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Abstract: In the wireless sensor networks (WSNs) for electric field measurement system 

under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to 

obtain the electric field distribution with multiple sensors. The location information of each 

sensor is essential to the correct analysis of measurement results. Compared with the 

existing approach which gathers the location information by manually labelling sensors 

during deployment, the automatic localization can reduce the workload and improve the 

measurement efficiency. A novel and practical range-free localization algorithm for the 

localization of one-dimensional linear topology wireless networks in the electric field 

measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists 

based on the Received Signal Strength Indicator (RSSI) values to determine the relative 

locations of nodes. The algorithm is able to handle the exceptional situation of the output 

permutation which can effectively improve the accuracy of localization. The performance 

of this algorithm under real circumstances has been evaluated through several experiments 

with different numbers of nodes and different node deployments in the China State Grid 

HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 

96% under different conditions. 
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1. Introduction 

High Voltage Direct Current (HVDC) transmission systems are more favorable than the 

conventional High Voltage Alternating Current (HVAC) systems because of their economical, 

technical, and environmental advantages for long distance and bulk power transmission. To date, a 

±800 kV HVDC transmission system has been in commercial operation and a ±1000 kV transmission 

system is being studied on a research basis in China [1]. The electrical environment under HVDC 

transmission lines is characterized by several different electrical parameters. These parameters are the 

electric field, the ion current density, the space charge density, the radio interference, the audible noise 

and the magnetic field [2–4]. The electric field under transmission lines is one of the important 

parameters for evaluation of the electromagnetic environment of concern to people. Electric field 

measurement systems based on Wireless Sensor Networks (WSNs) have been applied extensively in 

the electrical power system on account of their convenience. During the process of electric field 

measurement, it is necessary to obtain the electric field distribution at different locations under the 

transmission lines, therefore, the location information of each sensor node is crucial to the analysis of 

the measurement results. The main focus of the research presented in this paper will be how to obtain 

the node location information. 

To measure the electric field strength at different positions under transmission lines, electric field 

sensors are arrayed along the direction perpendicular to the transmission lines. The wireless node is 

connected with the each electric field sensor through twisted-pair braid shielded cable.  

The wireless nodes’ primary function is to acquire and process the output analog signals of the sensor 

and send the digital electric field data to the remote computer. The key requirement to interpret the 

received electric field data is to determine the locations of the electric field sensors. The construction 

of the wireless nodes can be reduced to a one-dimensional linear topology where nodes have a spatial 

ordering. This spatial characteristic indicates the relative locations for nodes and can facilitate the 

establishment of the corresponding relationship between the wireless node and electric field sensor. 

The relative location relationship among the wireless nodes can be described as a node location 

permutation. A relative localization method based on Received Signal Strength Indicator (RSSI) is 

elaborated to obtain the correct node location permutation to get the ordering of the wireless nodes. 

Compared with the existing approach which gathers the location information by manually labelling 

sensors during deployment, automatic localization can benefit the deployment in two aspects.  

Firstly, in the case of a large number of nodes, the relative localization method would be more efficient 

and less error prone. Secondly, the relative localization method can easily re-establish the ordering in 

situations where a failed node is replaced or a new node is added to the current network. 

The developed localization techniques can be divided into two categories: range-based and  

range-free [5]. Range-based localization estimates distance or angle between the unknown nodes and 

the anchor node, while range-free localization exploits radio connectivity to confirm proximity or 
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exploits the sensing capabilities of each sensor. Range-based localization should estimate distance 

using different methods such as Time of Arrival (TOA) [6], Time Difference of Arrival (TDOA) [7], 

Angle of Arrival (AOA) [8], and RSSI-based ones [9–13], and then use the trilateration location 

algorithm, triangulation location algorithm or maximum likelihood estimation method to calculate the 

location of the node [14,15]. All four distance measurement methods, except for RSSI-based methods, 

have superior measuring precision, hence range-based localization can accomplish accurate location.  

The RSSI-based localization methods can be divided into two kinds: range-based methods and 

range-free methods. Range-based methods assume that nodes can estimate the distance, which needs 

extra hardware and thus is not appropriate for large-scale outdoor sensor networks. Range-free 

methods localize nodes based on simple sensing features, such as wireless connectivity, anchor 

proximity, or localization events detection [16,17]. Among these, connectivity-based solutions feature 

a low cost, but at the expense of localization accuracy. Radio Frequency (RF) signals are vulnerable to 

environmental impact which will lead to the instability of RSSI. The environment under high voltage 

transmission lines is extremely complex. Electromagnetic interference, topography, vegetation, and 

many other factors may all have an impact on the RSSI. This will cause a large error when estimating 

the distance through the direct use of RSSI. Although RSSI is not considered as the best choice for 

distance estimation in the situation, it does provide some useful distance related information which can 

be used. The experimental result in the paper confirms that the radio signal strength weakens 

approximately monotonically with the physical distance and the RSSI could provide potential information 

about which neighbor node is closer and which is farther. Thus, this paper focuses on the research of  

range-free methods to obtain the nodes relative location information and accordingly realize the  

nodes sorting. 

In [10], a range-free localization beyond connectivity is presented to capture the relative  

distance between 1-hop neighboring nodes from their neighborhood orderings that serve as unique  

high-dimensional location signatures for nodes in the network. The signatures are subsequently utilized 

to estimate the distance between nodes. In [11], one-dimensional localization algorithm based on RSSI 

is proposed. The algorithm utilizes the ratios of signal strengths, instead of signal strength, to 

determine the locations of the unknown nodes. The algorithm only needs to establish the data set for 

the ratio of the signal strengths once. In [12,13], the proposed algorithms assume that closer nodes 

receive higher RSSI. In [12], the presented algorithm can only be used in the case of the known 

coordinates of the database, and the wireless sensor network topology is a linear structure or a mesh 

structure. In [13], the algorithm that does not require the anchor node is proposed to accomplish the 

relative localization. 

Based on the aforementioned points for network deployment, a novel and practical RSSI-based 

localization algorithm for WSN which assumes that closer nodes receive higher RSSI is proposed for 

the implementation of relative localization. The algorithm is able to correct the exceptional situation of 

nodes in the output location permutation to improve the accuracy of the localization. As our 

localization algorithm can correct RSSI-based relative localization, it is named as “Correct RSSI-Based 

Relative for Localization”, or “CRBR-Localization” for short. 

This paper is organized as follows: in Section 2, the motivation for the CRBR-Localization 

algorithm is described with empirical data and comparisons with existing methods. In Section 3, the 

CRBR-Localization algorithm is proposed and elaborated. In Section 4, based on the experimental 
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results, the effectiveness of the algorithm is evaluated in four different deployments. Finally, a 

conclusion section ends this paper. 

2. Motivation for the Correct RSSI-Based Relative-Localization (CRBR-Localization) Algorithm 

2.1. Empirical Data as Motivation 

(1) Received Signal Strength Indicator (RSSI) and physical distance 

Theoretically, RSSI monotonically varies with the physical distance between the sender node and 

the receiver node. To evaluate the relationship of RSSI and physical distance, outdoor experiments 

were conducted in three types of environment: a park lawn, a school playground and the China 

National Grid HVDC test base. In the experiments, 10 sender nodes were arranged at different 

distances from the receiver node. All the nodes are located in a straight line and the interval of the 

sender node is 2 m. Each sender node broadcasted 19-bytes test data packets with 18 dB·m sending 

power, and the receiver node records the RSSI upon receiving the packet. The test is conducted  

100 times and the average value of RSSI of each node from different distance is calculated. The 

experimental results are shown in Figure 1. 
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Figure 1. The relationship of Received Signal Strength Indicator (RSSI) and physical 

distance in three types of environments. 

From Figure 1, the use of RSSI for distance estimation is not reasonable since the same RSSI values 

could correspond to different distances. However, for each individual curve the RSSI values mostly 

decreased monotonically with increasing distance. There are some abnormal and exceptional situations 

in the curve which can be attributed to many factors, such as the RF transmission parameters, antenna 

issues, random noise, propagation path loss and node-level sensing discrepancy. Therefore, because of 

these factors, the direct use of RSSI values to calculate the physical distance of nodes will result in 

inaccurate results. 
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(2) Received Signal Strength Indicator (RSSI) ordering and node location permutation 

In a linear topology WSN, an ordered node location permutation can be formed by the nodes’ 

physical distance. For any sender node, say Si, the sort order of the node location permutation, say S, is 

obtained by the sender node Si and the receiver node communication distance from near and far. 

Another permutation, say R, can be obtained by ordering the RSSI value from sender node Si to the 

receiver node in descending order and we define this sorted permutation as RSSI ordering. Ideally, if 

the RSSI decreases monotonically with the increasing distance, S and R should be identical. But due to 

some unexpected factors existing in the process of signal propagation, two permutations S and R could 

not be consistent. 

As can be seen from Figure 1, the direct use of RSSI to determine the distance between the sender 

and receiver is not reliable. When sender nodes are far away from the receiver node, it is less accurate 

to infer their distance by RSSI values. Actually, this is reasonable when the process of signal 

propagation is considered. Signals spread during propagation and become weaker and weaker. The 

same noise level can influence weaker signals more easily. As a result, the RSSI becomes less reliable. 

It is obvious that at different distances from the receiver, the nearest node observes the best signal. In 

other words, the influence caused by a disturbance will be reduced as the distance between the sender 

and receiver decreases. This assertion has been verified in the following experiment. In the experiment, 

four sender nodes are arranged at different distances from the receiver node. All the nodes are in a 

straight line. The interval between each sender node is set to 1 m, 2 m, and 3 m, respectively.  

The distance between receiver and the first sender node (Sender 1) is correspondingly set to 1 m, 2 m, 

and 3 m. The layout of the network is shown in Figure 2a. Each sender node broadcasts 19-bytes test 

data packets with 18 dB m sending power, and the receiver node records the RSSI upon receiving the 

packet. The experiment is conducted 100 times at different intervals and the average value of RSSI of 

each node from different distance is calculated. The experimental result is shown in Figure 2b. 

Through the experiment results, the RSSI ordering can be checked as to whether it reveals the true 

distance relationship among the senders. In Figure 2, the vertical ordinate indicates the accuracy of 

rank in the RSSI ordering compared with the corresponding rank in node location permutation.  

The accuracy of the nearest sender node (rank 1 in the node list) is the highest and over 94% in the 

case of different intervals. This percentage decreases with the increase of rank. The accuracy of the 4th 

nearest node (rank 4 in the node list) is lower than 32%. Although the percentage decreases with the 

increase of the interval, the nearest node (rank 1) still obtains a better signal than other nodes. 

Therefore, the assertion that the nearest node observes the best signal among nodes in different 

distance from the receiver is verified in the experiment and can be employed to realize node sorting. 

Sender1 Sender2 Sender3 Sender4Receiver

Interval of the node
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Interval of the node
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Figure 2. Cont. 
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Figure 2. The correspondence between the Received Signal Strength Indicator (RSSI) 

ordering and node location permutation; (a) Layout of the network; (b) Experimental results. 

2.2. Existing Methods as Motivation 

The experimental results show that the nearest node usually observes the largest RSSI. Some 

relative localization methods employing this principle have been proposed [12,13]. The Kcd location 

algorithm [12] obtains the positon of unknown nodes through the relative localization between the 

unknown node and the anchor node. The output node permutation can be obtained through the RSSI 

ordering of unknown nodes. Once the location of an unknown node is known, the node can be 

upgraded to an anchor node and help to locate the neighboring unknown nodes. This progress is 

repeated until the localization of as many unknown nodes as possible has been accomplished. 

However, the Kcd location algorithm has two limitations: (1) it is only suitable for the case where the 

deployment of the sensor network has a grid or linear topology and where the interval between any two 

neighboring nodes is regular rather than arbitrary; (2) the Kcd location algorithm upgrades the 

unknown nodes which have localized their position to an anchor node status, but once an unknown node 

has failed to localize its positon, the subsequent unknown nodes will all fail to localize their positions. 

In [13], a spatial relative localization method without the anchors has been proposed. The method 

consists of two parts: the first part uses a specific method to find candidate orderings, while the second 

part verifies the consistency of each candidate ordering and outputs the final results. For each node, it 

broadcasts the localization command to obtain RSSI and ID from its neighbors. All the neighbors are 

sorted in descending order according to their observed RSSI. The sorted list is the node neighbor list. 

The first part of the method is to find the location permutation of nodes with the neighbor list. It 

iteratively derives the node ordering and starts with each node because there is no information about 

the initial node. During the iteration, the method deletes the completed one from the node’s neighbor 

list, and prepares for the next iteration until the output of node permutation. If the process cannot 

proceed, then the method outputs a null. The second part of the method is to verify the consistency of 

all the reversion of candidate permutations coming from the first part. 
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Compared with the Kcd location algorithm, the spatial ordering method in [13] can judge whether 

the output is correct. However, it cannot handle the exception of output node permutation. In practice, 

three kinds of results will appear when using this method to locate nodes. The first one is all the 

candidate permutations are wrong, then the method outputs a null; the second result is multiple 

candidate permutations are simultaneously consistent with the conditions, then the method outputs a 

null; the third result is only one permutation is consistent with the conditions and the method outputs 

the right permutation. The spatial ordering method also has several limitations: (1) it does not know the 

initial node, so it has to iteratively start with every node and derive all the nodes; (2) in the three  

kinds of results, only the third one can output the right permutation and the others all output a null;  

(3) it can only judge the correctness of the output permutation, but it cannot handle the exception of  

the output permutation. 

3. Correct RSSI-Based Relative-Localization (CRBR-Localization) Algorithm 

With respect to the limitations of the localization methods described in [10–13], certain 

improvements have been carried out and the CRBR-Localization algorithm based on the localization 

method in [12,13] is achieved. Compared with the localization methods in the literature [12,13], the 

CRBR-Localization algorithm described in the paper is more applicable in the relative localization of 

wireless nodes in the electric field measurement environment. 

In the localization method of the paper, the nodes that can communicate with node i are arranged in 

descending order according to the return RSSI values, thus obtaining the neighbor list of the node i. 

We select the first three nodes in the neighbor list during the localization, as shown in Figure 3. 

2

4

3

1

5

24

3

4 6

5 4

Node 1

Node 6

Node 5

Node 4

Node 3

Node 2

1 2 3 4 5 6

The actual nodes location permutation

Neighborhood 
Ordering  N

7 8

7 6Node 8

8 6Node 7

4

3

1

2

7

7

5

5
 

Figure 3. Neighbor lists. 
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In Figure 3, the nodes are arranged in 1–2–3–4–5–6–7–8, which is the actual nodes location 

permutation. Ni is the neighbor list consisting of three nodes with largest return RSSI values in descending 

order among nodes communicating with node i, while N is the set of neighbor list Ni of all nodes. 

Before locating the nodes, it is necessary to mark the initial node A of the unknown nodes to be 

sorted. Taking Figure 3 for example, S is the output location permutation after the algorithm, and the 

initial node S (1) is node 1.We select the first node (node 2) of the neighbor list of S (1) as S (2) and 

delete S (1) in the neighbor list of all nodes; select the first node (node 3) of the neighbor list of S (2) as 

S (3) and delete S (2) in the neighbor list of all nodes. The above process is repeated until the neighbor 

list of the last node of the ordering is empty, and the output nodes location permutation is S. Now we 

have the first solution and process summarized in Algorithm 1. 

Algorithm 1 Deriving the permutation with initial node 

Input: all nodes’ neighborhood N; the initial node A. 

Output: node location permutation S. 

1. S (1) = A; i = 2; 

2. while Ns (i−1) is not empty do 

3. S (i) = the first element of Ns (i−1) 

4. delete S (i − 1) in the N 

5. i = i + 1 

6. end while 

7. output the location permutation S 

3.1. Exception Handling 

From Figure 2, when the space between nodes is 1 m, over 94% of the RSSI orderings can identify 

the nearest node correctly, but there are still 6% of RSSI orderings failing to do so. Supposing that the 

neighbor node with largest RSSI value in the neighbor list of node i is not the nearest one to the 

receiver node during the location, then an inconsistent location permutation will be output. Since there 

is a small possibility that the above-mentioned anomalous condition may occur, we only analyze the 

situation where there is only one exceptional node, and the method is not applicable to the situation 

where several nodes are in an anomalous condition. When there is only one exceptional node among 

the unknown nodes to be located, two possible results arise: one is that the number of nodes in the 

output location permutation is less than the actual node number and another one is that the number of 

nodes in the output location permutation is equal to the actual node number: 

(1) The number of nodes in the output location permutation is less than the actual node number. 

When there are many nodes to be sorted, there are often two things occurring when the neighbor 

node with the largest RSSI value is not the one nearest to the receiver node, as shown in Figures 4 and 5. 

In these figures, the red nodes refer to faulty neighbor nodes while the blue ones are correct neighbor 

nodes, but the different location of the blue nodes in the neighbor list will cause different output 

location permutations. In Figure 4, the output location permutation according to Algorithm 1 is  

1–2–4–5–6–7–8, where the node number is one less than the actual number, while in Figure 5, the 

output location permutation according to Algorithm 1 is 1–2–4–3, where the node number is four less 
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than the actual number. In these two cases, the correct location permutation fails to be output due to a 

certain exceptional node, so a method is desired to correct the abovementioned conditions, thus 

obtaining the correct output location permutation: 

(a) For the case where the number of nodes in the output location permutation is different from the 

actual node number by one, the following method can be employed to handle it: choose the node 

failing to appear in the location permutation, and check whether its first two neighbor nodes adjoin in 

the ordering; if so, insert the missing node between its two neighbor nodes to get a new ordering, or the 

sorting fails. Verify the new ordering repeatedly to determine whether it is correct, or the sorting fails. 

As is shown in Figure 4, Node 3 is missing in the output location permutation, and then check whether 

the first two nodes in the neighbor list of Node 3 adjoins in the output ordering. The first two nodes in 

the neighbor list of Node 3 are Node 4 and Node 2, which adjoin in the ordering 1–2–4–5–6–7–8, and 

then insert Node 3 between Node 4 and Node 2 to get a new ordering 1–2–3–4–5–6–7–8. Select the 

last node (Node 8) of the new ordering as the initial node and make reverse deduction according to 

Algorithm 1. If the output ordering is 8–7–6–5–4–3–2–1, it is verified to be successful and output the 

correct location permutation 1–2–3–4–5–6–7–8. The method to handle such an exception is as shown 

in Algorithm 2: 
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Figure 4. Exceptional condition 1. 
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Figure 5. Exceptional condition 2. 

Algorithm 2 Exception handling algorithm 

Input: all nodes’ neighborhood N; error location permutation S’. 

Output: node location permutation S. 

1. Find the missing node M; 

2. If the first two elements in NM are neighborhood in the error ordering S’ then 

3. put the missing node M in the S’ between the two elements in NM; 

4. else 

5. break; 

6. S (1) = S’ (n), use Alogorithm1 to derive ordering S 

7. If S is the reversion of S’ then 

8. S = S’; 

9. else 

10. S = null; 

11. end if 7. output the location permutation S 

(b) For the case where the difference between the number of nodes in the output location 

permutation and the actual node number is more than one, the following method can be employed to 

handle it: select the neighbor list of the last but one node in the permutation, and delete the last node of 

the output location permutation in its neighbor list; if its neighbor list is empty, the output is an empty 

set and the sorting fails; if there still is a node in its neighbor list, select this node as the next one to 

continue sorting. When the difference between the node number of the location permutation and the 

actual node number is more than one, it means more than one node are exceptional, and the sorting 

fails. When the difference between the node number of the location permutation and the actual node 
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number is one, we handle it according to algorithm 2. Taking Figure 5 for example, the difference 

between the node number of location permutation and the actual node number is more than one and the 

location permutation is 1–2–4–3. Select the neighbor list N4 of the last but one node (Node 4) in the 

ordering and delete Node 3 from N4. Then the first neighbor node in N4 is Node 5 and make deduction 

according to algorithm 1 to get the order 1–2–4–5–6–7–8. Since the difference between the number of 

nodes in the location permutation and the actual node number is one, Algorithm 2 can be employed to 

handle. It can be seen that the location permutation is the same as the one in Figure 4, so Algorithm 2 

can be employed to get the correct node location ordering 1–2–3–4–5–6–7–8. The detailed process is 

shown in Algorithm 3 to handle such an abnormity: 

Algorithm 3 Exception handling algorithm 
Input: all nodes’ neighborhood N; error location permutation S’. 
Output: node location permutation S. 
1. k = the number of S’; n = the actual node number 
2. delete the last element of S’ in the Ns’ (k−1) 
3. If Ns’ (k−1) is null then 
4. break; 
5. else 
6. S’ (k) = the first element of Ns’ (k−1); delete S’ (k − 1) in N 
7. end if 
8. while ( )s kN ’ is not empty do 
9. S’(k + 1) = the first element of Ns’ (k−1) 
10. delete S’ (k) in N 
11. k = k + 1 
12. end while 
13. k’ = the number of the new ordering S’ 
14. If k’ = = n then 
15. S (1) = S’ (n), use Algorithm 1 to derive the ordering S 
16.  If S is the reversion of S’ then 
17.   S = S’  
18.  else 
19.   S = null 
20.  end if 
21. else if n − k’ = = 1 then 
22. turn to Algorithm 2 
23. else 
24. S = null 

25. end if 

(2) The number of nodes in the output location permutation is equal to the actual node number. 

There are often the following three things occurring when the neighbor node with the largest RSSI 

value measured is not the one nearest to the receiving node, as is shown in Figure 6–8.  
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Figure 6. Exceptional condition 3. 

In Figure 6, the actual order of nodes is 1–2–3–4–5–6–7–8, but the exceptional neighbor node of 

Node 5 causes the ordering output according to algorithm 1 to be 1–2–3–4–5–7–8–6. When in such a 

case, the reverse ordering of the output location permutation, S (n) S (n − 1) …, S (1), can be verified 

to determine whether the output location permutation is correct, that is to take S (n) as the initial node 

and make ordering deduction according to algorithm 1 to get the location permutation, which is called 

the reverse verification permutation S1. If the output reverse verification permutation is identical to the 

reverse ordering of permutation S, the sorting is correct, and if not, the sorting is faulty. In Figure 6, 

permutation S is 1–2–3–4–5–7–8–6, and the reverse verification ordering deducted with Node 6 as the 

initial node is 6–7–8–5–4–3–2–1, which is not consistent with the expected reverse verification 

permutation, 6–8–7–5–4–3–2–1, so the node sorting is faulty.  

In Figure 7, the actual order of nodes is 1–2–3–4–5–6–7–8, and although the neighbor node of Node 7 

is exceptional, the ordering output according to Algorithm 1 is 1–2–3–4–5–6–7–8. However, when 

taking Node 8 as the start node, the reverse verification ordering output according to Algorithm 1 is  

8–7–5–4–3–2–1, which is not consistent with the expected reverse verification ordering, 8–7–6–5–4–3–2–1. 

In Figure 8, the actual order of nodes is consistent with that in Figure 7, and its ordering 

permutation according to Algorithm 1 is still 1–2–3–4–5–6–7–8, but its reverse verification 

permutation according to Algorithm 1 is 8–7–5–6, which is not consistent with the expected reverse 

verification ordering, 8–7–6–5–4–3–2–1. 
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Figure 7. Exceptional condition 4. 
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Figure 8. Exceptional condition 5. 

The three cases mentioned above can be handled according to the following algorithm. When 

permutation S is deducted according to Algorithm 1,whether the output location ordering is correct can 

be determined by comparing whether the reverse verification permutation S1 is consistent with the 
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reverse ordering of permutation S. If the node number of permutation S1 is identical to that of 

permutation S, and it is the reverse ordering of permutation S, the sorting is correct; if the difference 

between the node numbers of permutation S1 and permutation S is one, it can be corrected according to 

algorithm 2 using S1 as input ; if the difference between the node numbers of permutation S1 and 

permutation S is more than one, it can be corrected according to Algorithm 3 using S1 as input; if it 

cannot be corrected, the sorting fails. When in the three above-mentioned cases, only Figure 6 fails to 

output correct ordering while in the other two cases, relevant algorithms can be used to get correct 

node location ordering. The detailed process is shown in Algorithm 4. 

Algorithm 4 Exception handling algorithm 
Input: all nodes’ neighborhood N; verified permutation S 
Output: node location permutation S. 
1. use Alogorithm1 to derive the reverse verification permutation S1 
2. k = the number of ordering S1; n = the actual node number 
3. If k = = n then 
4.  If S1 is reversion of S then 
5. S = S 
6. else 
7. S = null 
8. end if 
9. else if n – k = = 1 then 
10. turn to Algorithm 2 using S1 as input 
11. else 
12. turn to Algorithm 3 using S1 as input 
13. end if 

3.2. Realization of Correct RSSI-Based Relative-Localization (CRBR-Localization) Algorithm  

The CRBR-Localization algorithm combines the two methods in [12,13], and applies a correction 

algorithm with respect to their respective shortcomings, which make it possible to handle the exception 

where one node fails. However, CRBR-Localization algorithm is only capable of correcting the cases in 

Figures 4–8, and for the case where several nodes fail, the algorithm output ordering is empty. The 

realization of the CRBR-Localization algorithm is shown in Algorithm 5: 

Algorithm 5 CRBR-Localization Algorithm 
Input: all nodes’ neighborhood N; the initial node A; the actual node number n. 
Output: node location permutation S. 
1. use Algorithm 1 to derive the permutation S 
2. k = the number of ordering S 
3. If k = = n then 
4.  turn to Algorithm 4 
5. else if n − k = = 1 
6. turn to Algorithm 2 
7. else 
8. turn to Algorithm 3 
9. end if 
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4. System Implementation and Evaluation  

To evaluate the CRBR-Localization algorithm, three indexes are chosen: (1) percentage of output, 

which is the ratio of the occurrences that the output permutation is a non-empty set after sorting to the 

experiment occurrences; (2) output accuracy, which is the ratio of the occurrences that the output 

permutation is a right sequence to the occurrences the output permutation is a nonempty set after 

sorting; (3) accuracy, the ratio of the occurrences that the output permutation is a right one after sorting 

to the experiment occurrences. The proposed three indexes can be defined as Equations (1)–(4): 
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where Rpo is percentage of output, Roa is output accuracy, Racu is accuracy, Nnon is the occurrences that 

the output permutation is a nonempty set after sorting, Racu is the occurrences that the output 

permutation is a right sequence after sorting, Rall is the total experiment occurrences. From the 

definitions of the three indexes, we can know that accuracy (Racu) equals to the arithmetic product of 

the percentage of output (Rpo) and the output accuracy (Roa). The ideal algorithm has not only a high 

percentage of output but also high output accuracy. Meanwhile, the index of accuracy could be a 

comprehensive evaluation of the algorithm’s percentage of output and output accuracy. 

4.1. Experimental System 

To validate and verify the proposed localization algorithm, a double circuit experimental line on the 

same tower was erected at the HVDC test base of China Electric Power Research Institute in Beijing. 

Figure 9 shows our hardware system for the localization.  

There are two kinds of nodes which are wireless nodes (unknown nodes) and a sink node in the 

system. The sink node is connected to the computer through the USB bus. The wireless nodes which 

are arranged in a line perpendicular to the transmission lines are the subject of the localization.  

The sink node broadcasts the localization command message to the wireless nodes. Upon receiving the 

message, the wireless nodes will communicate with their neighbor nodes and obtain the neighbor list. 

In the same way, all the wireless nodes in turn get their neighbor lists and then transmit them to the 

sink node. As a result, the computer connected with the sink node executes the CRBR-Localization 

algorithm. The detailed workflow of the CRBR-Localization algorithm is shown in Figure 10. The sink 

node has two main functions. The first one is to broadcast the localization commands and another one 

is to receive all the unknown nodes’ neighbor lists used for the CRBR Localization algorithm. There is 

a high-performance CPU and enough memory in each unknown node, so the neighbor list of each 

unknown node is created by the unknown node itself and then sent to the sink node. Therefore in the 

experimental system, only one node which is connected with the computer through the USB interface 
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is the sink node. The sink node could be outside or at one end of the network of unknown nodes. It is 

convenient for the operator to always take as the sink node the one with the connected computer. 

Sink node

Unknown node

 

Figure 9. Experiment system at the High Voltage Direct Current (HVDC) test base of the 

China Electric Power Research Institute. 
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No
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Figure 10. Workflow of the Correct RSSI-Based Relative-Localization (CRBR-Localization) algorithm. 
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A block diagram of the proposed wireless node is presented in Figure 11. The wireless nodes’ 

primary function is to acquire and process the output analog signals from the electric field sensors and 

send the digital data to the sink node. The core of the wireless node is an STM32F embedded 

microcontroller. The wireless communication system selected for the sensor node is the 2.4 GHz Xbee 

Pro Radio Frequency (RF) module based on the IEEE 802.15.4 protocol from DigiTM (Minnetonka, 

MN, USA) 
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RF Module

Watch Dog LED

A/D 
Convertor Serial 

Bus

SPI

Power 
Management

EEPROM

SPI

STM32Signal 
Conditoning

 

Figure 11. Structure and picture of a wireless node. 

4.2. Node Number Experiments 

In the electric field measurement environment, since the transmission line spacing is different, 

different numbers of sensor nodes are needed. In order to verify the validity of the algorithm, we did 

sorting experiments using different node numbers. In these experiments, the numbers of unknown 

nodes to be positioned are 5, 10, 15, and 20, respectively. The nodes are arranged in a line 

perpendicular to the transmission lines, and the interval between nodes is 2.5 m. The RSSI values that 

are returned by the unknown nodes in each sequence are sampled five times and averaged in order to 

use the average for sorting. Three hundred sequences are obtained with each sorting, and the sorting 

accuracy is counted and analyzed. The result of the experiment is shown in Figure 12.  
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Figure12. Experimental results. 
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Since the output accuracies of the experiments are all 100%, the accuracy equals the percentage of 

output, thus only accuracy is used as the evaluation criterion. From Figure 12 we can see that when 

sorting five nodes, the sorting accuracies of nodes before and after exception handling are both 98.4%, 

thus when the number of nodes is small, exception handling has an insignificant influence on the 

result. Node sorting accuracy before exception handling falls dramatically with the increase of the 

number of sorting nodes. When the number of sorting nodes is 10, the accuracy is 94.4%, and when 

the number of sorting nodes is 15, the accuracy is 91.25%. When the number of sorting nodes is 20, 

the accuracy is only 86.6%. Node sorting accuracy after exception handling falls slightly with the 

increase of the number of sorting nodes. When the number of sorting nodes is 10 the accuracy is 

98.1%, and when the number is 15, the accuracy is 97.5%. When the number of sorting nodes is 20, 

the accuracy is still above 96.3%, so when the number of nodes in the experiment is large, the sorting 

accuracy can be improved markedly through exception handling by the CRBR-Localization algorithm. 

4.3. Experiment in Four Deployments 

Theoretically, when placing sensor nodes, every node should be arranged in a line perpendicular to 

the transmission lines. However, since there exist personal deployment errors, not all the nodes are in a 

straight line, so the adaptability of the CRBR-Localization algorithm to different node deployment 

structures needs to be verified. 

In the experiment, we sequence 10 unknown wireless nodes in four different deployment structures. 

The RSSI values that are returned by the unknown nodes in each sorting are sampled five times and 

averaged for further sorting. Three hundred sequences are obtained with each structure. The results are 

obtained to compare with the Spatial Ordering method presented in [13] and the Kcd location 

algorithm presented in [12]. 

4.3.1. Linear Homogeneous Deployment 

In this experiment, the interval between neighboring nodes is 3 m. The nodes are arranged in a line 

perpendicular to the transmission line, as shown in Figure 13. The distance between the first node and 

the last node is 27 m, and they can communicate normally. The result is shown in Figure 14. 

From Figure 14 we can see that the percentage of output and the output accuracy of the  

CRBR-Localization algorithm are both 100%, higher than the values of the other two algorithms. 

Since the Spatial Ordering method doesn’t process exceptional conditions and may have several 

candidate orderings, its percentage of output is lower than that of the CRBR-Localization algorithm 

and Kcd location algorithm. Because the Kcd location algorithm can’t judge the correctness of its 

output sequences, although the percentage of output is 100%, the output accuracy is still lower than 

those of the CRBR-Localization algorithm and Spatial Ordering method. Comprehensively comparing 

the three algorithms, we can see that the three indexes of the CRBR-Localization algorithm are all 

higher than those of the other two algorithms, and it has higher localization accuracy. 
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Figure 13. Linear homogeneous deployment structure. 
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Figure 14. Localization results comparison by using different algorithms in the linear 

homogeneous deployment.  

4.3.2. Linear Inhomogeneous Deployment 

In this experiment, the intervals between neighboring nodes are not the same. The maximum 

interval is 4 m, while the minimum is 1.5 m. The nodes are arranged in a line perpendicular to the 

transmission lines, as shown in Figure 15. The first node and the last node can communicate normally, 

as shown in Figure 16. 

From Figure 16, Kcd location algorithm has the highest percentage of output, and the  

CRBR-Localization algorithm is in the middle, while the Spatial Ordering method has the lowest,  

which is less than 90%. Although the Kcd location algorithm has the highest percentage of output, its  



Sensors 2015, 15 3559 

 

 

accuracy and output accuracy are both lower than 90%, apparently lower than those of the  

CRBR-Localization algorithm.  

 

Figure 15. Linear inhomogeneous deployment structure. 
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Figure 16. Localization results comparison by using different algorithms in the linear 

inhomogeneous deployment. 

The percentage of output of the CRBR-Localization algorithm is higher than 99%, and its accuracy 

is higher than 96%, both of which are higher than Kcd location algorithm and Spatial Ordering 

method. Under linear inhomogeneous deployment conditions, the percentage of output of  
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CRBR-Localization algorithm and Spatial Ordering method are both lower than under a linear 

homogeneous alignment. This is because when the nodes are placed homogeneously, there may be a 

situation that some nodes are placed closely and others are placed loosely. When the nodes are close, 

the distance between nodes is small, so the RSSI values measured are close. Since the RSSI values of 

each node are close, elements like electromagnetic components, topographic relief and surface 

vegetation will interfere with the radio signal, which will have a greater influence on obtaining the 

RSSI accurately, whereas the CRBR-Localization algorithm and the Spatial Ordering method can 

judge the correctness of output location permutation, and when the output permutation is judged as a 

wrong one, then output will not be allowed. In addition to that, the CRBR-Localization algorithm can 

not only judge the correctness of output permutations, but also further correct the wrong permutations, 

so it has a higher percentage of output and accuracy than the Spatial Ordering method. 

4.3.3. Cross Deployment  

In this experiment, each node is first arranged in a line with a 3 m interval. Then we make each 

node move 0.5 m to the left and right, respectively, as is shown in Figure 17. From Figure 18, the 

CRBR-Localization algorithm has an output accuracy of 100%, and has a higher accuracy than the 

Kcd location algorithm and Spatial Ordering method. Though the Kcd location algorithm has a high 

percentage of output, it can’t judge the correctness of the output location permutations, so its 

percentage of output and accuracy are both lower than those of the CRBR-Localization algorithm. 

Comprehensively comparing the three algorithms, we can see that in cross deployment structure 

scenarios, the overall performance of the CRBR-Localization algorithm is better than that of the other  

two algorithms. 

 

Figure 17. Cross deployment structure. 
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Figure 18. Localization results comparison by using different algorithms in the cross deployment. 

4.3.4. Random Deployment  

In actual measurement, since there exist personal deployment errors, so not all the nodes are 

arranged according to the ideal structure (linear and homogeneous). Therefore, an approximate random 

arrangement is used to simulate the situations in an actual measurement environment. Under this 

deployment, the nodes are arranged randomly in a rectangle 30 m long and 1 m wide, and the 

minimum interval of adjacent nodes is 1.8 m, while the maximum is 3.6 m, as shown in Figure 19. 

 

Figure 19. Random deployment. 



Sensors 2015, 15 3562 

 

 

Under random deployment, the intervals between nodes are not the same, and not all the nodes are 

in the same line, but they are randomly arranged in a rectangle area. Under this circumstance, the RSSI 

is sensitive to the interference factors in the environment. From Figure 20, we can see that the  

CRBR-Localization algorithm has accuracy and percentage of output higher than 97%, and its output 

accuracy is 100%. Both its output accuracy and its percentage of output are higher than those of the 

Kcd location algorithm and Spatial Ordering method. Though the Spatial Ordering method has a 

higher percentage of output, its accuracy and output accuracy are both lower than 94%, which is lower 

than the CRBR-Localization algorithm. Comprehensively comparing the three algorithms, we can see 

that under random arrangement conditions, the overall performance of the CRBR-Localization 

algorithm is better than that of the other two algorithms. In the four different localization experiments, 

the accuracy and percentage of output of the CRBR-Localization algorithm are apparently higher than 

those of the Kcd Location algorithm and the Spatial Ordering method.  

Four different deployment structures, the accuracies of the CRBR-Localization algorithm are all 

above 96%. Taking the three performance indexes into consideration, we can see that compared with 

the other two algorithms, the CRBR-Localization algorithm has a better overall performance, and has a 

better adaptability of different applied environments of electric field measurement. 
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Figure 20. Localization results comparison by using different algorithms in the random deployment. 

5. Conclusions 

In this paper, a RSSI-based algorithm is proposed for achieving the relative localization of  

one-dimensional linear topology wireless networks under HVDC transmission lines. Starting from the 

observation that the closest node always has the highest RSSI, the algorithm utilizes unknown nodes’ 

neighbor list based on the RSSI values to determine the relative locations of nodes. A detailed 

interpretation has been made around the solutions of the exceptional situations for the output 

permutation which can effectively improve the localization accuracy. The performance of this 

algorithm in real circumstances has been evaluated through several experiments with different 

numbers of nodes and different deployments at the China State Grid HVDC test base. Results show 



Sensors 2015, 15 3563 

 

 

that in the experiments with different number of nodes, the accuracy of the CRBR-Localization 

algorithm is above 96.2% and in the experiments with different deployments the accuracy of the 

CRBR-Localization algorithm, which is over 96%, is higher than that of the other two algorithms. 
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