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Abstract: Indoor localization is a significant research area in wireless sensor networks
(WSNs). Generally, the nodes of WSNs are deployed in the same plane, i.e., the floor, as
the target to be positioned, which causes the sensing signal to be influenced or even blocked
by unpredictable obstacles, like furniture. However, a 3D system, like Cricket, can reduce
the negative impact of obstacles to the maximum extent and guarantee the sensing signal
transmission by using the line of sight (LOS). However, most of the traditional localization
methods are not available for the new deployment mode. In this paper, we propose the
self-localization of beacons method based on the Cayley–Menger determinant, which can
determine the positions of beacons stuck in the ceiling; and differential sensitivity analysis
(DSA) is also applied to eliminate measurement errors in measurement data fusion. Then,
the calibration of beacons scheme is proposed to further refine the locations of beacons by
the mobile robot. According to the robot’s motion model based on dead reckoning, which
is the process of determining one’s current position, we employ the H∞ filter and the strong
tracking filter (STF) to calibrate the rough locations, respectively. Lastly, the optimal node
selection scheme based on geometric dilution precision (GDOP) is presented here, which is
able to pick the group of beacons with the minimum GDOP from all of the beacons. Then,
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we propose the GDOP-based weighting estimation method (GWEM) to associate redundant
information with the position of the target. To verify the proposed methods in the paper, we
design and conduct a simulation and an experiment in an indoor setting. Compared to EKF
and the H∞ filter, the adopted STF method can more effectively calibrate the locations of
beacons; GWEM can provide centimeter-level precision in 3D environments by using the
combination of beacons that minimizes GDOP.

Keywords: WSNs; three-dimensional deployment; calibration; localization

1. Introduction

As people’s requirements for life comfort and production security advance, the demand and extent
of applications for indoor localization service (ILS) increases drastically. ILS can be applied to several
main areas, such as medical monitoring, underground personnel positioning, navigation in industrial
production workshop and even virtual reality in the film industry [1]. All of the application settings have
the following common trait: the GPS receiver is deployed in the near-surface or indoor environment,
even basements, which causes the GPS signal to attenuate and the GPS-based positioning system to fail.
Thus, there is great demand for the application of positioning in the aforementioned settings.

Due to many features, such as the incomplete dependence of infrastructures, low energy consumption,
relatively low cost, rapid deployment, high scalability, dense node distribution, the ability to maintain
normal performance in harsh and special environments, etc., the research and application of ILS stands
out among the traditional location acquiring manners [2]. The location information is also of vital
importance to the application of WSNs to monitoring. Node localization is a prerequisite and oftentimes
a problem for most WSNs and also is the premise and basis of the application of WSNs to target tracking,
recognition, monitoring, and so on. In short, it is playing a huge role in the practicability of WSNs.

So far, among a mass of localization research for WSNs, most studies are on 2D positioning systems,
whereas studies on 3D positioning are less frequent, but increasingly popular [3,4]. In practical
applications, the sensor nodes, including beacons, are usually deployed in 3D space, not in the same
horizontal plane, because the indoor items and mobile people could absorb, reflect or even block the
signal transmission between beacons and nodes in most indoor layouts. Most traditional 2D localization
strategies are not valid for 3D deployment. Therefore, we propose to investigate localization technology
to determine the locations of nodes that are three-dimensionally deployed in indoor settings. Compared
to 2D deployment, 3D deployment has more advantages in practical significance and application
value [5–7]. In the paper, we introduce an overview of a localization system that consists of sensor
nodes three-dimensionally deployed in indoor settings. Since only some beacons’ locations are known
when they are stuck in the ceiling, the self-localization scheme for beacons is studied to determine
the locations of all beacons by measuring the distances between beacons and the static node on the
floor. To ensure the localization accuracy of beacons, a calibration algorithm is proposed to refine the
location coordinates by means of a mobile robot, the details of which are shown in Section 5. Lastly, we
present a geometric dilution precision (GDOP)-based optimal node selection scheme to pick the group
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of nodes with the minimum GDOP to position the target. To improve the localization accuracy, the
GDOP-based weighting estimation method (GWEM) is proposed to fuse more information from other
nodes. The above research is a completely theoretical solution for localization in 3D indoor settings, and
its feasibility and validity are evaluated by simulation and experiment, shown in Section 7.

2. Related Work

WSN-based positioning systems in three-dimensional space have been investigated for a while. Some
achievements of this prior research are typical and practical for experiments. The positioning system,
called SpotON, using an RF electronic label was designed and developed by Jeffrey Hightower et al. [8].
The whole of the localization zones is covered by multiple base stations, and the distances between
unknown moving nodes and base stations are estimated by the RSSI signal attenuation model. To
calculate the location coordinates, trilateration is adopted, and the hill-climbing algorithm is used to
improve the estimation accuracy.

The Bat positioning system exploited by the AT&T Institution is composed of a recognizer, a receiver
and a surveillance center [9]. As the recognizer receives the signal given by the surveillance center, it
will respond with an ultrasonic pulse. The receiver receives an RF signal from the surveillance center and
an ultrasonic pulse from the recognizer separately and obtains the time difference of arrival (TDOA) to
calculate the distances between any two of the recognizers. Then, the data are reported to the surveillance
center through networks. The TDOA measurement based on the ultrasonic signal can realize the spatial
localization and calculate the coordinates of the unknown nodes by using trilateration or a multilateral
algorithm to improve the accuracy in positioning. However, the Bat system is based on wired networks,
so the large-scale deployment could be restricted by costs.

The Cricket Positioning System developed by the MIT Artificial Intelligence Lab, specifically aimed
at indoor environment applications [10,11], consists of beacons permanently placed in the buildings,
nodes equipped on the target and a central server. The ID of every beacon is unique in order to identify
its position coordinates and to enable the broadcasting of an RF signal with its self-location information.
The objective nodes launch an ultrasonic signal in response to the RF signal. After obtaining the response
from beacons, the distances between the beacons are able to be calculated by the TDOA method. The
position information can be figured out based on the relevant localization algorithm.

The SUPPER-ID(S-ID) system [12] uses infrared distance measurements to assist ultrasonic distance
measurements and to realize position estimation by means of the trilateral positioning principle. The
system can solve the deficiencies caused by employing ultrasonic wave or infrared distance measurement
independently and extends the coverage range of a single node so as to improve localization accuracy.

All of the above systems are typical three-dimensional positioning systems. Though they can
guarantee the proper accuracy of three-dimensional localization, each of them has weaknesses, such
as relatively small coverage area, high cost and the tedious manual deployment of large quantities
of beacons, which result in the unavailability of self-localization for nodes. However, the distance
measurement manners and the hardware system design for measurements are still significant to the
three-dimensional positioning research based on WSNs.
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In addition, in terms of the two-dimensional WSN positioning algorithm research, many methods
have been proposed, which can be classified into two main clusters [13]: range-based and range-free
localization algorithms. The former estimates the node’s location by measuring the distance and
angle information between each node. The latter realizes localization depending on the network
connectivity. The range-based algorithm mainly depends on the following measurements: received
signal strength (RSS) [14], angle of arrival (AOA) [15], time of arrival (TOA) [16] and time difference
of arrival (TDOA) [17]. The range-free technique algorithm mainly includes: a centroid localization
algorithm [18], convex programming [19], DV-hop [20], DV-distance [21], MDS-MAP [22], APIT [23],
and so on.

The investigation of WSN positioning techniques in the two-dimensional space is relatively mature.
However, the majority of the algorithms cannot fit the localization well in 3D settings. At present,
the localization study with respect to 3D scene primarily modifies the classical two-dimensional ones
to extend to one more dimension. The main idea is to use spatial geometrical relations, such as
spherical coordinates, hyperboloid coordinates, sphere segmentation and cube segmentation, to divide
the scene into possible spaces where unknown nodes stay. The centroid of the possible space is the
estimation of the unknown node’s coordinates. Quadrilateration and maximum likelihood estimation
can also be utilized to determine the coordinates of unknown nodes directly. The literature [24] proposes
a 3D self-localization method based on WSNs, named the APIT-3D algorithm, which improves the
APIT algorithm to adapt to 3D space. The work in [25] presents a distributed three-dimensional
centroid localization algorithm on the basis of the centroid algorithm. The work in [26] advances three
two-dimensional positioning algorithms, respectively, and comes up with the 3D-Dv-hop, 3D-centroid
and 3D-Dv-distance algorithms [27]. The literature [28] proposes the 3D-MDS algorithm after extending
the MDS-MAP to 3D and presents the self-localization method for nodes of WSNs, solving the
self-localization problem of the unattended nodes located at unknown places [29].

In 3D Wi-Fi-based localization, most Wi-Fi-based solutions require a process of site survey, where
Wi-Fi signatures of an area of interest are annotated with their real recorded locations [30]. The Wi-Fi
signatures, i.e., the fingerprint, commonly consist of RSSIs from different APs (access points) in a
database after a site survey. When the current fingerprint matches one in the database, the location of
interest can be located by the position information corresponding to the fingerprint [31]. Generally the
Wi-Fi-based localization accuracy is only able to reach the meter level, mainly because RSSI is highly
vulnerable to the effects of furniture and other objects in a room. The density of APs is also sparse, which
does not ensure high granularity of localization information [32]. However, in 3D WSN localization, the
distance between two nodes can be measured by TOA or TDOA, instead of RSSI, and the density of
nodes can be customized according to the application requirements. Therefore, WSN-based localization
can reach centimeter level precision in indoor settings. In addition, a site survey, which is necessary
for Wi-Fi-based localization, is time and labor intensive. In short, WSNs have much higher localization
accuracy than Wi-Fi in indoor circumstances.
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3. System Overview

All of the following research is studied in indoor environments. Compared to outdoor WSNs, indoor
WSNs are more likely to be customized for the particular application, like locating or tracking an object
of interest. In indoor scenes, the primary consideration is how to deploy sensor nodes in 3D space to
guarantee accurate communication among nodes. Inspired by ancient navigation, we stick the sensor
nodes to the ceiling of the room, like the Sun or constellations, which ancient sailors observed using
a sextant or some other instruments to locate the boat. The deployment is shown in Figure 1, where
the nodes on the ceiling are beacons, and the node equipped with the moving target is the listener.
Furthermore, the Cricket system is employed in a real experiment, and the deployment strategy is capable
of ensuring ultrasonic transmission between any two nodes that are in the line of sight (LOS) to the
greatest extent.

Figure 1. The deployment of the system.

L
node A node B

receiver C receiver D

H 

Figure 2. The side view of the node layout.

The layout of beacons on the ceiling should be discussed in terms of the number and locations of
beacons. Since the transmitting angle of an ultrasonic sensor equipped in the node has an effective
transmitting range, the layout of beacons should guarantee that the joint transmitting range is able to
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cover the monitoring field as much as possible. In the real experiment, we deploy five beacons on the
ceiling, which are shown in Figure 1. According to the empirical measurement, the effective transmitting
range of an ultrasonic sensor is a cone with about a 60-degree cone angle. Assuming half of the cone
angle is θ, tanθ is approximate to 2/3 for simplifying the calculation. The side view of the node layout
is shown in Figure 2, where tanθ = L/H , and H = 209.0 cm and L = 139.3 cm in our experiment.

For a bigger ultrasonic coverage range, the distance between any two of five beacons should be
less than L. Through practical measurement, the 3D coordinates of the five beacons are (0, 0, 209),
(80, 0, 209), (0, 80, 209), (80, 80, 209) and (40, 40, 209), respectively, and the maximum distance
between nodes is 113 cm, which fits the layout requirement.

Based on the experimental platform shown in Figure 1, we evaluate our methods mentioned in the
following sections to locate and track the unknown target. After adequate simulation and experiments,
we are able to effectively shrink the localization error into centimeter-level precision, and the accuracy
can already satisfy most indoor localization-oriented applications.

4. The Self-Localization of Beacons

Many self-localization methods have been proposed to determine nodes’ coordinates by varying
researchers. The majority of existing works is designed for specific application backgrounds; thus,
we present here a self-localization scheme suitable for an indoor Cricket-like system, which deploys all
nodes, including beacons, onto the ceiling. As described in the previous section, the beacons and the
target are not in the same plane. Based on the layout of beacons, it is known that all of the beacons should
be in the same plane, which means their z-axes are also identical, meanwhile the ground on which targets
move should be parallel to the ceiling on which the nodes are mounted. Under these assumptions, the
goal of the self-localization is to determine the accurate locations of the beacons.

Aimed at the research background, we apply the Cayley–Menger determinant to calculate the
coordinates of beacons. The Cayley–Menger determinant is always used in distance geometry for
determining the volume of a triangular pyramid based on the distances between any two of four
vertices. For instance, there is a triangular pyramid with four vertices p1, p2, p3 and p4, and the relation
between the volume of the triangular pyramid and its Cayley–Menger determinant can be formulated
as 36V 2 = D(p1, p2, p3, p4), where V is the volume of the triangular pyramid, and D(·) indicates the
Cayley–Menger determinant, the expression of which is denoted as:

D(p1, . . . , pn, q1, . . . , qn) = 2(−1

2
)n

∣∣∣∣∣∣∣∣∣∣
0 1 · · · 1

1 D(p1, q1) · · · D(p1, qn)
...

... . . . ...
1 D(pn, q1) · · · D(pn, qn)

∣∣∣∣∣∣∣∣∣∣
(1)

where D(pi, qj) is the square of the Euclidean distance between pi and qj; while D(p1, p2, p3, p4) is
the short form of D(p1, p2, p3, p4, q1, q2, q3, q4) (pi = qj, i = j = 1, 2, 3, 4). Thus, the linear relation
between volume and edge lengths, or rather coordinates of vertices, of the triangular pyramid is built by
the Cayley–Menger determinant.
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Figure 3. The illustration of the 3D self-localization system.

The illustration of the 3D self-localization system is shown in Figure 3, where the circle points
Ni (i = 1, 2, 3) refer to beacons and the triangle points Ni (i = 4, . . . , 9) refer to the locations through
which the target moves. Using ultrasound measurements, the set of distances Dj = {d1j, d2j, d3j}
(j = 4, . . . , 9) can be acquired as targets move via the trajectory from N4 to N9. Due to the assumption
that the ceiling is parallel to the ground, the volumes V123j (j = 4, . . . , 9) of the triangular pyramids,
one of which consists of three beacons, and one target measurement location are identical. According to
Equation (1), we can obtain the following result:

288V 2
123j =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 d212 d213 d21j
1 d212 0 d223 d22j
1 d213 d223 0 d23j
1 d21j d22j d23j 0

∣∣∣∣∣∣∣∣∣∣∣∣
(2)

where dij is the Euclidean distance between Ni and Nj .
After expanding the determinant in Equation (2), an equation set can be expressed as:

AX = B (3)

where:

A =


d234 d224 d214 D324D214 −D314D214 −1

d235 d225 d215 D325D215 −D315D215 −1
...

...
...

...
...

...
d239 d229 d219 D329D219 −D319D219 −1



X =
1

d212



d212(d
2
13 + d223 − d212)

d213(d
2
12 + d223 − d213)

d223(d
2
12 + d213 − d223)

d213
d223

144V 2
t + d212d

2
13d

2
23


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B =


D314D324

D315D325

...
D319D329


Dijk = d2ik − d2jk (i, j = 1, 2, 3; k = 4, 5, 6, . . . , 9)

All of the elements of A and B are measurable by time of arrival (TOA), which has centimeter-level
accuracy in indoor environments. The vector of X is composed of d12, d13 and d23, which are unknown
variables that need to be determined. Let A′ and B′ be the practical measurement matrices of A and B,
which involve measurement errors. Then, the least squares estimator of X is as follows:

X̂LS = (A′T · A′)−1A′T ·B′ (4)

where X̂LS is a five-dimensional vector in the example, which is indicated as [X1, X2, X3, X4, X5]. Thus:

d12 =
1√
2

√
X2

X4

+
X3

X5

d13 =
1√
2

√
X1 +

X3

X5

d23 =
1√
2

√
X1 +

X2

X4

(5)

We can estimate the coordinates of beacons by Equation (5) as:

N1 = (0, 0)

N2 = (d12, 0)

N3 =

(
d212 + d213 − d223

2d12
,±

√
d213 −

(
d212 + d213 − d223

2d12

)) (6)

When the number of beacons is over three, any three of them could determine a coordinate system,
and all of the varying coordinate systems can be unified by corresponding transformation matrices, which
can be easily obtained. Given the number of beacons is five, N4 and N5 are as follow:

N4 =

(
d212 + d214 − d224

2d12
,±

√
d214 −

(
d212 + d214 − d224

2d12

))

N5 =

(
d212 + d215 − d225

2d12
,±

√
d215 −

(
d212 + d215 − d225

2d12

)) (7)

Since measurement errors always have negative influences on estimated consequences, differential
sensitivity analysis (DSA) is employed to eliminate the influence in this paper. DSA is a method to
approximate the function’s variance by first order Taylor series for estimating the function deviation
derived from arguments with noise.

The vector Y = [y1, . . . , yl] includes l variables, which are yu = gu(Z) (u = 1, . . . , l). Suppose that
there is a set {z1, z2, . . . , zp} ∈ Z in which every element has noise and follows a normal distribution of
mean z̄k and variance σ2

zk
. Then, the covariance Cov(Y ) can be expressed as:

Cov(Y ) = RCov(Z)RT (8)
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where Cov(·) denotes the covariance function and R is the Jacobian matrix G = {g1, g2, . . . , gl} of Z.
Based on DSA, Equation (3) can be converted to:

A′X +H = B′ (9)

where H is the residual error vector. Additionally, the covariance matrix Cov(H) is able to be
presented as:

Cov(H) = Cov(B′ − A′X) = RCov(DM)RT = σ2
MRR

T (10)

where DM refers to the set of all of the measured distances and R refers to the Jacobian matrix of
G = B − AX with respect to DM . To simplify this case, we assume that all of the measured distances
have the same variance σ2

M .
To minimize the sum of square of weighted errors:

JW (x̂) = (B′ − A′X̂)TW (B′ − A′X̂)

where W = diag(w1, w2, · · · , wn), we can acquire the weighted least squares (WLS) estimation
X̂WLS as:

X̂WLS =
(
A′TCov(H)−1A′

)−1
A′TCov(H)−1B′ (11)

Note that the Cov(H) could be calculated by X with noise, thus X will be replaced by X̂LS in the
real calculation.

5. The Calibration of Beacons

5.1. Dead Reckoning

The previous section provided a feasible self-localization method that can position unknown beacons
by measuring the distances between beacons and the target. Though the measurement error has been
taken into account in the method, it is necessary to calibrate the position of the beacons. In the present
paper, we utilized a moving robot with odometers to calibrate the locations of beacons as the robot is
moving in the area covered by WSNs.

The moving robot UP-voyager II, which is used as the target in our experiment, is driven by
the differential actuator mode. This means that there are only two motor-driven wheels with
optical-electricity encoders on the robot, and the moving trajectory of the robot can be controlled by
forwarding and reversing the wheels. To build the robot’s motion model, we assume that the robot is
regarded as a mass point, and it merely moves on a 2D plane. The robot’s pose includes its position and
orientation and can be expressed as the vector qk = (xk, yk, θk)

T , where (xk, yk) indicates the robot’s
coordinate at time k, and θk indicates the robot’s orientation, i.e., the angle between the velocity direction
and positive x-axis, at time k. Let the radii of the two wheels be Rl and Rr, respectively, and the spacing
distance of them be a. The optical-electricity encoder has P slits/rad and outputs N impulses in unit
interval ∆t. Thus, the rotation distances of the two wheels are presented respectively as:

∆dl = 2 ∗ N
P
∗ π ∗Rl

∆dr = 2 ∗ N
P
∗ π ∗Rr

(12)
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Based on dead reckoning, the illustration of the robot moving from the present state to the next state is
shown in Figure 4, where qk+1 = (xk+1, yk+1, θk+1)

T refers to the robot’s pose at the next time step k+1,
∆Dk = (∆dl + ∆dr)/2 refers to the moving distance during unit time ∆t and ∆θk = (∆dl − ∆dr)/a

refers to the variation of the robot’s orientation. Let uk = [∆Dk,∆θk]
T be input information at time step

k; then, the motion model of the robot can be expressed as:

qk+1 = f(qk, uk) + wk (13)

where:

f(qk, uk) =

xk + ∆Dkcos(θk + ∆θk/2)

yk + ∆Dksin(θk + ∆θk/2)

θk + ∆θk


and wk is the noise of the encoder. Due to the assumption that the robot simply moves on a 2D plane,
the Jacobian matrix of f(qk, uk) with respect to qk is shown as:

Ak+1 =
∂f

∂q
|q=qk =

1 0 −∆Dksin(θk + ∆θ/2)

0 1 ∆Dkcos(θk + ∆θ/2)

0 0 1

 (14)

If the sampling interval is small enough, the robot’s motion model, shown as Equation (13), could
match the real trajectory extremely well.

RY
gX



'



gX

RY

kD
1 1 1 1( , , )k k k kq x y    

( , , )k k k kq x y 
x

y

Figure 4. The motion model of the moving robot.

The Cricket System

We suppose that the coordinates of beacon i are (bxi, byi, bzi), and the state of the robot is qk+1; thus,
the distance between them at time step k + 1 is:

dk+1 =
√

(xk+1 − bxi)2 + (yk+1 − byi)2 + (zk+1 − bzi)2 + vk

where vk is the measurement noise being subject to a normal distribution with mean zero.
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How the Cricket system works is briefly illustrated in Figure 5. For calibrating beacons, the state qk
should be extended to qk = [xk, yk, θk, bx1, by1, bz1, . . . , bxn, byn, bzn]T , and qk+1 can be derived from qk

based on Equation (13), which is shown as:

qk+1 =



xk + ∆Dkcos(θk + ∆θ/2)

yk + ∆Dksin(θk + ∆θ/2)

θk + ∆θk

bx1
...
bzn


+ wk (15)

To simplify the calculation, Equation (15) can be linearized to be:

qk+1 = Aqk + wk

dk+1 = Cqk+1 + vk
(16)

where A and C are the Jacobian matrices of state matrix and measurement matrix, respectively, wk and
vk follow a normal distribution with the same mean zero and different variances, Q and R, respectively.

 

 

 

(x , y , )k k k

1 1 1(x , y , )k k k  

kD

k

1 1 1( , , )x y zb b b

2 2 2( , , )x y zb b b

3 3 3( , , )x y zb b b

 

Figure 5. The Cricket system.

5.2. Location Optimization Based on Filter Methods

The traditional filter methods, like the Kalman filter, require accurate statistical features of a system’s
model and noise to be known, so does the extended Kalman filter (EKF). The EKF, the nonlinear
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version of the Kalman filter, linearizes nonlinear functions by first order Taylor series to approximate
the nonlinear system [33]. However, the noise of the model and measurement cannot be avoided in a
practical experiment. The H∞ filter is the filter method proposed for the system with an uncertain model
and noise distribution, and it is verified to have robust performance in such a case. The H∞ filter is
also called the minimax filter, which can minimize the maximum estimation error; thus, it is allowed
to estimate a state with unknown or hardly determinate noise features [34]. The H∞ filter just assumes
that the noise is the energy-limited signal, which accords more perfectly with the practical application
situation. The literature [35] concludes that compared to the Kalman filter, the H∞ filter is less sensitive
to the change of variances.

The state and measurement model are presented as Equation (16). Let q̂k be the system state estimator;
the goal of the H∞ filter is to satisfy the following condition:

min
q̂k

max
wk,vk

J (17)

where J is the assessment function for the filter performance. Considering the worst situation of wk and
vk, i.e., the worst influence on the estimator from the noise, the function of J can be defined as:

J =

∑N−1
k=0 ‖qk − q̂k‖2Q∑N−1

k=0 ‖wk‖2W +
∑N−1

k=0 ‖vk‖2V
(18)

where W > 0, V < 0 and Q > 0 are weighted matrices.
To obtain the optimal estimator q̂k, J should meet the condition of J < 1/γ, and γ is the scalar

designated by users, which can be regarded as the presupposed noise attenuation.
The recursion process of the H∞ filter is as follows:

Lk = (I − γMPk + CTR−1CPk)
−1

Kk = APkLkC
TR−1

q̂k+1 = q̂k+1,odo +Kk(dk+1 − Cq̂k+1,odo)

Pk+1 = APkLkA
T +Q

(19)

where q̂k+1,odo is the optimal estimator based on the odometer data at the last time step, Kk is the gain
factor of the filter and γM is the parameter of the filter. According to Equation (19), it is easy to find that
the H∞ filter is similar to the Kalman filter to some extent. When γ → 0, the H∞ filter is an extremely
close approximation to the Kalman filter, with the minimum variance for the estimator; when γ → ∞,
the H∞ filter has the most robustness. Therefore, appropriately choosing the value of γ facilitates a
tradeoff between the robustness of the filter system and estimation variance.

Besides the H∞ filter, we utilize another filter named the strong tracking filter (STF) to refine
estimators, because it is the improved version of the extended Kalman filter to solve the filter problem of
a nonlinear system. Compared to the Kalman filter, STF is one of the improved Kalman filter methods:
it orthogonalizes the residual error series at every step to extract the useful information from the residual
error to estimate the current state [36]. Thus, STF has more robust performance against the mismatch of
the model’s parameters than the Kalman filter.

To summarize, the key point of STF is to select an appropriate time-variant gain matrix K(k + 1) to
make the following equation true.

E[γ(k + 1 + j)γT (K + 1)] = 0 (k = 0, 1, 2, . . . , j = 1, 2, 3, . . .) (20)
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where γ(k+1) is the residual error vector of the measurement matrix, and the residual error sequences in
varying time steps should maintain an orthogonality relationship, which is formulated in Equation (20).

When the state model exactly matches the real situation, the residual error of the output of the Kalman
filter is a series of non-autocorrelation white noise, which satisfies Equation (20). However, under the
influence of the model’s uncertainty, the disturbances on the mean and amplitude of the outputs of the
residual error sequences are inevitable; the gain matrix needs to be modified to make Equation (20) still
true. Forcing STF to maintain tracking of the real system state is the attribute of STF.

We evaluate the H∞ and STF algorithms via simulation, and the details are shown in the following
section. For simplicity, we use HF to stand for the H∞ filter from now on.

6. The Localization of Targets

The last two sections provided the corresponding methods to locate and calibrate the beacons’
positions. To realize the localization of targets, we propose to respectively apply the Gauss–Newton
iterative method and the Cayley–Menger determinant. As only three beacons receive the returned
ultrasonic signal, an equation set F (X) of three equations can be established by signal measurements, but
three equations are not enough to limit any non-linear part. Thus, the Gauss–Newton iterative method and
the Cayley–Menger determinant are mainly used to dispel the non-linear part for estimating the solution
of equations, i.e., the location of the target. The two methods will be evaluated via the experiment in the
following section.

This section principally gives the optimal node selection scheme based on geometric dilution
precision (GDOP). In GPS, the localization accuracy could be influenced by the deployment of beacons
and the target, and the same phenomenon also happens in the localization of WSNs [37]. Since GDOP
can reflect the scaling degree of measurement error, the optimal nodes are the ones that have the
minimum GDOP. Based on the definition, GDOP is the amplification coefficient from measurement
error to localization error, which is as:

GDOP =

√
E[∆x2] + E[∆y2] + E[∆z2]

E[∆ρ2]

=

√
σ2
x + σ2

y + σ2
z

σ2
ρ

(21)

where σρ is the vector of measurement error and σX = [σx, σy, σz] is the vector of localization error.
We suppose that the variances of all of the measurement distances of beacons are identical, σ2

ρ, then the
covariance of σX will be obtained:

C(σX) =

σ2
x

σ2
y

σ2
z

 = σ2
ρ(J

TJ)−1 (22)

where J is the Jacobian matrix of F (X). Let G be:

G = (JTJ)−1 =

G11 G12 G13

G21 G22 G23

G31 G32 G33

 (23)
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The GDOP in the localization system can be derived by Equations (22) and (23) as:

GDOP =
√
trace(G) =

√
G11 +G22 +G33 (24)

Generally, the number of beacons is greater than three, so a method of picking the combination of
three beacons that minimizes GDOP needs to be discussed. Intuitively, the number of combinations is
C3
N , as there are N beacons deployed. The strategy is to find the combination that has the minimum

GDOP in all. Based on the strategy, we calculate the GDOP of all of the beacons, which is shown
as follows.

The GDOPs of every node are plotted in Figure 6a, and the corresponding contour line is shown in
Figure 6b. According to the two figures, it can be concluded that picking beacons in the middle of the
deployment could provide a more accurate location of the target than others.
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Figure 6. Geometric dilution precision (GDOP) distribution. (a) GDOP of the axis;
(b) contour line of GDOP.

In practice, we can also apply the measurement information from other beacons besides the three
picked ones, which means more information will be merged into the three picked ones. Thus, the
GDOP-based weighting estimation method (GWEM) is proposed in the paper to realize information
fusion. For simplicity and clearness, the method will be introduced by steps.

• Assume that there are N beacons in the experiment, which can compose M combinations where
M =

∑
Ci
N (i = 3), and all of the combinations’ index set can be expressed as Sk|k = 1, 2, . . . ,M

• To every combination, employ the Cayley–Menger determinant to estimate the location of the
target and obtain the estimated consequence X̂k, then the corresponding GDOP (X̂k, Sk) can
be derived.
• Weight the sum of the consequences of every combination as the following equation:

X̂ =

∑M
k=1 X̂k(GDOP

2(X̂k, Sk))
−1∑M

k=1(GDOP
2(X̂k, Sk))−1

(25)



Sensors 2015, 15 29675

7. Experiment

To evaluate the proposed algorithms, we design and conduct a series of simulations and experiments,
and the setting of the experiment is described as the statement in the System Overview section. Firstly,
we design the simulation to verify the algorithm for the self-localization of beacons, the configuration of
which is illustrated in Figure 7. In the figure, we assume that there are three beacons represented by a
blue circle on the ceiling, the coordinates of which are [0, 0, 0], [3, 0, 0] and [1.5, 2.6, 0] respectively.
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Figure 7. The simulation configuration.

In the meantime, the mobile target moves along the spiral trajectory, which can be represented as:

l = R0 +
3(RM −R0)

πm
θ (26)

where R0 = 1.5 m, RM = 4 m and m = 9. The spiral trajectory can guarantee that the
measurement information is sufficient for algorithm processing, and the singular point could be avoided
efficiently [38]. The measurement points, shown by green stars, are deployed along the trajectory every
60 degrees, and it is assumed that the measurement noise is also white noise with standard variance
σ = 0.02 m. The red cross refers to the position estimated by the proposed self-localization algorithm.

To further analyze the adaptiveness and robustness of the algorithm, the following simulation is
conducted. For surveying the impact of the radius of the spiral trajectory on localization accuracy, the
varying original radii are picked for the simulation, and the corresponding average RMSE of localization
by 100 times of simulation is represented in Figure 8a. In Figure 8a, it is easy to find out that the optimal
original radius is 1 m regardless of LS or WLS, and the WLS method is more robust than the LS with
the variation of the radius.
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Figure 8. The illustration of impacts. (a) The impact of the radius of the spiral trajectory;
(b) the impact of the number of measurement points; (c) the impact of environment noise.

In addition, the impact of the number of measurement points on localization accuracy is shown in
Figure 8b. Obviously, following the increase of the number, WLS has a better performance than LS.
When the number is over 12, the trend of RMSE by LS begins to flatten, while the one of WLS still
descends, which demonstrates that WLS can apply redundant measurements more efficiently than LS.

Then, the impact of environment noise on localization accuracy is considered and shown in Figure 8c.
In Figure 8c, the RMSE increases with an approximate linear growth as the standard deviation of
environment noise rises, and the slope of the approximate linear relationship is about 1.4. Under the
same conditions of simulation, WLS has 10% higher localization accuracy than LS.

Secondly, we redeploy up to five beacons and redesign the trajectory of the mobile target in the
simulation to evaluate the calibration effect by the proposed scheme. The five beacons are deployed
at the coordinates of [0, 3, 3], [−2, 1, 3], [2, 1, 3], [−2, 5, 3] and [2, 5, 3], respectively. Let the sampling
interval be 1 s, the standard deviation of the noise of the distance measurement be 3 cm and the standard
deviation of the noise of the odometer be 1 cm. The starting point of the target is at [−3, 0, 0], and the
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target moves along a square with a 6-m side length. Under the above conditions, the EKF, HF and STF
algorithms are applied to track the trajectory, and the result of tracking is shown in Figure 9.

x/m
-4 -3 -2 -1 0 1 2 3 4

y/
m

-1

0

1

2

3

4

5

6

7

EKF
HF
STF
the trajectory

(a)

x/m
-3.2 -3.15 -3.1 -3.05 -3 -2.95 -2.9

y/
m

0

1

2

3

4

5

6 EKF
HF
STF
the trajectory

(b)

Figure 9. The tracking by filters. (a) The performance comparison; (b) the partial
enlarged view.

In Figure 9, the three filters all provide highly accurate tracking results. For surveying the
consequences subtly, the left part of Figure 9a is enlarged to Figure 9b, and in Figure 9b, it is shown
that HF and STF have a better performance than EKF. The average localization error of EKF is
[0.0336 m, 0.0644 m, 0.0244 (rad)], the one of HF is [0.0287 m, 0.0612 m, 0.0233 (rad)] and the one
of STF is [0.0338 m, 0.0669 m, 0.0221 (rad)]. Following the number of sampling increases, the RMSEs
of the three approaches obviously have a downward trend, which is shown in Figure 10.

In Figure 10, it is presented that the RMSE of STF falls with the fastest speed, and it is the first
one to reach a stable state in the three schemes. Thus, STF can satisfy tracking in the shortest possible
time, while HF has the best overall effect compared to the two others and demonstrates the excellent
adaptiveness of the models.

For investigating the robustness of the three schemes, we artificially add the disturbance, which is
a π/4 orientation error, at the 90th sampling time step. Then, the average localization error of EKF is
[0.0367 m, 0.0700 m, 0.0525 (rad)], the one of HF is [0.0380 m, 0.0739 m, 0.0570 (rad)] and the one of
STF is [0.0300 m, 0.0702 m, 0.0369 (rad)]. In Figure 11a, STF clearly has a better tracking performance
than EKF and HF. In Figure 11b, the curves of the RMSEs of EKF and HF make a sharp change at
the 90th time step, while the curve of STF makes a consecutive change at the same time step, which
demonstrates STF to be the most robust algorithm of the three methods.
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Figure 11. The impact of noise. (a) The tracking with noise; (b) the RMSE.

Lastly, we assess the localization accuracy of the localization system by simulation, the configuration
of which is the same as described in the previous section. The only difference is that there are
121 measurement points deployed in a 6 cm × 6 cm square region. The diagram is shown in Figure 12.
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For evaluating the algorithm accuracy and calculation efficiency of the Gauss–Newton iterative
method and the Cayley–Menger determinant, three randomly-picked beacons are involved in the
simulation. The calculation duration of the Gauss–Newton iterative method is 420.1 s, equal to 0.58 s per
iteration, and the calculation duration of the Cayley–Menger determinant is 0.68 s, equal to 0.9 ms per
iteration. Undoubtedly, there is a vast difference of calculation efficiency between the two algorithms.
In Figure 13a, we compare the CDF of the two algorithms, and it is illustrated that the Cayley–Menger
determinant is of high localization efficiency, but low localization accuracy. The Gauss–Newton iterative
method is the opposite.
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Figure 13. The comparison of CDF. (a) Gauss–Newton and Cayley–Menger;
(b) Cayley–Menger and GWEM.
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If the five beacons are all involved in the calculation, the proposed GWEM is capable of fusing the
redundancy information into the existing methods. In Figure 13b, GWEM has a better localization
performance than the Cayley–Menger method. The average loop time of the former is 10.8 s, while the
average loop time of the latter is 10.2 s, which demonstrates that GWEM has the tantamount efficiency
compared to the Cayley–Menger method.

After simulation, we conduct the experiment to verify the proposed algorithms. In the experiment,
the localization results are the average of the consequences of 20 trials by means of the Cayley–Menger
method and GWEM, respectively, and the results are presented in Figure 14. For clarity, the histogram
of the localization error of the two methods is shown in Figure 15. Comparing Figure 15a and b, it is not
difficult to find that GWEM has the lower average error. In the experiment, GWEM has been proven to
be a fast and effective indoor localization method.
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Figure 14. The experiment results.
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In our 3D localization system, when a robot carrying a node enters the 3D WSN, it can help unknown
beacons on the ceiling determine their own positions; meanwhile, the locations of beacons can be
calibrated further based on the robot’s trajectory. After the above process, the initialization of the
localization system is done, and when the target with a node enters the system again, the system will
calculate and decide the trajectory of the target precisely. Therefore, the self-localization and calibration
of beacons are the pre-processing task, and the computational cost almost reduces to zero because all of
the beacons’ locations are known [39]. When tracking targets, all of the measurements will be delivered
to the PC terminal via the sink node; then, the data are processed in MATLAB. The computational
complexity is approximately equal to a particle filter in the simulation.

8. Conclusions

The paper provides a series of feasible schemes for localization in 3D settings based on WSNs,
which solves three essential problems: the self-localization of beacons, the calibration of beacons after
self-localization and positioning and tracking the mobile target in 3D settings by beacons. Aimed at
the three problems, the contributions of the paper are as follows. Firstly, the weighted least squares
estimation of localization is proposed for self-localization of beacons, which minimizes the influence
from measurement errors by means of DSA. Secondly, for higher accuracy, we employ the calibration
scheme for beacons with the aid of the mobile robot. Then, after comparing the EKF, HF and STF
methods, we conclude that HF has the best adaptiveness to the uncertain state model, and STF has the
best tracking performance to the system with great disturbance. Thirdly, analyzing the attributes of
the Gauss–Newton iterative method and the Cayley–Menger determinant, we propose the optimal node
selection scheme based on GDOP, which can select the group of beacons with the minimum GDOP from
all of the beacons. Then, GWEM is presented for fusing more information from other beacons. Lastly,
the simulation and experiment are used for evaluating the proposed methods, and the consequences show
that the methods are feasible for localization in 3D settings and have high localization accuracy.
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