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Abstract: As a noise analysis method for inertial sensors, the traditional Allan variance 

method requires the storage of a large amount of data and manual analysis for an Allan 

variance graph. Although the existing online estimation methods avoid the storage of data 

and the painful procedure of drawing slope lines for estimation, they require complex 

transformations and even cause errors during the modeling of dynamic Allan variance. To 

solve these problems, first, a new state-space model that directly models the stochastic 

errors to obtain a nonlinear state-space model was established for inertial sensors. Then, a 

neural-extended Kalman filter algorithm was used to estimate the Allan variance 

coefficients. The real noises of an ADIS16405 IMU and fiber optic gyro-sensors were 

analyzed by the proposed method and traditional methods. The experimental results show 

that the proposed method is more suitable to estimate the Allan variance coefficients than the 

traditional methods. Moreover, the proposed method effectively avoids the storage of data 

and can be easily implemented using an online processor. 

Keywords: Allan variance; stochastic errors; online estimation methods; nonlinear  

state-space model; neural-extended Kalman filter 

 

  

OPEN ACCESS 



Sensors 2015, 15 2497 

 

 

1. Introduction 

Inertial sensors are valuable sensors for navigation of aircraft systems, vehicles and strategic  

weapons [1]. However, stochastic errors, inherently present in inertial sensor outputs, significantly affect 

the performance of inertial sensors. To eliminate the effect of stochastic errors, they should be modeled 

and identified to properly compensate or filter them before integrating into the navigation system [2–4]. 

In general, the noise analysis methods used for inertial sensors include online and offline estimation 

methods. In the offline methods, frequency and time-domain approaches have been used to model the 

stochastic errors of inertial sensors. As a frequency-domain method, power spectral density (PSD) is 

commonly used to investigate the stochastic errors of inertial sensors. Although, the PSD-based 

method is straightforward to estimate the transfer functions of stochastic errors, it is difficult for  

non-system analysts to understand [5–7]. As a time-domain analysis technique, the Allan variance is a 

simple and useful method in determining the characteristics of the underlying random processes causing 

the data noise. It has been widely used for identifying stochastic processes such as quantization noise, 

white noise, correlated noise, sinusoidal noise, random walk, and flicker noise in inertial sensors [8–10]. 

Recently, modified Allan variance methods such as sliding average Allan variance [11] and fully and 

not fully overlapping Allan variance [12] have been developed. However, these methods are  

time-consuming, offline, and error-prone [13]. 

Compared to offline methods, online methods have rarely been studied. One online method is 

reported in [14,15], and another is reported in [16,17]. In [14,15], an equivalent ARMA was used to 

model the MEMS IMU stochastic errors to obtain a linear Gaussian state-space model,  

and then a recursive EM algorithm proposed by Elliot and Krishnamurthy [18] was used. The method 

proposed in [14,15] does not require the storage of any data and can be implemented using an online 

processor, however, it is only valid for the stochastic errors driven by white noise. Therefore, the 

quantization noise cannot be estimated directly [19]. Moreover, transformations during the modeling 

are complex, particularly for the estimation of four parameters. The main advantage of the method 

proposed in [16,17] is that it models the dynamic expression of Allan variance using exponentially 

weighted moving average algorithm to solve the complex transformations of a linear state-space model 

reported in [15]. The method also can estimate any stochastic errors present in raw data. However, it 

still has two major drawbacks: (I) The additional error can be introduced in the measurement equation 

by the exponentially weighted moving average algorithm; and (II) the Sage-Husa adaptive Kalman filter 

used to estimate Allan variance coefficients may cause filter divergence while estimating process noise 

covariance matrix Qk and measurement noise covariance matrix Rk simultaneously [20]. Finally, it 

must be pointed out that the method reported in [16,17] is out of the scope of this paper, because this 

study focuses on static gyros rather than onboard gyros.  

To reduce the complexity of modeling and estimate all five Allan variance coefficients in real time, a 

new online estimation method different from the above methods is proposed in this paper. In the 

proposed method, the recursive expressions of Allan variance were modeled directly instead of using 

exponentially weighted moving average algorithm to obtain an accurate nonlinear state-space model 

and implemented by a neural-extended Kalman filter (NEKF) algorithm to estimate the Allan variance 

coefficients. Because the state equation is directly modeled by random errors and zero-mean Gauss white 

noise, the measurement equation is a recursive expression of Allan variance, and a NEKF algorithm is 
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used to estimate the Allan variance coefficients. The proposed method avoids the limitations of the 

existing online methods. The experimental results show that the proposed method has a simple 

modeling and can estimate five Allan variance coefficients online. 

This paper is organized as follows: In Section 2, the sources of the stochastic errors of inertial 

sensors are described. Section 3 reviews the existing online estimation methods based on a linear  

state-space model. The proposed method comprising the new nonlinear state-space model of Allan 

variance coefficients and NEKF is described in detail in Section 4. Section 5 discusses the experimental 

results in two subsections. In the first subsection, an ADIS16405 MEMS sensor was used as the 

stochastic error source to evaluate the performance of the Allan variance method, existing online 

estimation methods, and proposed method. In the second subsection, another experiment was conducted 

to estimate Fiber Optic Gyro (FOG) stochastic errors to verify that the proposed method can estimate the 

coefficients of five basic stochastic errors simultaneously without any limitation. Finally, the 

conclusion and future work are summarized in Section 6. 

2. Stochastic Error Sources in Inertial Sensors 

The aim of this section is to discuss the five basic noise terms and give their corresponding 

differential equations. The stochastic model of inertial sensors is shown in Figure 1. The five basic 

noise terms in Figure 1 are quantization noise, angle random walk (ARW), bias instability, rate random 

walk (RRW), and rate ramp. The definitions and their detailed derivations are given in [21]. 
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Figure 1. Stochastic model of inertial sensor. 

Quantization noise: This is one of the errors introduced into an analog signal by encoding it in a 

digital form. It represents the minimum resolution level of the sensor. The Allan variance of 

quantization noise can be expressed as follows: 
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where Q is the quantization noise coefficient, and τ is the sample interval. 

ARW: This is a high-frequency noise and characterized by a white-noise rational spectrum on gyro 

rate output voltages. The differential equation and Allan variance of ARW can be expressed as follows: 

 tNvyarw 1  (2) 
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where N is the ARW coefficient, and v1(t) is the unit white noise. 

Bias instability: This noise is originated from the electronics or other components that are 

susceptible to random flickering. It is also known as flicker noise and approximated by the first-order 

Gauss-Markov process as follows: 
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where D is the differential operator, β is the reciprocal correlation time and can be determined by 

autocorrelation, B is the flicker noise parameter, and v2(t) is the unit white noise. 

The Allan variance of bias instability can be expressed as follows: 
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RRW: This is a random process of uncertain origin, possibly a limiting case of an exponentially 

correlated noise with a very long correlation time. It is associated with the PSD rate. The differential 

equation and Allan variance of RRW can be expressed as follows: 
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where K is the RRW coefficient, and v3(t) is the unit white noise. 

Rate ramp: The error terms considered so far have random character. This is also probably because 

of a very small acceleration of the platform in the same direction and persisting over a long period of 

time. Because this noise has nonrational spectra, the second-order Gauss-Markov process is used as  

the approximation: 

 
2

00

2

4

2 wDwD

tRv
yrr


  (8) 

where R is the ramp noise parameter, ω0 is the undamped natural frequency of this second-order 

system and needs to be determined, and v4(t) is the unit white noise. 

The Allan variance of ramp noise can be expressed as follows: 

2 2
2

2
rr

R 
   (9) 

The Allan variance is a method of representing root-mean-square (RMS) random drift error as a 

function of averaging times [22]. As shown in [5], the above stochastic errors can be identified from 

the standard Allan variance plot. The Allan variance coefficients and the slope of the corresponding 

curves are shown in Table 1. 
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Table 1. Summary of characteristic noise coefficients and curve slopes. 

Noise Type Noise Coefficient Curve Slope 

Quantization Noise Q −1 

Angle Random Walk N −1/2 

Bias Instability B 0 

Rate Random Walk K 1/2 

Drift Rate Ramp R 1 

3. Online Estimation Methods Based on Linear State-Space Model: A Review 

An online estimation method based on a linear state-space model was first introduced by Ford and 

Evans in [14]. Only two random errors, ARW and RRW, were estimated using this method. Based on 

this method, another online estimation method was developed to estimate three random errors, ARW, 

RRW, and bias instability, by Saini and Rana [15]. Although there are differences between these 

methods, in some sense, the method proposed in [15] is an extended version of that proposed in [14]. For 

convenience, the method proposed in [15] was used as the existing method in the rest of this paper. In 

this paper, the proposed online estimation method was compared to the existing method. To compare 

the complexity of the modeling process and select between the existing and proposed methods in this 

paper, the existing method was reviewed first. The existing method mainly contains two steps: The 

first step is to model the stochastic errors to obtain a linear state-space model, and the second step is to 

use the finite-dimensional filters to estimate the coefficients of stochastic errors. Herein, the two steps 

are introduced in Subsections 3.1 and 3.2. The detailed derivations of this method are reported in [15]. 

3.1. Linear State-Space Model 

The main steps of modeling the stochastic errors in a discrete linear state-space model can be 

described as follows: 

Step 1. Model an equivalent ARMA model [23] driven with a single white noise as follows: 

       tytytytY rrfrrw   (10) 

where Y(t) is used to represent the mixture of yrrw(t), yf(t), and yrr(t). 

Step 2. Substituting Equations (4), (6) and (8) into Equation (10), we obtain 
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 (11) 

The left hand side of Equation (11) is an equivalent AR model, and the right hand side of  

Equation (11) is an equivalent MA model. Moreover, the Equation (11) can be rewritten as: 

         
.... ... .. . ... .. .

1 2 3 4 0 1 2 3Y t c Y t c Y t c Y t c Y t r r r r          (12) 

where the superscript of Y(t) and r represent the differential of Y(t) and r. c1, c2, c3, c4 and θ0, θ1, θ2, θ3 

are coefficients of equivalent ARMA model, the r is the white noise. 

Referring to [15] to solve Equation (12), here we only give the results as follows: 
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Step 3. The Equation (12) can be written as a linear state space mode as follow: 
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where X(t) is continuous-time state vector, and the  tX  is the differential of X(t). Both ξ(t) and υ(t) are 

continuous-time noise, and they are white, zero-mean, uncorrelated. 

The general linear state-space model for random errors of inertial sensor can be obtained by 

converting the Equation (14) into discrete form: 

1 1 1 1k k k k k

k k k k k

X X G

Y X

      

   
 (15) 

where k = 1, 2, …, Xk is state vector, and Yk is the measurement. The Φk is state-transition matrix, and 

Θk is the measurement matrix. The Gk and Ψk are the process and measurement noise matrix, 

respectively. Here ξk and υk are discrete-time noise, and they are white, zero-mean, uncorrelated. 

3.2. New Finite-Dimensional Filters 

The new finite-dimensional filters were proposed by Elliott and Krishnamurthy in 1999 [18]. In a linear 

dynamic system, they were used with expectation maximization (EM) algorithm to yield the maximum 

likelihood estimation. Compared to the standard KF-EM algorithm, the new finite-dimensional filters have 

two main advantages. The first advantage is that the memory requirements are significantly reduced, 

and the second advantage is that it can be easily used in a multiprocessor system. The main process of this 

recursive filter is shown below, and the detailed derivations are reported in [18]. The linear state-space 

model that the states xk are observed indirectly via the observations yk can be written as [15,18]: 

1 1 1 1k k k k k

k k k k k

x A x J

y C x V

     

  
 (16) 

where Ak is state-transition matrix, and Ck is the measurement matrix. The Jk and Vk are the process 

noise and measurement noise matrix, respectively. Note that 
kÂ  and kĈ  are the estimate of Ak and Ck, 

http://fanyi.baidu.com/#en/zh/reducing
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respectively. Both ξk and υk are noise that have been defined below Equation (15). The Kalman filter 

can be expressed as [18]: 
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where 

kP  represents the a priori state covariance, and 

kP  represents the a posteriori state covariance. 

The 

kx̂  represents the a posteriori state estimate, and the superscript T is a symbol that represents a 

transposed matrix. The 
f

kQ̂  and 
f

kR̂  are estimates of the process noise covariance and measurement noise 

covariance, respectively. 

The Zk, Ok, and Sk are the notations used for simplifying the equation and are defined as follows: 
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where i, j ϵ {1, 2, …, m}, n ϵ {1, 2, …, n}, ei, ej, en denote the unit column vectors in the ith, jth, and 

nth columns, respectively. Here Tr [] denotes the trace of matrix, and ,  denotes the inner product. 

The initializations of the above equations are defined as follows:  
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where )(Mij

kU  and in

kE  are calculated as follows: 
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As shown in [15], the major drawback of this method is that the quantization noise cannot be 

directly incorporated into the error model because the equivalent ARMA model used here is driven 

with white noise [23]. 

4. New Method 

As shown in Subsection 3.1, the modeling of stochastic errors in the existing method is indirect. 

This is because an equivalent ARMA theory was used to model the stochastic errors to obtain a linear  

state-space model. Moreover, the estimation process of the existing online estimation method is 

complex, particularly for the estimation of four parameters. In this situation, it is difficult to obtain the 

solution of Equation (12) and tedious to calculate Equations (23)–(33) described in Subsection 3.2. 

Focusing on the disadvantages and inspired by the expression of δ
2 

total(τ), which is nonlinear in nature, a 

simple and direct online estimation method based on a nonlinear state-space model and NEKF is 

proposed in the following two subsections.  

4.1. New Nonlinear State-Space Model of Allan Variance Coefficients 

To estimate the Allan variance coefficients directly in real time, δ
2 

total(τ) should be a dynamic 

expression at discrete-time k. The recursive algorithm is the best choice for online estimation because 
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the computation can be carried out as soon as a new sample arrives. The detailed derivation of the 

recursive formulation for Allan variance is shown below: 

Assume   is the total number of data points. According to [5,6], the two steps of Allan variance 

computation can be expressed as follows: 
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where l is the length of the data cluster, and lL /  is the number of data clusters. Recall that, the τ is 

sample time that has been defined in Section 2, and  lm   is the correlation time.  

Equation (41) shows the average of each cluster, and each of them can be rewritten in the recursive 

form as follows: 
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where lm 1 , and   00 kw . 

Equation (42) shows the Allan variance, and each of the recursion equation can be written as follows: 
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where k ≥ 2 and  2

1 0m  . 

When l = 1, the Allan variance of each data point can be calculated using Equation (44). Assuming 

that the Allan variance coefficients are composed of true values and the zero-mean Gauss white noise. 

Therefore, they can be expressed as follows: 

   1 1 1 1 1 1

T T

k k• k• k k• k k k k k kQ N B K R Q N B K R        (45) 

where Qk, Nk, Bk, Kk and Rk represent the values of Quantization Noise, ARW, Bias Instability, RRW 

and Drift Rate Ramp at discrete-time k, and ςk is the zero-mean Gauss white noise. Let Equation (45) 

as the state equation. 

According to [5], the Allan variance also can be expressed in another way: 
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Based on Equations (44) and (46), the Allan variance with 1 lm  can be expressed as follows: 
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Equation (47) is the dynamic equation of Allan variance and can be used as the measurement equation. 

Thus, the new nonlinear state-space model of Allan variance proposed here was completely modeled. 

4.2. Neural-Extended Kalman Filter  

NEKF is known as an online adaptive estimation system developed by incorporating the training 

into the state estimate [24,25]. In fact, NEKF is an extension of the neural Kalman filter (NKF), which 

has been used to overcome the two major limitations related to the utilization of KF for INS/GPS 

integrated system: (I) Accurate stochastic model for each of the sensor errors has to be accurately 

predefined; (II) Prior information about the covariance values of both inertial and GPS data as well as 

the statistical properties of each sensor system has to be accurately known [26,27]. Although the 

nonlinear state-model composed of Equations (45) and (47) look like a model that a EKF algorithm 

could be applied, the EKF cannot directly used in this nonlinear state-model. Because Equation (47) is 

nonlinear with Q, N, B, K and R, and there is not any statistical measurement noise in it. The high-order 

items in Taylor expansion can be seen as virtual measurement noise to compensate linearization error, 

however, the time-variable statistic of this noise is still unknown. The NEKF that trains neural network 

online can be used in nonlinear system with random noise [28], therefore, it was used to estimate the 

Allan variance coefficients in this study. 

In a NEKF, an extended Kalman filter (EKF) is used as an estimator and a training paradigm. As an 

estimator, EKF estimates the states and the input and output weights of neural networks. As a training 

paradigm, it is driven by the same residuals as the state estimator and ensures that the residuals are as 

small as possible; it approximates the difference between the prior model used in the prediction steps 

of the estimator and the actual model dynamics [29]. In this application, the augmented state vector of 

NEKF contains both the state estimates and the weights (input and output) of the neural network. 

NEKF can improve the performance by estimating the weights of neural network, which in turn is used 

to modify the state estimate predictions of the filter as the measurements are processed. Based on this 

point, the NEKF algorithm is presented to online estimation Allan variance coefficients is presented. 

The main flow of NEKF are shown below: 

The nonlinear system can be modeled as [28]: 
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where xk is the state vector, f(xk) is state function, zk is measurement vector, and h(xk) is the output 

function. The k  and ζk represent the random noise, respectively. 

Step 1. The state xk is augmented as follows: 

k

k
k k

k

k

x
x

x
W

 
   

     
    

 
(49) 

  



Sensors 2015, 15 2506 

 

 

where Wk is the weights of neural network. It is composed of input weights ηk and output weights λk. 

Note that the neural network used in this study comprises only one hidden layer. Suppose that the 

number of xk is q, the number of hidden node [30] is p, and the number of neural network output is u. 

Therefore, the dimension of ηk is (q × p) × 1, the dimension of λk is (p × u) × 1, and the dimension of 

Wk is (q × p + p × u) × 1. 

The NN(xk, ηk, λk) function used in this study is: 
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Note that the states xk are considered the input to the neural network, whereas the weights Wk are the 

“parameters” of function approximator [28] that can be used to model something in the noise. More 

informance about the NN(xk, ηk, λk) can be found in [24–29]. 

Step 2. The general equations of the NEKF are defined as [26]: 
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where Fk is state Jacobian, and Hk is measurement Jacobian. The 0 represents zero vector, 
kK  is the 

Kalman Gain, 


kP  is the a priori state covariance, and 


kP  is the a posteriori state covariance. The 


kx̂  

is the a priori state estimate, 

kx̂  is the a posteriori state estimate, 
kR  is the measurement noise 

covariance, and 
kQ  is the covariance of the process noise. The I represents the unit matrix. 

5. Experimental Results 

To evaluate the performance of the proposed method, the static data of an ADIS16405 MEMS 

sensor and low-precision FOG were collected. The reason this MEMS sensor was tested in the first 
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experiment is that this sensor exhibits ARW, RRW, and bias instability [6,15]. Moreover, the existing 

method is also valid to estimate ARW, RRW, and bias instability; therefore, it can be used to compare 

the performance of the proposed method in this experiment. FOG, as a typical inertial sensor with five 

basic stochastic errors, was also used to verify the effect of the proposed method. As shown in [19], the 

existing method is invalid to estimate quantization noise. If the proposed method can accurately estimate 

the Allan variance coefficients of FOG, then it can be shown that the proposed method is more suitable 

to estimate the Allan variance coefficients of inertial sensors than the existing method. In the first 

experiment, we will use the proposed, existing, and traditional Allan variance methods to estimate the 

stochastic errors of the ADIS16405. However, because of quantization noise considered in the second 

experiment, we used the proposed and traditional Allan variance methods to analyze the stochastic 

errors of FOG. In each experiment, the main steps of the proposed method can be implemented  

as follows: 

Step 1. Model the nonlinear state-space model based on the main stochastic errors. 

Step 2. Make a preliminary estimate of the coefficients of the main stochastic errors. 

Step 3. Use NEKF to estimate the Allan variance coefficients in real time. 

5.1. Estimation for MEMS Experimental Data 

Figure 2 shows the actual MEMS sensor ADIS16405 which was used in our experiment. The 5-h 

static data were collected from the ADIS16405 at room temperature at 100 Hz. The raw data of gyro X, 

gyro Y, gyro Z and their corresponding Allan standard deviation plots are shown in Figures 3–8. 

 

Figure 2. ADIS 16405. 

 

Figure 3. Raw data of Gyro X. 
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Figure 4. Allan variance plot of Gyro X. 

 

Figure 5. Raw data of Gyro Y. 

 

Figure 6. Allan variance plot of Gyro Y. 
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Figure 7. Raw data of Gyro Z. 

 

Figure 8. Allan variance plot of Gyro Z. 

According to the Allan variance plot analysis, three main stochastic errors should be considered for 

the gyro in this test, namely, ARW, bias instability, and angular RRW with the mean-square values of 

N, B and K, respectively. Therefore, the linear state-space model of gyro can be deduced as follows: 

The unified ARMA model Equation (10) consisting of ARW and bias instability can be written  

as follows: 

     tytytY rrwf   (58) 

Substituting Equations (4) and (6) into Equation (58), the unified ARMA model can be written  

as follows: 

         2 3D D Y t D Bv t D Kv t      (59) 

According to Subsection 3.1, the Equation (59) also can be rewritten as follows: 

   1 2 3Y t Y t r r     (60) 

where σ1, σ2 and σ3 are coefficients of equivalent ARMA model. According to [15,19], the differential 

equation Equation (60) can be solved as follows:  

    2 2 2Y t Y t K B r K r      (61) 

The corresponding state-space form of the above differential equation can be written as follows: 
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The discrete form of Equation (62) is: 
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where τ is the sampling interval that has been defined in Section 2. Note that Equation (63) is the linear 

state-space model that can be implemented by new finite-dimensional filters. 

Compared to the complex process of modeling a linear state-space model, the state equation of 

nonlinear state-space model for Gyro can be directly written as follows: 
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(64) 

The first-order Taylor expansion of measurement equation Equation (47) can be written as follows: 
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where H.O.T. represents all high-order items in Taylor expansion [16], and h(xk) is expressed as follows: 
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To use NEKF algorithm, the Equation (65) should be written as follows: 
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(68) 

Note that χk is the virtual measurement noise with unknown time-variable statistic to compensate 

linearization error H.O.T. [16].  

In general, there are two methods used to set initialization. The first method is based on data sheets 

of inertial sensors. The second method is based on prior analysis that includes two steps: The first step 
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is to use traditional methods to analyze the stochastic errors of sampling gyro, and the second step is to 

select the initial values based on the results of the first step to estimate the same type of gyros. Based 

on the prior analysis of ADIS 16405, the initialization of N, B and K were taken as 1.5 (°/h1/2), 20 (°/h) 

and 50 (°/h3/2), respectively, in this experiment. To show the initial change clearly in the estimation 

process, only 20,000 samples for the estimation of N, B and K are shown in Figures 9–17. 

 

Figure 9. Estimates of N for Gyro X. 

 

Figure 10. Estimates of B for Gyro X. 
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Figure 11. Estimates of K for Gyro X. 

 

Figure 12. Estimates of N for Gyro Y. 

 

Figure 13. Estimates of B for Gyro Y. 
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Figure 14. Estimates of K for Gyro Y. 

 

Figure 15. Estimates of N for Gyro Z. 

 

Figure 16. Estimates of B for Gyro Z. 
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Figure 17. Estimates of K for Gyro Z. 

As shown in Figures 9–17, the curves of the existing method (red curve) and proposed method  

(blue curve) are convergent. Moreover, the convergent values of the two online estimation methods are 

close to those estimated by the Allan variance method. Therefore, both the existing and proposed 

online estimation methods can accurately estimate the coefficients of ARW, Bias Instability, and RRW 

in same setting conditions. 

To evaluate which method (algorithm) is better, two aspects were usually considered: (1) speed  

and (2) accuracy. In this paper, the proposed and existing methods are online estimation methods, and 

they estimate the Allan variance coefficients in real time, indicating that the computation can be 

carried out as soon as a new sample arrives. Therefore, the speed was not compared directly here. The 

stability of filter used in those methods was used to evaluate which of them is better in this study. 

Figures 9–17 show that although the trends of the two online estimation methods are basically 

identical, the estimation curves of existing method fluctuated significantly in the estimation process of 

B and K. Moreover, the standard deviation sizes of proposed method shown in Table 2 are slightly 

smaller than those of existing method. Therefore, the experiment suggest the NEKF in proposed 

method might have advantages over the new finite-dimensional filters in existing method. 

Table 2. Parameter estimation results of different methods. 

Item 
Allan 

Variance 

Existing Method Proposed Method 

Mean 
Indicator 

(%) 

Standard 

Deviation 
Mean 

Indicator 

(%) 

Standard 

Deviation 

Gyro X 

 2/1hNestimation   2.2378 2.1951 1.9081 0.0374 2.2576 0.8848 0.0362 

 hBestimation   28.3271 30.2237 6.6954 6.6221 28.0384 1.0191 1.0077 

 2/3hKestimation   68.5726 70.0132  2.1008 5.0036 68.1427 0.6269 1.7449 

Gyro Y 

 2/1hNestimation   2.2437 2.2219  0.9716 0.0358 2.2542 0.4680 0.0400  

 hBestimation   29.4976 30.2899  2.6860 2.1674 29.7512  0.8597 0.7754 

 2/3hKestimation   62.6242 61.1463  2.3600 4.3755 61.3556 2.0257 1.5221 

Gyro Z 

 2/1hNestimation   2.5248 2.4923 1.2872 0.0458 2.5050 0.7842 0.0398 

 hBestimation   30.2804 31.0545 2.5564 8.3048 30.6135 1.1001 1.2304 

 2/3hKestimation   60.3588 61.6976 2.2181 6.8390 59.3297 1.7050 0.9837 
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As to the accuracy of the methods, Table 2 summarizes the parameter estimation results for the 

Allan variance, existing, and proposed methods. For a better visualization of the performance 

comparison, the performance indicator (|method A − method B|/method A) × 100% was defined to 

demonstrate the percentage of difference between methods B and A. Although the results of the Allan 

variance method can be affected by many factors, it is the IEEE Std [5] that is used to analyze the 

stochastic errors of inertial sensors. Moreover, in the online estimation of Allan variance coefficients, 

the results of the Allan variance method have been used as the reference values and compared to the 

online estimation methods proposed in [14–16]. Herein, the Allan variance method was also used as 

the reference method (method A), providing a baseline for comparison. According to Table 2, the 

performance degradation values of the proposed method over the Allan variance method are smaller 

than those of the existing method against the Allan variance method for N, B, and K, respectively.  

It can also be seen that the linear state-space model was modeled using Equation (58) to  

Equation (63), while the nonlinear state-space model can be directly modeled in Equations (64) and (65). 

Therefore, in some sense, the complexity of the modeling of the proposed method is lower than that of the 

existing method. 

5.2. Estimation for Fiber Optic Gyro (FOG) Experimental Data 

To verify that the proposed method can estimate all the five Allan variance coefficients of inertial 

sensors simultaneously without any limitations, the stochastic errors of the actual low-precision FOG 

were analyzed in this experiment. The actual low-precision FOG used in our experiment is shown in 

Figure 18. The 3-h static data were collected from the #1 FOG and #2 FOG at room temperature with 

100 Hz. The raw data of #1 FOG and #2 FOG, and their corresponding Allan variance plots are shown 

in Figures 19–22. 

 

Figure 18. Low-precision FOG. 
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Figure 19. Raw data of #1 FOG. 

 

Figure 20. Allan variance plot of #1 FOG. 

 

Figure 21. Raw data of #2 FOG. 
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Figure 22. Allan variance plot of #2 FOG. 

Based on the analysis of the Allan variance plot shown in Figures 20 and 22, the five basic 

stochastic errors should be considered in this test. The state equation of nonlinear state-space model 

can be written as follows: 
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 (69) 

The measurement equation Equation (47) should be linearized by first-order Taylor expansion. The 

results can also be written as Equation (65). However, the h(xk) is: 
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 (70) 

To use the NEKF, the first-order Taylor expansion of measurement equation Equation (47) should 

be written as the form of Equation (67). 

The initialization of KBNQ ,,, and R were taken as 0.0082(°), 0.0007(°/h), 0.0827(°/h), 0.1752(°/h) 

and 0.0547(°/h2), respectively, in this test. To show the initial change clearly in the estimation process, 

the simulation test curves of only 20,000 samples for the five basic stochastic errors are shown in  

Figures 23–32. The results of the classical Allan variance and the proposed methods are shown in  

Table 3. Figures 23–32 show that the estimation curves of proposed method (blue curves) are all 

convergent curves. Moreover, Figures 23–32 also show that the coefficients of five basic stochastic 

errors converge to the results of Allan variance method. 

From Table 3, it can be seen that the mean values of five basic stochastic errors estimated by the 

proposed method are close to their corresponding values analyzed by Allan variance method. 

Therefore, this experiment prove that the proposed method can not only estimate ARW, bias instability, 

RRW and drift rate ramp but also valid to estimate quantization noise.  
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According to the above two experiments, the proposed method has a simple modeling process, and 

it can be used to estimate all the five basic stochastic errors. Moreover, NEKF was used in the 

proposed method, resulting in a better estimation results. 

 

Figure 23. Estimation of Q for #1 FOG. 

 

Figure 24. Estimation of N for #1 FOG. 

 

Figure 25. Estimation of B for #1 FOG. 
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Figure 26. Estimation of K for #1 FOG. 

 

Figure 27. Estimation of R for #1 FOG. 

 

Figure 28. Estimation of Q for #2 FOG. 
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Figure 29. Estimation of N for #2 FOG. 

 

Figure 30. Estimation of B for #2 FOG. 

 

Figure 31. Estimation of K for #2 FOG. 
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Figure 32. Estimation of R for #2 FOG. 

Table 3. Results of estimated parameters by the Allan variance and proposed methods. 

Item 

#1 FOG #2 FOG 

Allan 

Variance 

Proposed Method 
Allan 

Variance  

Proposed Method 

Mean  
Indicator 

(%) 

Standard 

Deviation 
Mean  

Indicator 

(%) 

Standard 

Deviation 

 estimationQ  0.0224 0.0226 0.8929 0.0121 0.0260 0.0267 2.6923 0.0232 

 21hNestimation   0.0050 0.0050 0.0000 0.0209 0.0051 0.0051 0.0000 0.0183 

 hBestimation   0.2771 0.2963 6.9289 0.0237 0.2667 0.2709 1.5748 0.0316 

 23hKestimation   0.5530 0.5630 1.8083 0.0305 0.2994 0.2873 4.0414 0.0220 

 2hRestimation   0.3499 0.3546 1.3432 0.0128 0.1382 0.1390 0.5789 0.0117 

6. Conclusions and Future Work 

In this paper, a new online estimation method based on a nonlinear state-space model and NEKF  

is proposed: the model was used instead of the traditional linear state-space model and complex  

finite-dimensional filter algorithm. In examination of ADIS 16405 gyro data, the proposed method 

performed favourably compared to the existing online method, relative to the baseline estimates obtained 

from the Allan variance method. In the actual FOG gyro data, the proposed method could estimate all the 

five basic stochastic errors simultaneously. Moreover, unlike the offline methods, the proposed method 

avoids the storage of a large amount of data and analyzes the Allan variance graph manually. 

The success of the proposed method shows an encouraging direction in accurately estimating the 

Allan variance parameters for inertial sensors with recursive online analysis. However, although the 

proposed method performs well for static data, the onboard performance is not known. Theoretically, 

the new method can be used for the autonomous estimation of the Allan variance coefficients for 

onboard inertial sensors. However, in practice, it should be used carefully because the online 

estimation method can be affected by the initial values of the parameters, noise mean, and variance. 

The onboard performance analysis and improvement of the new online method will be studied  

in the future. 
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