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Abstract: This paper investigates the achievable secrecy throughput of an inhomogeneous wireless
sensor network. We consider the impact of topology heterogeneity and the secrecy constraint on
the throughput. For the topology heterogeneity, by virtue of percolation theory, a set of connected
highways and information pipelines is established; while for the secrecy constraint, the concept
of secrecy zone is adopted to ensure secrecy transmission. The secrecy zone means there is no
eavesdropper around the legitimate node. The results demonstrate that, if the eavesdropper’s

intensity is λe = o
(
(log n)−

3δ−4
δ−2
)

, a per-node secrecy rate of Ω
(

1√
n1−v(1−v) log n

)
can be achieved

on the highways, where δ is the exponent of heterogeneity, n and nv represent the number of nodes
and clusters in the network, respectively. It is also shown that, with the density of the eavesdropper

λe = o
(
(log (nΦ))−2

)
, the per-node secrecy rate of Ω

(√
Φ
n

)
can be obtained in the information

pipelines, where Φ denotes the minimum node density in the network.
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1. Introduction

Wireless sensor networks are an emerging networking technology, which is widely used in
environmental monitoring, emergency and rescue communication, military applications, etc. The
unique feature of such networks is formed by the huge number of sensor nodes. Each node
communicates over a wireless channel without any centralized control [1]. One of the problems
in wireless sensor network is efficient data transmission and lifetime. The low-energy adaptive
clustering hierarchy (LEACH) protocol presented by Heinzelman et al. [2] was a widely known and
effective one to reduce and balance the total energy consumption. Later, Tan et al. [3] proposed
an energy-efficient hybrid cluster-based protocol (HCEP) to prolong the lifetime of the network.
To reduce the consumption of energy, Wu et al. [4] developed a structure fidelity data collection
(SFDC) framework to reduce the number of active sensor nodes, which can not only save energy,
but also reserve the data fidelity. Another problem is the throughput capacity, meaning how
much traffic the wireless networks can carry. In their groundbreaking work, Gupta and Kumar [5]
had shown that, for a static wireless networks consisting of n nodes randomly and uniformly

distributed, each node can achieve a rate of order Ω
(

1√
n log n

)
. Given two functions f (n) and g(n):

f (n) = o(g(n)) means limn→∞ f (n)/g(n) = 0; f (n) = O(g(n)) means limn→∞ f (n)/g(n) = c < ∞;
if g(n) = O( f (n)), f (n) = Ω(g(n)) w.h.p.; if both f (n) = Ω(g(n)) and f (n) = O(g(n)),
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f (n) = Θ(g(n)); f (n) = Θ̃(g(n)) means f (n) = Θ(g(n)) when logarithmic terms are ignored. They
also derived an upper bound on the capacity that scaled on the order O

(
1√
n

)
. This capacity gap was

closed by Franceschetti et al. [6]. Inspired by percolation theory, they constructed a series of paths
spanning the network both horizontally and vertically. Then, by exploiting the time division multiple
access (TDMA) strategy, each node transmitted its information to the nearest horizontal highway.
After that, the information was transported in a multi-hop manner toward the vertical paths, which
was near the receiver. Finally, the information was sent to the receiver from the existing node on the
vertical highway. Based on the “highways scheme”, a rate of Θ

(
1√
n

)
was achieved for each node.

Since then, capacity scaling has drawn considerable attention. Hu et al. [7] investigated the impact
of geometry on the capacity of a wireless network. They constructed highways in a strip network,
triangle network and three-dimensional network. Since the infrastructure was an effective way to
ease hop-by-hop transmission, Liu et al. [8] allocated some infrastructure into the network and proved
that the capacity could increase linearly with the number of infrastructures. Tan et al. [9] proposed
a framework to maximize the total utility of bandwidth allocation for the three traffic types in
infrastructure-based wireless networks. Multicast was often used in realistic networks; Li [10] derived
the multicast capacity of large-scale wireless networks using a tree-based routing scheme. Later on,
Alfano et al. [11,12] firstly investigated the capacity of topology inhomogeneous wireless networks.
Liu et al. [13] constructed a “highway system” in inhomogeneous Poisson networks. Based on the
highway system, the lower bound of capacity was obtained, and they found that the bottleneckof
the rate was caused by the place of the lowest node density. After that, the scenario of traffic
heterogeneity was studied. Kim et al. [14] proposed a differentiated channel access scheme to resolve
the throughput fairness problem in heterogeneous wireless networks. Recently, Lu and Shen [15] gave
a comprehensive overview of the development of capacity and delay in ad hoc networks. They also
presented the fundamental tradeoffs between capacity and delay under a variety of mobility models.

However, due to the wireless channel being broadcast, it is easily attacked by eavesdroppers
and malicious nodes. This motivates considering the secrecy constraint in capacity analysis. With
some exceptions, the secrecy capacity under the protection of an RSApublic key cryptosystem
was used in [16,17]. They got a pessimistic result that, for a network consisting of n

legitimate nodes, a rate of Ω
(√ p f

n log n

)
was obtained, where p f was the probability that a

node shared a primary secure association (SA) with any other node. To avoid the capacity
degradation caused by p f decreasing, an information theoretic security was proposed, which was
achieved by using the channel difference between legitimate nodes and eavesdroppers, which
required the intended receiver to have a stronger channel than eavesdroppers. To degrade
the signal of eavesdropper, Vasudevan et al. [18] used other nodes around the transmitters

to generate artificial noise. They found that, when a per-node throughput of Ω
(

1√
n log n

)
was desired, the network can tolerate up to Ω ((log n)c) independent eavesdroppers or a single
eavesdropper with Ω

(
(log log n)1−ε

)
antennas, where c and ε were constants. After that,

Capar et al. [19] investigated the impact of network dimension on the secrecy capacity. They

found that the per-node secure throughput was Ω
(

1
n

)
in one-dimensional and Ω

(
1√

n log n

)
in

two-dimensional networks, respectively. More recently, Zhang et al. [20] considered a homogeneous
network with an independent eavesdropper and colluding eavesdroppers. Each node was installed
with three antennas, where two of them were used for transmitting and receiving, and the other one
was employed to generate artificial noise to degrade the signal of the eavesdropper. By constructing
a set of highways in the networks, they derived that the secrecy capacity was Θ

(
1√
n

)
for the scenario

of an independent and colluding eavesdropper. Later on, Cao et al. [21] investigated the tradeoff
between secrecy capacity and delay in large-scale mobile ad hoc networks. They found that, for a

given delay constraint D, the optimal secrecy throughput capacity was Θ̃
((

D
n

) 2
3
)

. In addition to the
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method of generating artificial noise to suppress the eavesdroppers’ receiving signal, an alternative
idea of the secrecy zone was proposed in [22,23], which required neither the channel state information
of eavesdroppers, nor extra power to generate artificial noise. Under the protection of the secrecy
zone, Koyluoglu et al. [22] obtained that, as long as the density of the eavesdropper was o

(
1

(log n)2

)
,

each node can achieve a secure rate of Ω
(

1√
n

)
. Besides the information security issue in wireless

networks, privacy security is also concerned. To avoid disclosing the users’ interest to others, Luan
and Lu et al. [24] employed a privacy-preserving mechanism to protect sensitive user information
during social communications. Although there existed many works on security issues, all of them
focused on homogeneous networks. Therefore, a fundamental question arises: what is the impact of
the capacity if both the security constraint and heterogeneity topology are taken into consideration?

In this paper, we focus on static cluster sparse networks. Our main purpose is solving the
secrecy transmission in heterogeneity networks. The transmission is divided into intra-cluster and
inter-cluster traffic. For the former transmission, we propose a heterogeneous percolation model.
Based on the heterogeneous percolation, we construct a series of “paths” in the radial direction and
around the cluster. The information is transported in a multi-hop manner on the paths. While for the
latter traffic, some information pipelines have been built among clusters. On the basis of the “highway
system” and information pipelines, we employ the secrecy zone to protect the transmission. This is
different from the artificial noise generation fashion, where their strategy needs additional power to
generate noise.

The main contributions can be concluded as follows:

• We prove the existence of highways in heterogeneous networks. More importantly, it is shown
that the networks still percolate in the secrecy constraint model, and many secrecy highway
paths can be constructed.

• We first exploit the secrecy zone to protect the transmission in heterogeneous networks. The
relationship between the secrecy capacity and the tolerable density of the eavesdropper was
established.

• Due to the impact of heterogeneity, we observe that the secrecy throughput of intra-cluster
transmission is higher than that in a homogeneous one, and the bottleneck of secrecy throughput
is located at the area with the minimum node density.

The rest of this paper is organized as follows. In Section 2, we give the network model. We give
the transmission model in Section 3. The construction of the circular percolation model is described
in Section 4. Section 5 derives the secrecy throughput in intra-cluster transmission. In Section 6, we
investigate the secrecy throughput of inter-cluster transmission. We present the conclusion of this
paper in Section 7.

2. Network Model

We consider an extended network A = [0,
√

n] × [0,
√

n] with n legitimate nodes randomly
distributed, where the distribution of legitimate nodes follows the shot noise Cox process (SNCP) [25].
The main process of SNCP is described as follows: M clusters scattered in A randomly. The expected
value of M is E(M) = m. We denote the center of the clusters as C = {cj}M

j=1. For each cj, using
the center point cj as a mother point, a point process centered by cj with an intensity of qjk(cj, ξ) at
place ξ is generated. k(cj, ξ) is a function of density; qj is the number of nodes of cluster cj. Let each
cluster consist of an equal number of legitimate nodes, i.e., qj = n/m. In addition, according to the
distribution, the function of density F at place ξ can be expressed as:

F (ξ) = ∑
j

qjk(cj, ξ) (1)
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where k
(
cj, ξ

)
= k(||ξ − cj||) is related to the distance between ξ and cj, and the sum

∫
A k
(
cj, ξ

)
dξ

on the whole network is finite. For simplicity, we use function s(ρ) to substitute the density function
k
(
cj, ξ

)
, where ρ = ||ξ − cj||. To gain finite summation over the whole area, the function s(ρ) is stated

as follows:
s(ρ) = min(1, ρ−δ), δ > 2 (2)

In addition, let m scale as Θ(nv); let δ be a degradation factor; and v ∈ (0, 1). Then, each cluster
has a number of nodes Θ

(
n1−v), i.e., qj = Θ

(
n1−v) for j = 1, 2, . . . , M, since

∫
A k(cj, ξ)dξ is finite.

According to the node’s distribution, we can obtain the average distance between each cluster
center dc as:

dc = Θ

(√
A
m

)
= Θ

(
n

1−v
2

)
(3)

From Equation (3), we know, when v < 1, dc → ∞ as n → ∞, and the clusters are
distributed sparsely. In this work, we only consider the cluster-sparse network, where the s(ρ) is
heterogeneous. Let Φ denote the largest density and Φ vice versa. Figure 1 is an example of this kind
of network topology.
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Figure 1. Example of a heterogeneous topology network. The parameter of the network is n = 10,000,
v = 0.3 and δ = 3.

Different from the legitimate nodes, the eavesdroppers are uniformly and independently
distributed in the network with density λe. Let ε denote the set of eavesdroppers. Since eavesdroppers
can be easily detected if they are active, the eavesdroppers are assumed to keep silent. To get insight
into the secrecy throughput, the eavesdroppers is also assumed to have a super ability for computing.
This means that the traditional method cannot be used here. In addition, let the transmitters know
the location of the eavesdropper. Although the assumption seems idealistic, it allows one to gain
valuable insight into the problem.

To get the worst case of secrecy throughput, the interference caused by simultaneous
transmission is assumed as noise, whereas the eavesdroppers do not have this assumption.

3. Transmission Model

For random chosen S-Dpairs, the transmitter i wants to send the information Wi,j to a receiver j
securely. During time slot t, let signals observed at eavesdropper e be Ye , Ye(t), ∀t. In the multi-hop
routing, each session in one hop has N channels. Let R be the achievable secrecy rate for the S-D pairs
(i, j), if:
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• The error decoding the probability of the transmission information at the receiver can be treated
arbitrarily low as N → ∞.

• The leakage rate information associated with the transporting information over the whole path,

i.e.,
I(Wi,j ;Ye)

N , goes to arbitrarily small ∀e ∈ ε as N → ∞.

For almost all (i, j), if the message Wi,j is transmitted within H hops, we only need to observe
the channel of the eavesdropper when considering the security. Hence, the second condition can be

satisfied if
I(Wi,j ;Ye(1),,Ye(H))

N can be made arbitrarily small if the block length is sufficiently large, where
Ye(h) denotes the output vector of length N at eavesdropper e ∈ ε during hop h.

We consider the Gaussian wiretap channel capacity [26]. Let SINRij be the signal-to-interference
and noise ratio (SINR) from legitimate transmission node i to legitimate destination node j over a
channel of unit bandwidth, which is given as:

SINRij =
Pil(i, j)

N0 + ∑ζ∈T\{i} Pζ l(ζ, j)
(4)

where l(i, j) = min{1, 1/dα
ij} with α > 2 representing the path loss of the channel between node i and

node j. Pi is the power of transmitting node i. N0 denotes the noise power at the receiving node j, and
ζ represents the set of nodes that can transmit simultaneously with node i.

Similarly, the SINR received at eavesdropper e is as follows:

SINRie =
Pil(i, e)

N0 + ∑ζ∈T Pζ l(ζ, e)
(5)

According to the secrecy throughput defined in [26,27], the secure rate of any legitimate node
can be denoted as:

Rs
ij = Rij − Rie = log2(1 + SINRij)− log2(1 + SINRie) (6)

where SINRie = maxe∈ε SINRie.
Due to the impact of heterogeneity, we use different powers for different nodes. The secrecy rate

is defined as Rs(n), which is also the maximum achievable secrecy capacity.

4. Circular Percolation

We first construct a percolation model for the heterogeneous topology. Since the legitimate
nodes are distributed heterogeneously, the traffic is divided into two parts: intra-cluster traffic and
inter-cluster traffic. For each part of the traffic, we resort to the tools of percolation theory to construct
the routing scheme. For the intra-cluster traffic, we establish a circle percolation model, which is
different from the previous percolation model; while for the inter-cluster case, we construct a series
of information pipelines to link the clusters.

In our model, by virtue of percolation theory, we present a circular percolation model and
construct a set of connected highways for legitimate nodes. Different from the the work in [6], the
circular highways are from internal to external or encircling the cluster.

Lemma 1. Assume ρmin is a minimum positive constant that separates the cj and other nodes. Then, each
cluster can build a crossing path within ρmax for δ > 2.

Proof. Each cluster is tessellated into x× n/m
x circular squares, where x is the number of sectors and

n/m
x is the number of annuli. Note that the arc of each sector is equal, i.e., 2π

x . Due to the heterogeneous
node distribution, the distance between every two annuli is not the same, as shown in Figure 2.
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min

Figure 2. A circular square in a cluster. ρmin is the minimum radius within which there is no node located.

Due to the impact of heterogeneity, the node density at different annulus areas varies. In order
to guarantee that each square contains at least one node, the external annuli need to be wider than
the inner ones. Correspondingly, we set the radius of the i-th annulus to be:

ri =

(
1 +

2π

x

)i−1
· ρmin (7)

Thus, according to the circular square tessellation above, we can conclude that each cell can be
treated as a square when n→ ∞.

Lemma 2. According to the heterogeneous tessellation, we can get that the number of the parameter x is:

x = Θ
(√

n1−v

(1−v) log n

)
.

Proof. From Lemma 1, we know that the radius of one cluster is:

r n/m
x +1 =

(
1 +

2π

x

) n/m
x

, n→ ∞ (8)

Combining Equation (3) and (8), we have:

r n/m
x +1 =

(
1 +

2π

x

) n/m
x

= e
2πn1−v

x2 =
dc

2
(9)

Finally, we obtain x = Θ
(√

n1−v

(1−v) log n

)
.

Lemma 3. For a square si on the i-th annulus, let Xsi be the number of nodes distributed in si; then, we can
get P(Xsi ≥ 1) > P(Xsj ≥ 1) for i < j.
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Proof. According to percolation theory, a square si is open if there exists at least one node located in
si, or closed otherwise. From the Appendix A in [12], the open probability of a square is:

pi ≡ P (Xsi ≥ 1) = 1− P (Xsi = 0)

≈ 1− e−
n
m r−δ

i (ri
2π
x )

2 (10)

From Equation (10), we can observe that pi decreases as increasing values of i for δ > 2.

Since the probability pi decreases with i, we can calculate the critical value ρmax, within which
the probability pi can satisfy the condition of pi > pc, where pc is the critical probability in
percolation theory.

Lemma 4. There exists a critical value ρmax = Θ
(
((1− v) log n)

1
δ−2
)

, within which each cluster can
construct a set of connected highways if the degradation factor δ > 2.

Proof. From percolation theory, there is a critical probability pc, when p > pc, that there exists many
disjoint paths traversing the network, which is going to be one. Thus, we can get the following
equation by Lemma 3:

pi ≡ P(Xsi ≥ 1) ≈ 1− e−ri
−δ(ri

2π
x )

2
= po (11)

where po is the probability representing that the square si is open, and pc < po < 1.
Following Equation (11), we can obtain that:

n
m

ri
−δ

(
ri

2π

x

)2
= c (12)

where c = ln 1
1−po

. Substituting x = Θ
(√

n1−v

(1−v) log n

)
into (12), we can achieve that

ρmax = Θ
(
((1− v) log n)

1
δ−2
)

.

Combining Lemma 4 and Equation (7), the critical value imax = Θ
(

log(log n)
δ−2

√
n1−v

log n

)
is achieved.

In particular, we can construct Θ
(

log(log n)
δ−2

√
n1−v

log n

)
annuli within the radius ρmax.

The percolation model for the intra-cluster traffic has been constructed. Each cluster is

partitioned into c1

√
n1−v

(1−v) log n × c2
log(log n)

δ−2

√
n1−v

log n lattices. Specifically, a path is called open if two
adjacent squares are open. Based on Appendix I in [6], we can get that there are dµ log ω(n)e disjoint
paths through an area of ω(n)× (κ log ω(n)− ε). Hence, within area of less than ρmax, we can build

Ω
(√

n1−v

(1−v) log n

)
disjoint paths from the internal to external cluster and Ω

(
log(log n)

δ−2

√
n1−v

log n

)
disjoint

paths around each cluster. By the connection of these two paths, the highway system for the legitimate
nodes is constructed. Although our model is a heterogeneous lattice, it can be treated similarly as a

c1

√
n1−v

(1−v) log n × c2
log(log n)

δ−2

√
n1−v

log n rectangle lattice.

5. The Secrecy Rate of Intra-Cluster Traffic

In this section, as illustrated in Figure 3, we introduce a scheme that ensures the security over the
whole path, from the source to a destination. The routing scheme of intra-cluster transmission can be
partitioned into four separate phases.

Phase 1 (draining phase): Source node S drains packets to an access node on the radial highway
directly. Note that the highway may not be fully contained in its corresponding sector, whereas
it may deviate from it. However, according to percolation theory, a highway is never farther than
κ log

(
n/m

x − ε
)

from its corresponding sector.
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Phase 2 (radial highway phase): Packets are carried across the cluster along the radial highway
using multiple hops and multiple time slots.

Phase 3 (encircling highway phase): Similar to Phase 2, packets are transported clockwise on the
annulus highway.

Phase 4 (delivering phase): Finally, packets are delivered to the receiver from the exit point on
the encircling highway.

min

max

2

c
d

Encircle 

Highway

Radial

Highway

S

Phase 1
P

h
ase 2

P
h

ase 3

D

Phase 4

Exit Point

Access

Point

Figure 3. A schematic representation of the routing scheme. We omit the eavesdroppers in this figure.

Different nodes are allocated with different power, so that we can transform the heterogeneous
circular lattice into a homogenous regular square lattice. In addition, the time division multiple access
(TDMA) schedule is employed, and the information is transported hop by hop, then a constant rate
on the highway is obtained. However, there are still some differences between our model and the
previous one; for example, not all of the highways serve identical nodes, and the power of each node
is not equal.

Lemma 5. For a given square, to cancel the interference caused by simultaneous transmission, the power of
legitimate nodes in square si is:

Pi = P0 ·
(

2πri
x

)α

(13)

where P0 is the unit power for a legitimate transmitter.

Proof. For a square si, let I1 be the interference from the outside square and I2 for that from the inside
square. If the distance between two nodes is d, which is not the Euclidean distance, but the number
of d squares away, then we can get the interference from different directions as follows:

I1(d) = P(i+d)
1

(ri+d − ri)α
(14)

I2(d) = P(i−d)
1

(ri − ri−d)α
(15)

30971



Sensors 2015, 15, 30964–30980

We can also get that:
I1(d)
I2(d)

=
P(i+d)

P(i−d)
· (ri − ri−d)

α

(ri+d − ri)α

=

(
ri+d
ri−d
· ri − ri−d

ri+d − ri

)α

=

(
1 +

2π

x

)dα

(16)

As x = Θ
(√

n1−v

(1−v) log n

)
, when d = o

(√
n1−v

(1−v) log n

)
, we can get I1(d)

I2(d)
→ 1.

Next, we exploit the idea of the secrecy zone to guarantee the secrecy of the communication over
a single hop.

By Lemma 5, for a given square, the interference caused at d squares is equal. Thus, we can
make the cluster network as a square network. As shown in Figure 4, we group several squares into
a group with edge ktd squares. Each group contains (ktd)2 squares. Using the TDMA to schedule
the transmission, that is each square takes a turn on the transmission over (ktd)2 slots, in each slot,
a transmitter can send packets to a receiver located at most d squares away. In Figure 4, the larger
square around a transmitting square is the secrecy zone, which consists of squares that are at most
ked squares away. We firstly establish an achievable secure rate on a single hop.

d

ek d

t
k d

Secrecy zone
TDMA

Figure 4. An illustration of the TDMA strategy with size ktd. The blue square surrounding the
transmitter is the secrecy zone, which is at most ked squares away from the transmitter.

Theorem 6. In each square, the secrecy rate that a legitimate source-destination pair can obtain is
Rs(d) = Ω

(
d−α−2), if:

(N0 + c∗)d−α

N0(d + 1)−α
< kα

e (17)

where c∗ is a constant and d is the transmission range.

Proof. Assuming that transmitter i in square si transmits toward destination j located in square sj at
a distance of d squares away, we obtain the SINR of the legitimate receiver as follows:

SINRij =
Pid−α

ij

N0 + Σζ∈T Pζ d−α
ζ j

(18)

where dij is the distance between source node i and destination node j, and dζ j is the distance between
interferer ζ ∈ T and the receiver.

For the case of eavesdropper e ∈ ε, the upper bound SINR at the eavesdropper is:

SINRe ≤
Pid−α

ie
N0

(19)
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where die is the distance between the transmitter and eavesdropper e, where the upper bound of
SINRe is obtained by getting rid of the interference at the eavesdropper. Note that the distance
between the i and j is at most 2πri

x (d + 1), i.e.,

dij ≤ (d + 1)
2πri

x
(20)

and:
die ≤ ked

2πri
x

(21)

Let I(d) denote the upper bound of the interference caused by simultaneous transmitter nodes.
Then,

I(d) ≤
∞

∑
ζ=1

8ζPi+ζktd

(
1√

2ri+ζktd − ri

)α

≤
∞

∑
ζ=1

8ζPi+ζktd

(
1√

2ζktdri
2π
x

)α

=
∞

∑
ζ=1

8ζP0

(
1√

2ζktd

(
1 +

2π

x

)ktζd
)α

= P0(
√

2ktd)−α
∞

∑
ζ=1

8ζ1−α

(
1 +

2π

x

)ktζdα

(22)

notice that this sum will converge to a constant c∗, if α > 2, and the proof is shown in Appendix A.
Substitute Equations (20)–(22) in Equations (18) and (19); we obtain that:

SINRij ≥ SINRij ,
Pi

(
(d + 1) 2πri

x

)−α

N0 + c∗
(23)

and:

SINRe ≤ SINRe∗ ,
Pi

(
ked 2πri

x

)−α

N0
(24)

Hence, SINRij > SINRe for every eavesdropper e, if we choose ke such that:

(N0 + c∗)d−α

N0(d + 1)−α
< kα

e (25)

According to the Gaussian wiretap channel capacity [27], the secrecy rate Rs(d) in each square is:

Rs(d) =
1

(ktd)2

[
log(1 + SINRij)− log(1 + SINRe∗)

]
= Ω

(
d−α−2

)
(26)

where 1
(ktd)2 is the time utilization factor.

Now, similar to Lemma 2 in [22], we adopt the multi-hop randomization strategy, which
guarantees the security over the entire path, from source to destination, at each eavesdropper
listening to all transmissions. In [22], the authors assumed that each legitimate node used identical
power for transmission, while we assign different powers for different nodes, as shown in Lemma 5.
Despite the difference in the power, the proof goes along the same line as [22]. For conciseness, we
omit details.

Lemma 7. (Lemma 2 in [22]) If we can secure each hop from an eavesdropper, then we can ensure secure for
all hops from any eavesdropper located on the edge of the secrecy zone.
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In Section 4, we have described the circular percolation model and constructed highways
without the constraint of security. If taking the secrecy constraint into consideration, a square is open
if the square contains at least one legitimate node and there is no eavesdropper within the secrecy
zone of the square. The following result gives the existence of a sufficient number of secure highways
in intra-cluster transmission.

Lemma 8. We can construct a number of Θ
(√

n1−v

(1−v) log n

)
radial secrecy highways and Θ

(
log(log n)

δ−2

√
n1−v

log n

)
encircling highways within the radius ρmax, if λe = o

(
(log n)−

δ
δ−2

)
.

Proof. For a given square, let qi be the probability of si contained in a secrecy zone without
eavesdroppers. According to a Poisson random distribution, the average number of eavesdroppers
located in a secrecy zone is λe(2ked + 1)2 ( 2π

x ri
)2

, and qi can be denoted as:

qi = e−λe(2ked+1)2 n
m (

2π
x ri)

2
(27)

Since ri < ρmax = Θ
(
((1− v) log n)

1
δ−2
)

, n → ∞, we have that qi trends to one if

λe = o
(
(log n)−

δ
δ−2

)
.

Note that the status of edges in squares is not statistically independent due to the intersection
of the associated secrecy zone. If both secrecy zones did not cross, the states of two squares would
be independent. This occurs when the squares are at a distance of at least 2ked squares away. Thus,
we can conclude that the dependent model is related to a finite dependence model, as ke and d are
constants. According to Theorem 7.65 in [28], this dependent model stochastically dominates an
independent model. Let p′i be the probability that squares are independently open. If piqi can be made
arbitrarily high, p′i will be close to one. Therefore, under the assumption of the finite dependence
model and some desirable properties, we can prove that the network will still percolate with the
same properties, since both pi and qi can be set sufficiently large.

Under the independent square model, by Theorem 5 in [6], with a square openness probability

of p′i, we can obtain that there are Θ
(√

n1−v

(1−v) log n

)
radial secrecy highways and Θ

(
log(log n)

δ−2

√
n1−v

log n

)
annuli highways.

Till now, we have established the existence of a sufficient number of secure highways using the
circular percolation model. Since there are four phases for packet transmission, we will derive the
secrecy rate in each phase to find the rate bottleneck.

Lemma 9. If a cluster is divided into w sectors with an arc of 2π/w, then for each sector SRi, there are no
more than 2n/m

w legitimate nodes located.

Proof. Let |SRi| represent the number of legitimate nodes located in SRi and Pw be the probability
that there exists a sector containing more than 2n/m

w nodes. For each sector, the number of nodes
follows a Poisson distribution of 2n/m

w . According to the Chernoff bound, when n→ ∞, then:

Pw ≤ wP
(
|SRi| >

2n/m
w

)

≤ we−
n/m

w

(
e

n/m
w

2n/m
w

) 2n/m
w

= we−
n/m

w

( e
2

) 2n/m
w → 0

(28)

Therefore, we can get that there is no sector existing with more than 2n/m
w nodes.
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Lemma 10. In Phase 1, if the density of the eavesdropper is λe = o
(
(log n)−

3δ−4
δ−2
)

, each legitimate

node can achieve a secrecy access rate R1 = Ω
((

log
(√

(1− v)n1−v log n
))−3−α

)
with a node on the

radial highway.

Proof. According to Theorem 5 in [6], if we choose ε and κ appropriately, there exist at least
Ω(log( n/m

x )) radial highways within a sector of arc 2π
x [κ log( n/m

x )− ε]. From percolation theory, we
know that each highway may not be fully contained in its corresponding sector, and it may deviate
from it. However, it never deviate by an arc of 2π

x [κ log( n/m
x )− ε] from its corresponding sector, i.e.,

it will not be father than κ log
(

n/m
x − ε

)
squares.

By Theorem 6, let d = κ log
(

n/m
x − ε

)
; we can get that the secrecy rate between a legitimate

node and an access node is:

R
(

κ log
(

n/m
x
− ε

))
= Ω

((√
log((1− v)n1−v log n)

)−2−α
)

(29)

Since there is an amount of nodes in a square, they need to share the bandwidth. From
Lemma 9, we have that, if the associated secrecy zone contains no eavesdropper, the secrecy rate

for Phase 1 is Ω
((√

log((1− v)n1−v log n)
)−3−α

)
. Next, we elaborate that this will happen if

λe = o
(
(log n)−

3δ−4
δ−2
)

as n goes to infinity.

For the i-th annulus, the area of the guard zone is Ai = (2ked + 1)2 ( 2π
x ri
)2

, which is the area
to eliminate the eavesdroppers. Let |ε| be the number of eavesdroppers in a cluster (Poisson with
parameter λen

m ) and |L| as the total amount of legitimate nodes in a cluster. In addition, we denote
the total area that the eavesdroppers make it impossible for a legitimate user to arrive at a highway
as Aε. Clearly, Aε ≤ Amax|ε|, where Amax = (2ked + 1)2 ( 2π

x ρmax
)2

. For each Ai, let the amount of
legitimate nodes in this region be Li. According to the heterogeneity of node distribution, we have
Li ≤ n

m r−δ
i Ai. Thus, for each cluster, by the Chebyshev inequality, we have:

|ε| ≤ (1 + ε)λe
n
m

|L| ≥ (1− ε)
n
m

LAmax|ε| ≤ (1 + ε)
n
m

Amax|ε| (30)

for any ε ∈ (0, 1) with high probability as n → ∞. Let z be the fraction of legitimate nodes that
cannot transmit to highways due to the eavesdropper, and we can obtain the upper bound of z as:

z ≤
LAmax|ε|

L
≤

(1 + ε)2(2ked + 1)2 n
m
( 2π

x ρmax
)2

λe
n
m

(1− ε) n
m

→ 0 (31)

with the probability going to one as n → ∞. The first inequality is deduced from the intersecting
secrecy zones caused by eavesdroppers, and the second inequality derives from Equation (30), while

the limit holds as d = κ log
(

n/m
x − ε

)
and λe = o

(
(log n)−

3δ−4
δ−2
)

. Under this condition, we can
conclude that almost all of the legitimate nodes are securely connected to the highways as n→ ∞.

Phase 4 is the opposite process of Phase 1. Therefore, a similar conclusion can be made for
this phase.
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Lemma 11. In Phase 4, if the density of eavesdropper λe = o
(
(log n)−

3δ−4
δ−2
)

, then a legitimate node can

receive information securely from the highway at a rate of R4 = Ω((log(
√
(1− v)n1−v log n))−3−α).

In the highway phase, the information is transmitted hop by hop. Let d = 1 in Theorem 6; we
obtain the secrecy rate in Phase 2.

Lemma 12. In Phase 2, if the density of eavesdropper λe = o
(
(log n)−

δ
δ−2
)

, then a legitimate node on the

radial highway can achieve a secrecy rate R2 = Ω
(

1√
n1−v(1−v) log n

)
.

Proof. According to the highway system, the transmission is occurring from one square to a
neighboring square, where within the secrecy zone, there are no eavesdroppers. Thus, using
Theorem 6 and letting d = 1, the secrecy rate in Phase 2 is Ω(1). Since x >> log n

mx , there are
Ω(x) radial paths extended from internal to external. By Lemma 9, we have that there are at most 2n

mx

users w.h.p. in the sector of 2π
x . That is, each node can enjoy a rate of order Ω

(
1√

n1−v(1−v) log n

)
in

the radial highway.

In this way, the following lemma gives the secrecy rate of Phase 3.

Lemma 13. The legitimate nodes on the annulus highway can enjoy a per-node secrecy rate

R3 = Ω
(√

(1−v) log n
n1−v · f (δ)

)
, where f (δ) is a “heterogeneous factor”, which is only decided by δ.

Proof. Compared to the radial highways, it is more complicated for data delivered around the
cluster, since the number of nodes served by the annulus paths is not identical. Assume each

annulus highway is identical, similar to Lemma 12; the secrecy rate of order Ω
(√

(1−v) log n
n1−v

)
.

Nevertheless, due to the impact of heterogeneity, we denote the achievable secrecy rate as

Ω
(√

(1−v) log n
n1−v · f (δ)

)
, where f (δ) is a function of heterogeneous factor δ, which will be discussed

in detail in Appendix B.

Comparing the secrecy rate and the tolerable density of eavesdroppers in each phase, the secrecy
rate of intra-cluster transmission can be concluded as follows.

Theorem 14. For the intra-cluster traffic, if the density of eavesdropper λe = o
(
(log n)−

3δ−4
δ−2
)

, then each

legitimate node located within ρmax can achieve a secrecy rate of Rintra
s = Ω

(
1√

n1−v(1−v) log n

)
,

Proof. Comparing the achievable secrecy rate in each phase, the rate bottleneck occurs in
Phase 2. Since the information is transmitted hop by hop, we need to guarantee security in each
phase. Thus, comparing the density of eavesdroppers in each phase, we can get that, if the

density of eavesdroppers λe = o
(
(log n)−

3δ−4
δ−2
)

, the secrecy rate of intra-cluster transmission is

Rintra
s = Ω

(
1√

n1−v(1−v) log n

)
(the proof is in Appendix B).

6. The Secrecy Transmission of Inter-Cluster Traffic

Since we focus on the cluster-sparse network, the node density outside the circular square is
much lower. Thus, we cannot use the highway system constructed in Section 5. However, according
to the distribution of PPP, we can extract part of nodes with a density of φ to build “information
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pipelines”, where φ is smaller than Φ and is selected randomly and uniformly. As shown in Figure 5,
we use these “information pipelines” to connect the clusters.

Similarly, by virtue of percolation theory, we can divide the area into regular squares with a side
length of

√
c0/Φ, where c0 is a constant. For some special large value c0, we can extract part of nodes

to form “information pipelines”, which is similar to the highways constructed in the homogeneous
network. However, due to the heterogeneity, each square contains difference nodes.

In the previous section, we have already achieved the secrecy rate in the cluster area through
a highway system. Within the dense areas, information is transmitted by the routes formed by
the highway system. Only if the destination is located in different clusters, the information will be
delivered through the “information pipelines”. Similar to the derivation of intra-cluster transmission,
the achievable secrecy rate of inter-cluster traffic can be obtained easily.

Borrowing the tools from percolation theory in [6], we can construct Ω(
√

AΦ) pipelines among
clusters. All of these pipelines need to serve Θ(m) clusters. Similar to Lemma 1 in [22], a secrecy
zone is employed to protect the secrecy transmission over a single hop, where the edge of the secrecy
zone is not c, but

√
c0
Φ . Correspondingly, we can build Ω

(√
AΦ
m

)
pipelines between two neighboring

clusters, i.e., each cluster can enjoy Ω
(√

AΦ
m

)
pipelines. By Theorem 6 in [22], we can conclude that,

if λe = o
(
(log (nΦ))−2

)
, the secrecy rate of inter-cluster transmission is Ω

(√
AΦ
n

)
.

 

 

Figure 5. An illustration of information pipelines among clusters. Since the minimum node density is
Φ, we can construct Ω(

√
AΦ) pipelines among clusters. The crosses denote the eavesdroppers.

Theorem 15. For the inter-cluster transmission, the achievable secrecy rate is

Rinter
s = Ω

(√
AΦ
n

)
= Ω

(√
Φ
n

)
, if the density of the eavesdropper λe = o

(
(log (nΦ))−2

)
.

Figure 6 compares the throughput under homogeneous networks and heterogeneous networks.
By observing the secrecy rate of intra-cluster and inter-cluster transmission, we find that the secrecy
rate of intra-cluster transmission is higher than that of homogeneous networks; therefore, the
bottleneck occurs in the inter-cluster transmission. This is due to the reduction of the number
of highways caused by the lower density and, thereby, the amount of relaying traffic increasing.
Particularly, when the network is transferred to a homogeneous network, i.e., Φ = Θ(Φ) = Θ(1), the
secrecy rate is Rinter

s = Ω( 1√
n ), and the tolerable density of the eavesdropper is λe = o

(
(log n)−2

)
,

which is the same result as that in homogeneous wireless networks [22].

30977



Sensors 2015, 15, 30964–30980

( ) ÷
÷
ø

ö
ç
ç
è

æ

F
=l

( ) ÷÷
÷

ø

ö

çç
ç

è

æ
=

-
-

d
d

l

r

Secrecy

Throughput

Transmission

Range

÷
÷

ø

ö

ç
ç

è

æ

-
W

-

÷
÷

ø

ö

ç
ç

è

æ F
W

÷
÷
ø

ö
ç
ç
è

æ
W

Intra-cluster

transmission

Inter-cluster

transmission

Secrecy throughput

of homogeneous

network ( ) ÷
÷

ø

ö

ç
ç

è

æ
=l

Figure 6. An illustration of secrecy throughput. We also give a comparison with that in a
homogeneous networks [22].

7. Conclusions

In this work, we study the impact of heterogeneity and the secrecy constraint on the capacity
of wireless networks. Borrowing the tools from percolation theory, we first constructed a secrecy
highway system for intra-cluster and inter-cluster transmission, respectively. With the protection
of the secrecy zone, the relationship between secrecy capacity and the tolerable density of the
eavesdropper is studied. It is shown that the intra-cluster transmission not only can achieve a
higher secrecy capacity, but also can tolerate more eavesdroppers. Moreover, the highway system
we constructed is suitable for non-uniform traffic networks, typically, such as social networks. Thus,
this work provides an insight model to analyze social networks. Finally, we do not consider the
case of eavesdroppers collaborating with each other. Thus, it is a valuable future work to study the
scenario of colluding eavesdroppers, where the distribution of legitimate nodes and eavesdroppers
will influence the secrecy throughput greatly.
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Appendix

A. The Proof of Theorem 1

Proof: We prove the summation of Equation (22) to converge to some constant. Since we consider
the scenario of n→ ∞, Equation (22) can be simplified as ∑∞

ζ=1 ζ1−α(1 + 2π/x)ktζdα. Firstly, we solve
(1 + 2π/x)ktζdα, where x is given in Lemma 2. Thus, we obtain:

(1 + 2π/x)ktζdα = (1 +
2π√
n1−v

(1−v) log n

)

√
n1−v

(1−v) log n
2π · 2π√

n1−v
(1−v) log n

·ktζdα

= e

2π√
n1−v

(1−v) log n

·ktζdα

(A1)
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when d = o(
√

n1−v

(1−v) log n ) and n → ∞. Then, (1 + 2π/x)ktζdα = e

2π√
n1−v

(1−v) log n

·ktζdα

→ Θ(1). Since α > 2,
the summation Equation (22) converges to a constant.

B. The Proof of Theorem 2

Proof: The achievable rate of the annulus highway in the intra-cluster phase is derived as follows:
According to four phases of the routing scheme, we give a comparison of the secrecy rate on the
radial highway and the annulus highway. The secrecy rate on the radial highway can be obtained
easily (Lemma 12). Hence, We only need to derive the secrecy rate of the annulus highway. Due to
the number of nodes on different annuli not being identical, the derivation of the annulus highway
is more complicated than the case of the radial highway. According to the distribution of legitimate
nodes, let E(Ni) be the average number of nodes in annulus i. Then, the expectation of E(Ni) is:

E(Ni) =
n
m

(
ri

2π

x

)2 1
rδ

i
x (B1)

Using Equation (7) to substitute ri, we can get:

E(Ni) =
n
m

(
ri

2π

x

)2 1
rδ

i
x

= 4π2 n
m

x−1r2−δ
i

= 4π2 n
m

x−1
(

1 +
2π

x

)i(2−δ)

= 4π2 n
m

√
(1− v) log n

n1−v

1 +
2π√
n1−v

(1−v) log n

i(2−δ)

(B2)

Since δ > 2, E(Ni) is decreased with the increasing of i. Therefore, the annulus highway near
the center will service the most nodes. As a consequence, the achievable secrecy rate on the annulus
highway is:

R3 > Rr(i = 1) = Θ

√ 1
(1− v)n1−v log n

1 +
2π√
n1−v

(1−v) log n

(δ−2)
 (B3)

By comparing the rate R2 and R3, we can find that R2 < R3, for δ > 2, i.e., the secrecy rate
bottleneck is in the phase of the radial highway.
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