li (road or background) to take a value close to the
label l̂i obtained by GrowCut:

φi(l̂i, li) =

{
1 l̂i 6= li

0 l̂i = li
(23)

In Equation (22), ψij is the pairwise term penalizing the different assignments for neighboring pixels
i and j. Let

−→
Ci be the RGB color feature vector of the i-th pixel; ψij takes the form:

ψi(l̂i, li) =

{
e−β‖

−→
Ci−
−→
Cj‖

2 li 6= lj

0 li = lj
(24)

Inspired by [5], a second-order term ϕij is employed to incorporate the road shape prior into the CRF
framework. To describe the road shape prior, let h be the middle line of the road segment obtained by
GrowCut (see Figure 14a). Lp and Rp denote the left and right part of h, respectively. i is an arbitrary
pixel in the road segment. j1 . . . j8 are neighbors of i (see Figure 14b). From the high-level information,
the road shape implies that: 

∀i, (i ∈ Lp) ∧ (j3 ∈ Road)⇒ i ∈ Road
∀i, (j7 ∈ Lp) ∧ (i ∈ Road)⇒ j7 ∈ Road
∀i, (i ∈ Rp) ∧ (j7 ∈ Road)⇒ i ∈ Road
∀i, (j3 ∈ Rp) ∧ (i ∈ Road)⇒ j3 ∈ Road

(25)
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Figure 14. Illustration of the road shape prior: (a) a road segment with the middle line h; Lp
denotes the left part of h; Rp denotes the right part of h; (b) a standard eight-neighborhood
system with a center pixel i and its neighbors j1 . . . j8.

From Equation (25), the second-order term ϕij can be defined as:

ϕij(li, lj) =



∞ if {(li = 0 and lj = 1 and i ∈ Lp and j = j3)

or (li = 1 and lj = 0 and j ∈ Lp and j = j7)

or (li = 0 and lj = 1 and i ∈ Rp and j = j7)

or (li = 1 and lj = 0 and j ∈ Rp and j = j3)}
0 otherwise

(26)

In the CRF energy Equation (22), the last term ηi is used to incorporate road vanishing point
information. For the calculation of ηi, we first need to obtain a probability map according to the position
of the road vanishing point. LetDp andM respectively denote the length and the center of the projection
of the road segment onto the last line of the road image. V denotes the road vanishing point. The road
image is divided into several regions illustrated in Figure 15, where the length of BM and CM is one
fourth of that of Dp, and the length of AM and DM is three fourths of that of Dp. We define the
probability of the road pattern to be presented at each pixel in the region V BC is 100%. In V AB and
V CD, pixels closer to the center line VM have a higher probability of being road pixels. Let (xv, yv)
be the coordinates of the road vanishing point; ImH and ImW denote the height and width of the road
image, respectively; (xm, ImW ) denotes the coordinates of M . As shown in Figure 15, fL1(y), fL2(y),
fR1(y) and fR2(y) are respectively the linear functions of V B, V A, V C and V D. The linear functions
takes the form: 

fL1(y) = (y − yv) ·
xv − (xm − 0.5Dp)

yv − ImH
+ xv

fL2(y) = (y − yv) ·
xv − (xm − 0.75Dp)

yv − ImH
+ xv

fR1(y) = (y − yv) ·
xv − (xm + 0.5Dp)

yv − ImH
+ xv

fR2(y) = (y − yv) ·
xv − (xm + 0.75Dp)

yv − ImH
+ xv

(27)
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Figure 15. Image division for probability map calculation.

Let (xi, yi) be the coordinates of the i-th pixel in the image; the last term ηi of the CRF energy stands
for the probability obtained according to the position of the road vanishing point and can be obtained by
Equation (28). The probability map is illustrated in Figure 16.

ηi =



0 xi < fL2(yi)

xi − fL2(yi)
fL1(yi)− fL2(yi)

fL2(yi) ≤ xi < fL1(yi)

1 fL1(yi) ≤ xi ≤ fR1(yi)

xi − fR2(yi)

fR1(yi)− fR2(yi)
fR1(yi) < xi ≤ fR2(yi)

0 xi > fR2(yi)

(28)

Figure 16. Probability map obtained according to the position of the road vanishing point
(the brighter pixel stands for the higher probability).

The CRF energy E(l) in Equation (22) is minimized using Graph Cut [27]. The result of refinement
is illustrated in Figure 17, which manifests that the refinement using high-level information is effective
in road detection.
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(a) (b)

Figure 17. Comparison between the results of GrowCut and refinement: (a) the result of
GrowCut; (b) the result of refinement.

5. Results and Discussion

5.1. Common Performance

To validate the proposed road detection model, we evaluate the performance of the proposed approach
on the OffRoadScene database [28], which consists of 770 unstructured road images, which are captured
by driving on several challenging unstructured roads. The database contains various types of road scenes
with different texture, shadows, illuminations and weather conditions. All of the images are resized to
320× 240 for testing. The ground truth of the database is manually labeled. As most of the unstructured
roads have no clear borders, the database uses ambiguous regions to describe the road borders; as shown
in Figure 18, the ambiguous regions are unconcerned with respect to the experimental results.

Figure 18. Images with ground truths in the database. The first rows are original images;
the second rows are the corresponding ground truths; the road region is marked with the
green color; ambiguous regions of the left and right edges are marked with red and blue
colors, respectively.

As shown in Table 2, quantitative evaluations are provided using four types of pixel-wise measures:
precision (P), accuracy (A), false positive rate (FPR) and recall (R). In Table 2, TP and TN denote
the number of road pixels correctly detected and the background pixels correctly detected, respectively.
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FP and FN denote the number of background pixels incorrectly marked and the road pixels incorrectly
identified, respectively.

Table 2. Performance metric.

Pixel-Wise Measure Definition

Precision P = TP
TP+FP

Accuracy A = TP+TN
TP+FN+FP+TN

False Positive Rate FPR = FP
TN+FP

Recall R = TP
TP+FN

In the experiment, we compare our proposed method to two state-of-the-art road detection algorithms:
Kong et al.’s method [9] and Álvarez et al.’s method [10]. Quantitative results are shown in Table 3.

Table 3. Quantitative results on the OffRoadScene database.

Method P(%) A(%) FPR(%) R(%)

Kong et al.’s method [9] 98.1278 88.0466 2.1710 80.7174
Álvarez et al.’s method [10] 96.7897 84.9126 3.7357 76.4284

Our proposed method 98.4708 97.0281 2.1243 96.5481

5.2. Scale Sensitivity

In order to validate the sensitivity of algorithms to image scale, test images from the OffRoadScene
database are resized to different scales. Let m × n be the size of images in the database; s denotes the
scale factor, which resizes images to (m · s)× (n · s) (s ∈ [0, 1]). A Gaussian filter is applied to smooth
the image before resizing to a smaller scale. In the experiment, as shown in Figure 19, we resize images
to 10 scales by setting s from 0.1 to 1 using a step-size of 0.1.

The results of the scale sensitivity evaluation are shown in Figure 20, which demonstrates that the
precision, accuracy and recall of the proposed method are highest and and false positive rate is lowest
among the three methods. Moreover, the precision, accuracy, recall and false positive rate of the proposed
method are highly stable compared to the other two methods. This means that our proposed method is
less sensitive to image scale.

 

0.1s =
0.5s =

1s =

Figure 19. Illustration of the scale sensitivity evaluation.
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Figure 20. Results of the scale sensitivity evaluation: (a) precision; (b) accuracy; (c) false
positive rate; (d) recall.

5.3. Noise Sensitivity

There may exist noise in the images captured by the on-board camera in a real scene, which is a
challenge of vision-based road detection. In this work, Gaussian noise is added to images to evaluate the
noise sensitivities of the algorithms:

Î(i, j, k) = I(i, j, k) + n(i, j, k) (29)

where Î(i, j, k) denotes that the noise with value n(i, j, k) is added to the k-th channel of the pixel
located in row i and column j of the image. n(i, j, k) takes the form:

p(x) =
1

σ
√
2π
e−

x2

2σ2 (30)

where σ denotes variance. As shown in Figure 21, we add noise with variance σ ranging from 0.05 to
0.4 to validate the algorithms.

The results of the noise sensitivity evaluation are shown in Figure 22, which shows that the precision
and accuracy of the proposed method are highest and the false positive rate is lowest among the three
methods in most noise conditions. Besides, the precision, accuracy, recall and false positive rate of the
proposed method are highly robust compared to the other two methods, which implies that the proposed
method is less sensitive to noise.
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Figure 21. Illustration of the noise sensitivity evaluation.
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Figure 22. Results of the noise sensitivity evaluation: (a) precision; (b) accuracy; (c) false
positive rate; (d) recall.

5.4. Discussion

As shown in Table 2, Figures 20 and 22, our proposed method performs much better than other
methods. Some qualitative results can be seen in Figure 23, where Kong et al.’s method [9] is based on
the road vanishing point. From the experiments, we can see that the precision of Kong et al.’s method is
relatively high, and the false positive rate is relatively low. Besides, the method is less sensitive to scale
and noise. This is due to the fact that texture-based vanishing point detection mainly depends on the
edges of the main lanes instead of the details in road images, and the changes of scale and noise mainly
affect the details of road images, while the edges of the main lanes are kept. However, the method may
not fit well when the road boundaries are curved (see Figure 23, Rows 1 and 8).
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Figure 23. Qualitative comparisons between different methods. Road and background
regions in Columns 3–5 are marked with white and black, respectively.

Álvarez et al.’s method [10] is based on the illuminant invariance feature, which is robust in shadowy
and varying illumination conditions. The method is able to fit the road well when the road boundaries are
curved (see Figure 23, Rows 1 and 8). However, it relies on the details of road images, so it has relatively
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high sensitivities to scale and noise compared to Kong et al.’s method [9] and our proposed method. In
addition, Álvarez et al.’s method would be suboptimal when the features of the road and background are
too similar (see Figure 23, Rows 3, 4 and 7) or some parts of the road are quite different from other road
regions (see Figure 23, Rows 2 and 8).

Our proposed method includes both advantages of Kong et al.’s [9] and Álvarez et al.’s method [10].
The method exploits the road vanishing point for seed selection and high-level information-based
refinement, which make it depend less on the details of road images; thus, the method has low
sensitivities to scale and noise. Moreover, GrowCut makes it possible to detect road regions when
features of the road and background are quite similar. As shown in Figure 23, Rows 4 and 7, the
proliferation of seeds will stop near the road boundaries.

6. Conclusions and Future Works

This paper presents a hierarchical road detection approach using a vision sensor. The major
contributions of this work include: (1) an MPGA-based method proposed for efficient road vanishing
point detection; (2) a road vanishing point and clustering-based strategy presented for unsupervised seed
selection; (3) a GrowCut-based approach applied at the superpixel level introduced to obtain the initial
road segment; and (4) a high level information-based method proposed to refine the road segment by
using the CRF framework. Experimental results of the common performance, scale sensitivity and noise
sensitivity evaluation validate the effectiveness and robustness of our proposed approach.

Our future work will focus on applying the proposed method to an SoC (system-on-a-chip) for some
robot navigation applications, such as map building, path planning, etc.
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