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Abstract: The purpose of this paper is to propose a GSA-tuning IPD control technique for
magnetic suspension systems. An educational demonstration on a magnetic-field sensed magnetic
suspension system is examined for effectiveness. For the magnetic-field sensed magnetic suspension
system (FSMSS), the current transducer is employed for measuring the electromagnetic coil
current, and a Hall effect device is used for detecting the position of the suspended object. To
achieve optimal performance, the gravitational search algorithm (GSA) is adopted for tuning
the integral-proportional-derivative (IPD) controller. The IPD control includes the specified PD
controller and an integrator. The specified PD control is employed for stabilizing the inherently
unstable FSMSS, whereas the integral control is utilized for eliminating the steady-state error. The
GSA can tune the IPD control parameters to enable optimal FSMSS performance. We achieved
excellent results from the simulations and hands-on experiments for the proposed control strategies
and structures.

Keywords: current transducer; magnetic field sensor; magnetic suspension system; gravitational
search algorithm; IPD control

1. Introduction

Magnetic suspension systems that use forces of attraction are called suspension techniques and
those which use forces of repulsion are called levitation techniques [1]. For simplicity, magnetic
suspension systems (MSSs) are also called “magnetic levitation systems” or “electromagnetic
suspension systems”. An MSS includes electromagnetic coils, suspended objects, power amplifiers,
feedback controllers, and sensors. The feedback controller constantly alters the current sent to
electromagnets in order to alter the strength of the magnetic force, after which the stable levitation
is maintained. Various sensors have been adopted for measuring MSS signals. For example, current
transducers are employed for measuring electromagnetic coil currents. An infrared LED pair is used
for detecting a suspended object. Hall Effect elements are utilized for sensing the strength of the
magnetic field and also for detecting a suspended object. Magnetic suspension technology is critical
for engineering applications. For instance, magnetic levitation (Maglev) trains are most commonly
known for their application of magnetic levitation. Moreover, an active magnetic bearing for large
turbomachinery entails an engineering application.

MSSs have been adopted for applications in engineering and science education. They are
interesting devices for students. The MSS was the control engineering subject of an undergraduate
project [2] by Wong in 1986. MSS projects have long been used in control system laboratories.
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Lundberg et al. [3,4] taught analysis and design in undergraduate feedback courses by employing
an economical MSS setup. Gibbs and his son [5] created a levitating disco ball that was a miniature
MSS for his fifth-grade science fair. In addition to hands-on experiments, they have garnered attention
in electromagnetic theory. An MSS is naturally a seed of science.

The present study presents a type of miniature MSS. This MSS is named “field-sensed MSS”
(FSMSS) [6] because the magnetic field sensor is adopted for measuring the position of a suspended
object. This miniature MSS is used for experimental purposes. The MSS is a nonlinear and unstable
system; hence, it is an appropriate device for testing various control techniques. Control techniques
that have been adequately developed in this miniature MSS can be extended to related plants.
Numerous control methods have been tested for the stability and performance of the MSS, including
phase-lead compensation by Wong [2], a mixed linear quadratic regulator/H infinity control by
Li and Chiou [6], integral-proportional-derivative (IPD) tracking control by Li [7], and adaptive
proportional-integral-derivative (PID) control by Lin et al. [8].

If the characteristics of the controlled system are unknown, then a PID controller is generally
considered the most popular of its type. The PID control was invented on the basis of the
development of Sperry’s ship autopilot in 1911 [9]. This control attempts to minimize performance
indices by adjusting the controller parameters. The PID controller involves three separate parameters
and is accordingly occasionally referred to as the three-term control. The proportional control can
reduce the rise time and increase the overshoot. However, the integral control can reduce or eliminate
the steady-state error but degrades the stability. By contrast, the derivative control can reduce the
overshoot but increases the rise time. However, properly tuning these parameters can yield effective
transient and steady-state responses.

This study proposes the gravitational search algorithm (GSA) for IPD controller tuning.
The GSA is a newly developed derivative-free global optimum search algorithm. The application of
the IPD control of the MSS is an invention for use in engineering applications. The GSA is categorized
as a type of swarm intelligence (SI) [10]. In fact, SI refers to the general set of algorithms. Examples
of SI include particle swarm optimization (PSO) [11], ant colony optimization, the bee algorithm,
bacterial colony optimization, and the GSA [12]. PSO is widely employed for PID controller
optimization [8,13]. The GSA is a recent SI algorithm and was developed by Rashedi et al. [12].
This algorithm is based on Newton's laws of gravity and motion. The GSA is heuristic and is not
based on any assumptions regarding optimal problems. The GSA iteratively attempts to improve a
candidate solution regarding fitness. Therefore, the GSA can iteratively tune the IPD controller to
achieve optimal performance (fitness). However, constraints exist in the IPD stability control of the
FSMSS. This study investigated this issue in detail.

The remainder of this paper is organized as follows: Section 2 introduces a review of the IPD
control of the FSMSS. Section 3 presents the GSA for tuning the IPD controller. Section 4 details the
simulations of the proposed scheme. Section 5 provides the experiments and results. Finally, Section 6
offers a conclusion.

2. IPD Control of the FSMSS

Figure 1 shows a one dimensional MSS. The magnet is suspended in the air by the
electromagnetic force generated by the electromagnet. Because the influences of other axes (y- and
z- axes) are slight enough, it is ignored for dynamics. For simplicity, only vertical axis (x-axis) is
considered for discussion. The general analog model of an MSS is given as follows [2,6,7]:

m
d2x
dt2 “ mg´ C

i2

x2 (1)

where m represents the mass of the suspended object, x is the distance between the electromagnet
and the suspended object, g depicts gravitational acceleration, C is the force constant, and i is the
electromagnetic coil current. The SI unit of the force constant C is N ¨ m2{A2. By electromagnetic
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theory, the force generated by the electromagnet is Ci2{x2 upwards. The gravitational force on
the object is mg downwards. The friction is neglected in this study. By Newtonian mechanics,
Equation (1) is derived and obtained.Sensors 2015, 15, page–page 
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Figure 1. Schematic diagram of an MSS. 

The digital model of an MSS is expressed as follows [6,7]: 
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where )(zX  is the z transform of x , and )(zI  represents that of i . The parameters are 
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where T is the sampling period. Thus, Equation (2) can be modified as follows: 
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where   is the linear factor of the position sensor (Hall Effect device), )(
~

zX  is the z transform 

of the measured output x~  of the position sensor, the parameter ~  represents    /12  , 

and 
~

 depicts 1  . The summarized symbols of the FSMSS are listed in Table 1 for a 

simplified reading of the formulas. 

A block diagram of the tracking IPD control is displayed in Figure 2, and the PD control [6,7] is 

formulated as follows: 
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Figure 2. Block diagram of the FSMSS and IPD control. 
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Figure 1. Schematic diagram of an MSS.

The digital model of an MSS is expressed as follows [6,7]:

Gpzq “
∆Xpzq
∆Ipzq

“
´zσ

`

β2 ´ 1
˘

{β

pz´ βq

ˆ

z´
1
β

˙ (2)

where ∆Xpzq is the z transform of ∆ x, and ∆Ipzq represents that of ∆i. The parameters are expressed
as follows:
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where T is the sampling period. Thus, Equation (2) can be modified as follows:

rGpzq “
∆ rXpzq
∆Ipzq
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∆ rXpzq
∆Xpzq
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“ ´ρ ¨ Gpzq “
zσρ

`

β2 ´ 1
˘

{β

pz´ βq

ˆ

z´
1
β
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(4)

where ρ is the linear factor of the position sensor (Hall Effect device), ∆ rXpzq is the z transform of the
measured output ∆rx of the position sensor, the parameter rσ represents σρ

`

β2 ´ 1
˘

{β, and rβ depicts
β ` β´1. The summarized symbols of the FSMSS are listed in Table 1 for a simplified reading of
the formulas.

A block diagram of the tracking IPD control is displayed in Figure 2, and the PD control [6,7] is
formulated as follows:

Gpdpzq “ Kdz´1pz` φq (5)
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The stable conditions of Kd and φ were proposed in a previous study [6]. If the initial zero
z “ ´φ of the PD control is designed, then the stable range of Kd can be obtained using the
following formulas:

pβ´ 1q
σρ pβ` 1q p1` φq

ă Kd ă
pβ` 1q

σρ pβ´ 1q p1´ φq
(6)

and:
´2
Kdrσ

ă φ ă 0 (7)

Although the system parameters are unknown a priori, the initially stable settings of Kd and φ

can be derived easily from a previous study [6]. To eliminate the steady-state error of ∆rxpkq, the I
control is added. In this case, reference input R(z) is set to null. If the function of position tracking is
enabled, then reference input R(z) is set properly. The I control can achieve a zero steady-state error.
The proper tuning of parameters (Kd, φ, Ki) can yield effective transient and steady-state responses.
The authors of previous studies [6,7] have conducted stability analysis on the IPD control of the MSS.
The stability of the overall system is guaranteed when integrator parameter Ki is suitably selected.

Table 1. Symbol summary for a FSMSS.

Symbol Explanation

m the mass of the controlled object
g the gravitational acceleration
C the force constant
x the distance between the electromagnet and suspended object
x0 the equilibrium position of the suspended object
∆x “ x´ x0 the deviation of the distance
∆rx the measured output of the position sensor device

∆Xpsq,∆Xpzq the Laplace transform and z transform of ∆x
∆ rXpzq the z transform of the measured output ∆rxpkq

i the coil current
i0 the bias current of the equilibrium position
∆i “ i´ i0 the deviation of the coil current

∆Ipsq,∆Ipzq the Laplace transform and z transform of ∆i
T the sampling period
ρ the linear factor of the position sensor
β = eT

?
2Ci2

o{mx3
o the derived parameter

rβ = β` β´1 the derived parameter
σ =

a

C{2mxo the derived parameter
rσ = σρ

`

β2 ´ 1
˘

{β the derived parameter
Gpzq the z transform of ∆Xpzq{∆Ipzq
rGpzq the z transform of ∆ rXpzq{∆Ipzq
Rpzq the reference input of Figure 2

3. GSA-Tuning IPD Control

The GSA is a derivative-free global optimum search algorithm. It is a type of SI [10] and was
originally attributed to Rashedi et al. [12]. The GSA is also a nature-inspired algorithm based on
Newton's law of gravity and the concept of mass interactions. The searcher agents are a collection of
masses. “Agent” is derived from the Latin agere. The agent is a computer program that acts as a user
or other program in an agency relationship in computer science. Hence, the agent is an autonomous
computer program that conducts tasks on behalf of its users.

Each agent has the following four specifications: position, inertial mass, active gravitational
mass, and passive gravitational mass. The position of the agent corresponds to a solution of a
problem. Gravitational and inertial masses are calculated using a fitting function.
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Considering a system with Nm agents, the position of the ith agent (agent i) can be expressed
as follows:

Xi “
´

x1
i , ¨ ¨ ¨ , xd

i , ¨ ¨ ¨ , xNd
i

¯

for i “ 1, 2, ¨ ¨ ¨ , Nm (8)

where xd
i is the position of agent i in the dth dimension, Nd is the dimension of an agent, and Nm is

the number of agents. The velocity of agent i can be written as follows:

Vi “
´

v1
i , ¨ ¨ ¨ , vd

i , ¨ ¨ ¨ , vNd
i

¯

for i “ 1, 2, ¨ ¨ ¨ , Nm (9)

where vd
i is the velocity of agent i in the dth dimension. A gravitational force where agent j acts

on agent i is provided in Equation (10), the concept of which is employed in work that is based on
Newtonian gravity and the law of motion. The gravitational force between two particles is directly
proportional to the product of their masses and inversely proportional to the square of the distance
between them:

Fd
ijptq “ Gptq

Mpiptq ¨Majptq
Rijptq ` ε

´

xd
j ptq ´ xd

i ptq
¯

(10)

where ε is a small positive constant, and ε is introduced to prevent the denominator from being zero.
In addition, Maj represents the active gravitational mass related to agent j, and Mpi is the passive
gravitational mass related to agent i. G(t) is the gravitational coefficient at time t and decreases over
time for controlling the search accuracy. G(t) can be determined as follows:

Gptq “ Gpt0qe
p´α¨

t
tmax

q

(11)

where Gpt0q is the initial value, α is a positive constant, t is the current iteration, and tmax represents
the maximum iteration. Rijptq is the Euclidian distance between the two agents i and j and is rewritten
as follows:

Rijptq “ ||Xiptq, Xjptq||2 (12)

The total force acting on agent i in the dth dimension is expressed as follows:

Fd
i ptq “

ÿ

jPKbest,j‰i

randj ¨ Fd
ijptq (13)

where randj is a random number in the interval [0,1]. Kbest represents the set of first agents with
greater mass and the optimal fitness value. Thus, on the basis of the law of motion, the acceleration
of agent i at time t in the dth dimension is written as follows:

ad
i ptq “

Fd
i ptq

Miiptq
(14)

where Mii(t) is the inertial mass of agent i. The next search step involves identifying the values of the
subsequent velocity and position of the agent. Therefore, its position and velocity can be calculated
as follows:

vd
i pt` 1q “ randi ˆ vd

i ptq ` ad
i ptq (15)

xd
i pt` 1q “ xd

i ptq ` vd
i pt` 1q (16)

where randi is a random number in the interval [0, 1], and vd
i is the velocity of agent i in the

dth dimension. This random number is employed to equip the search with a randomized feature.
Gravitational and inertial masses are calculated using the fitness evaluation. A heavier mass equates
to a more efficient agent. This indicates that superior agents have higher attraction and move more
slowly. The gravitational and inertial masses are assumed to be equal, as displayed in the following:
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Mai “ Mpi “ Mii “ Mi, i “ 1, 2, ¨ ¨ ¨ , Nm (17)

The values of agents are calculated using the fitting function. We can calculate the gravitational
and inertial masses with the following equations:

miptq “
f itiptq ´worstptq
bestptq ´worstptq

(18)

Miptq “
miptq

Nm
ř

j“1
mjptq

(19)

where f itiptq is the fitness value of agent i at time t. For a minimization problem, worstptq and bestptq
are defined as Equations (20) and (21), respectively: The summarized symbols of the GSA are listed
in Table 2 for a simplified reading of the formulas

bestptq “ min
jPt1,¨¨¨ ,Nmu

f itjptq (20)

worstptq “ max
jPt1,¨¨¨ ,Nmu

f itjptq (21)

The summarized symbols of the GSA are listed in Table 2 for a simplified reading of the formulas.

Table 2. Symbol summary for GSA.

Symbol Explanation

Xi “
´

x1
i , ¨ ¨ ¨ , xd

i , ¨ ¨ ¨ , xNd
i

¯

position of agent i

xd
i dth dimension of Xi

Nd dimension of an agent
Nm number of agents

t index of iteration
tmax total number of iterations

Vi “
´

v1
i , ¨ ¨ ¨ , vd

i , ¨ ¨ ¨ , vNd
i

¯

velocity of agent i

vd
i dth dimension of Vi

Fd
ijptq dth dimension of gravitational force where agent j acts on agent i

Fd
i ptq total force that acted on agent i in dth dimension

Gptq gravitational coefficient at time t
Gpt0q initial value of Gptq

α a positive constant for Gptq
ε a small positive constant for Equation (10)

Maj active gravitational mass related to agent j
Mpi passive gravitational mass related to agent i

Rijptq Euclidian distance between two agents i and j
Kbest the set of first agents with larger mass
rand random number in the interval [0,1]
ad

i ptq acceleration of agent i at time t and in dth dimension
Miiptq inertial mass of agent i

Miptq
equality mass assumption for the gravitational and inertia mass for

Equation (17)
miptq calculated variable for Miptq
f itiptq fitting function (or fitness)
bestptq strongest agent in the population

worstptq weakest agent in the population
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simulation is provided in detail in Figure 5. The program of the control system simulation is 
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sequentially. Finally, the positions of agents are updated. The stable range of Equations (6)–(7) of the 
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Figure 3. Block diagram of IPD–GSA control of a FSMSS.

Table 3. IPD–GSA searching procedure.

Procedure Operation Details

Step 1: Randomized initial controller parameters (Kd, φ, Ki) in the stable range Equations (6)–(7) of
all agents. Set following parameters: Nd, Nm, tmax, Gpt0q, α, ε, and Kbest.

Step 2: Execute the control system simulation (or experiment) for all agents of t-iteration.
Step 3: Calculate fitness f itiptq.

Step 4: Calculate formulae sequentially for Equations (20), (21), (18), (19), (17), (11), (12), (10), (13),
(14), (15), and (16).

Step 5: Update controller parameter position Xipt` 1q. Specify the stable range for Equations
(6)–(7) of three controller parameters (Kd, φ, Ki).

Step 6: Check the stopping criteria. If they are satisfied, then stop. Otherwise, proceed to Step 2.
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The strategy of the GSA in tuning the IPD controller is provided in Figure 3. The parameter
tuning of an IPD controller using the GSA can be accomplished by assigning the three parameters
Kd, φ and Ki to enable the output response ∆ rXpzq to track reference input Rpzq. The search procedure
of the proposed IPD–GSA control (IPD control by GSA tuning) is listed in Table 3. For explaining
the proposed IPD–GSA control, three flowcharts were plotted, as displayed in Figures 4–6. Figure 4
displays the system operation process. This process includes three main subprocesses: initialization,
a control system simulation, and the GSA. A flowchart of the control system simulation is provided
in detail in Figure 5. The program of the control system simulation is executed Nm times for every
iteration. The GSA flowchart is displayed in detail in Figure 6. First, the fitting functions are
calculated for Nm agents. Thereafter, the formulas of the GSA are calculated sequentially. Finally,
the positions of agents are updated. The stable range of Equations (6)–(7) of the three controller
parameters (Kd, φ, and Ki) is specified for every updated position.
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where Equation (24) is an integrator, and Equation (26) is the PD controller. After solving Equations 
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4. Simulation

This section details the simulation of the proposed IPD–GSA control of the MSS. The difference
equation of Equation (4) can be obtained as follows:

∆rxpkq “ rβ∆rxpk´ 1q ´ ∆rxpk´ 2q ` rσ∆ipk´ 1q (22)

According to the material displayed in Figure 2, the difference equations of the variables E1pzq,
E2pzq, E3pzq, and ∆Ipzq are expressed as follows:

e1pkq “ rpkq ´ ∆rxpkq (23)

e2pkq “ e2pk´ 1q ` Kie1pkq (24)

e3pkq “ e2pkq ´ ∆rxpkq (25)

∆ipkq “ Kde3pkq ` Kdφe3pk´ 1q (26)

where Equation (24) is an integrator, and Equation (26) is the PD controller. After solving
Equations (22)–(26), we can simulate the IPD control of the MSS by using MATLAB software. The
initial state conditions can be assumed to be zero.

The system parameters of the MSS are as follows: β = 2.002 and rσ “ 0.072 [6]. The servo
system requires an integrator for eliminating the steady-state error to step inputs. The IPD control
(Figure 2) is this type of system. Because the state of the system is completely controllable, the desired
closed-loop poles can be specified using the PD control loop. Next, the I control gain Ki can be
assigned to achieve optimal steady-state performance. The PD control is used to stabilize the MSS, as
demonstrated in Figure 2. If the initial zero of the PD control is z “ ´φ “ 0.85, then the stable gain
Kd with respect to Equations (6) and (7) is approximated to:

0.1852 ă Kd ă 30.045 for φ “ ´0.85 (27)

Assuming that the initial zero z “ ´φ of the PD control is designed for rβ “ 2.002 and rσ “ 0.072,
the stable range of Kd is obtained as follows:

0.0278
p1` φq

ă Kd ă
55.58
p1´ φq

, and 0 ă Kd ă
´27.77

φ
(28)

Conservatively, φ and Ki are assigned as follows:

´ 0.98 ď φ ď ´0.1, and 0.1 ď Ki ď 3.0 (29)

Therefore, Equations (28) and (29) are the design constraints of this simulation.
The simulation of the IPD–GSA control is as follows. Let population size Nm = 4. Additionally,

let the dimension of each agent Nd = 3, with the position of ith agent as Xi “
`

x1
i , x2

i , x3
i
˘

. Each
agent contains three controller parameters (i.e., Kd, φ, and Ki); in other words, Kd “ x1

i , φ “ x2
i , and

Ki “ x3
i . The design constraints of each agent are defined in Equations (28)–(29). The total number of

iterations tmax is 100. The initial value of the gravitational coefficient Gpt0q is set as 100, and α is set
to 20. A small positive constant ε is set to 10. The set of first agents with greater mass Kbest is set to
the total number of agents (Nm). The fitness f itiptq for the i’s iteration is assigned as defined in the
following function:

f itiptq “ γ1 ¨Mp` γ2 ¨

100
ÿ

k“1

e2
1pkq (30)

where Mp is the peak overshoot, γ1 “ 10 is the weighting factor of Mp, and γ2 “ 10 is the weighting
factor of the integral squared error.
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Both Mp and
100
ř

k“1
e2

1 pkq of Equation (30) are calculated from system responses of

Equations (22)–(26) for the i’s iteration. The IPD controller (Kd, φ, Ki) of i’s iteration is
Xi “

`

x1
i , x2

i , x3
i
˘

. The simulations were performed using MATLAB software. The (Kd, φ, Ki)
iterative curve is provided in Figure 7. After 100 iterations, the position of four agents approximated
X “ r16.2138,´0.8646, 0.4972s. Optimal fitness (best(t)) approximated 0.1230. Therefore, the optimal
IPD controller could be obtained as follows: Kd “ 16.2138, φ “ ´0.8646, and Ki “ 0.4972. The output
response is displayed in Figure 8; the horizontal axis represents the sampling time, the unit is 1 mini-s,
and the vertical axis is the measured output (∆rx) of the MSS. The red line represents the step input (r),
the amplitude of which is 0.1 units. The blue curve indicates the measured output (∆rx) of the MSS.
As displayed in Figure 8, the steady-state error and overshoot to a step input were absent. For the
MSS, this indicated strong performance.
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5. Experiments and Results

This section details the hands-on experiments. The FSMSS apparatus is provided in Figure 9 [6].
A sketch of the magnets, a field sensor, and an electromagnet is displayed in Figure 10. The suspended
object (magnet) was composed of three 1 cm cubes as shown in Figure 9, and weight of a cube is
7 grams. The material of the magnet is NdFeB. The magnetic core of the electromagnet is a bolt with
nut, and the material is steel. The shape of the magnetic core is cylindrical. The inner diameter of the
magnetic core is 15 mm and outer diameter is 50 mm. The height is 55 mm. The Hall Effect device
can sense the strength of the magnetic field of the three-cubed magnet. Therefore, this device serves
as the position sensor. This MSS apparatus is the FSMSS. Hall Effect devices are superior in position
sensing to optical [2,7] and electromechanical sensing devices in the MSS. If the position measurement
is acquired through optical position sensors, then it is disturbed easily by surrounding light sources.
The magnet position sensor is installed on the bottom of the frame. Because the magnet is placed
relatively near the position sensor, which is situated far from the solenoid, the electromagnet does
not affect the output measurement. The main focus of this study was the application of a magnetic
sensor. Thus, a magnetic field sensor was utilized to measure the position of the suspended object. In
this apparatus, the position sensor is SS495A [6].

A power amplifier provides a current that passes through the electromagnetic coil. When
a current passes through the electromagnet, a magnetic force is generated. The strength of the
generated magnetic force is proportional to the square value of the current through the coil [2,6,7]. The
FSMSS uses magnetic attraction to pull a magnet upward, against gravity. To control the current of the
electromagnet, a current transducer is employed to measure the coil current. A current transducer is
a Hall Effect current sensor with internal integrated circuits. In this apparatus, the current transducer
is LA55-P [6]. The performance of the power amplifier (serving as a current driver) is provided in
Figure 11. The step response of the coil current was from one to two units. A steady-state error
was absent in the power amplifier. The settling time was approximately 25 ms. Therefore, the
electromagnetic coil current was controlled effectively.Sensors 2015, 15, page–page 
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Figure 11. Step response of the power amplifier (current driver). 
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1.5 to 1.8 V. The steady-state error and system overshoot did not occur in this experiment. The 

setting time was approximately 0.5 s. For the FSMSS, this result indicates strong performance. 
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The measured output response of the FSMSS is provided in Figure 12. The voltage of equilibrium
was 1.5 V. The input voltage was from 1.5 to 1.8 V. The optimally tuned IPD controller in the previous
section was employed in this hands-on experiment. The orange curve in Figure 12 depicts the output
measurement and represents the output of the SS495A circuit, which ranged from 1.5 to 1.8 V. The
steady-state error and system overshoot did not occur in this experiment. The setting time was
approximately 0.5 s. For the FSMSS, this result indicates strong performance.Sensors 2015, 15, page–page 
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Figure 12. Output response of a FSMSS. 

5. Conclusions 

The main contribution of this study is the GSA-tuning IPD control for MSSs. This IPD control 

can stabilize the MSS with the provided constraints. If the conditions are stabilized, then the 

integrator can eliminate the steady-state error to a step input. An IPD controller has three 

parameters and can be tuned to achieve optimal performance under the stable condition. The tuning 

method in this study was the GSA. The advantages of IPD–GSA are as follows: the GSA is based on 

heuristics, simplicity, and an absence of assumptions. This paper details all of the simulations and 

hand-on experiments that were conducted. According to the results, the proposed control scheme is 

appropriate for the FSMSS.  
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6. Conclusions

The main contribution of this study is the GSA-tuning IPD control for MSSs. This IPD control can
stabilize the MSS with the provided constraints. If the conditions are stabilized, then the integrator
can eliminate the steady-state error to a step input. An IPD controller has three parameters and can
be tuned to achieve optimal performance under the stable condition. The tuning method in this study
was the GSA. The advantages of IPD–GSA are as follows: the GSA is based on heuristics, simplicity,
and an absence of assumptions. This paper details all of the simulations and hand-on experiments
that were conducted. According to the results, the proposed control scheme is appropriate for
the FSMSS.
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