
 

 

Sensors 2015, 15, 3952-3974; doi:10.3390/s150203952 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

False Alarm Reduction in BSN-Based Cardiac Monitoring 
Using Signal Quality and Activity Type Information 

Tanatorn Tanantong 1, Ekawit Nantajeewarawat 1,* and Surapa Thiemjarus 2 

1 School of Information, Computer, and Communication Technology, Sirindhorn International 

Institute of Technology, Thammasat University, Pathum Thani 12000, Thailand;  

E-Mail: tanatorn@siit.tu.ac.th 
2 National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand;  

E-Mail: surapa.thiemjarus@nectec.or.th 

* Author to whom correspondence should be addressed; E-Mail: ekawit@siit.tu.ac.th;  

Tel.: +66-2-501-3505 (ext. 5005). 

Academic Editor: Panicos Kyriacou 

Received: 11 December 2014 / Accepted: 30 January 2015 / Published: 9 February 2015 

 

Abstract: False alarms in cardiac monitoring affect the quality of medical care, impacting on 

both patients and healthcare providers. In continuous cardiac monitoring using wireless Body 

Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several 

factors, e.g., noises, low battery power, and network transmission problems, often resulting in 

high false alarm rates. In addition, body movements occurring from activities of daily living 

(ADLs) can also create false alarms. This paper presents a two-phase framework for false 

arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG 

sensor and a 3D accelerometer. In the first phase, classification models constructed using 

machine learning algorithms are used for labeling input signals. ECG signals are labeled with 

heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL 

types. In the second phase, a rule-based expert system is used for combining classification 

results in order to determine whether arrhythmia alarms should be accepted or suppressed. The 

proposed framework was validated on datasets acquired using BSNs and the MIT-BIH 

arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 

10 young and 10 elderly subjects while they were performing ADLs. The framework reduced 

the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can 

potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors 

and enhance the performance of continuous cardiac monitoring. 
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1. Introduction 

Home health monitoring has gained a rapid surge of interests for observing deviations in health 

status from the norm in early phases and automatically alerting paramedics or physicians. According to 

a report from the World Health Federation [1], over 70 percent of all cardiac and breathing 

emergencies occur at home. In order to provide patients with continuous cardiac healthcare services, 

new techniques such as wireless sensors [2–4] and real-time automated diagnosis of Electrocardiogram 

(ECG) [5–10] should be integrated into a traditional cardiac monitoring system. Some real-time 

cardiac monitoring systems with wireless sensors have been proposed [11–14], with their potential 

values being reported. However, ECG signals recorded using wireless Body Sensor Networks (BSNs) 

during activities of daily living (ADLs) are not only often interrupted by noises generated from wireless 

monitoring devices, but also easily contaminated with noises arising from body movements [15–17]. These 

factors can lead to high false alarm rates in continuous monitoring [18–20]. Further investigations on 

the effects of signal quality and ADLs are thus required. 

Several techniques have been proposed for real-time wireless ECG continuous monitoring. In [11], 

Oresko et al. developed a smartphone-based wearable platform for real-time cardiovascular disease 

detection. A relatively small selected portion of data (5421 beats) from the MIT-BIH arrhythmia 

database (with a total of 109,935 beats) [21] was used for classifying normal beats and four types of 

arrhythmia beats. In [12], Lin et al. proposed a wireless, ambulatory, real-time, and auto alarm 

intelligent telecardiology system for improving cardiac healthcare services. A lightweight and  

power-saving wireless ECG device, equipped with a built-in automatic warning expert system, was 

developed. In their data collection, 10 normal subjects and 20 subjects with atrial fibrillation were asked to 

maintain regular breathing and abstain from body movement and speaking during 5 min of data recording. 

Winkler et al. [13] developed a system for remote monitoring of chronic failure patients using mobile 

phone networks. ECG signals were acquired from 30 healthy volunteers for 26 days, and only 6% of 

the obtained ECG recordings were reported to have sufficient diagnostic quality for rhythm analysis 

and single beat measurement. In [14], Andreoli et al. proposed a framework based on wireless BSNs 

for supporting continuous cardiac monitoring. ECG signals were collected from subjects while they 

were performing ADLs such as sleeping, watching TV, and walking. Using a threshold-based 

algorithm, time-domain features extracted from RR intervals were used for identifying emotional stress 

levels of the monitored subjects. Noises arising from body movements and the effects of signal quality 

on the classification results were not yet considered in these studies. 

ECG signal quality assessment has attracted a rapid surge of research interests in recent years. The 

Physionet/Computing in Cardiology Challenge 2011 dataset (CinC dataset) [22], consisting of 2000  

12-lead ECG recordings, each 10 s long, has been widely used for training and testing quality 

assessment models. In [23], Hayn et al. investigated the use of ECG quality measures for quality 

assessment of ECG signals using data from the CinC dataset with a threshold-based algorithm. Their 
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simplified algorithm for Android platforms was the winning entry in event 3 of the 2011 Computing in 

Cardiology Challenge. In [24], Clifford et al. developed an automated algorithm to detect poor-quality 

ECG signals. Features reflecting morphological, statistical, and spectral characteristics of ECG signals 

were calculated and presented to a Support Vector Machine and a Multilayer Perceptron for signal 

quality classification. Data drawn from the CinC dataset were re-annotated by two independent 

annotators and another annotator for adjudication of the differences. To balance the amount of low 

quality and high quality data, additional noisy data samples were generated by adding noise from the 

PhysioNet’s noise stress test database to some clean ECG signals.  

In continuous hospital monitoring, false alarms increase workloads of healthcare providers, leading 

to decreased quality of care [18,19]. In [18], alarms in a pediatric intensive care unit were observed and 

it was reported that 94% of all alarms were clinically irrelevant. According to [19], only 2% to 9% of 

alarms were clinically relevant and important for patient treatment in intensive care units. A summary of 

several studies addressing the effects of false alarms in continuous monitoring was given in [20]. Different 

approaches to false alarm reduction in continuous cardiac monitoring have been proposed [25,26]. In [25], 

Aboukhalil et al. developed a false alarm reduction algorithm based on ECG and arterial blood 

pressure (ABP) signal information. Taking morphological and time information derived from ABP 

signals into considerations, rules were constructed for determining whether arrhythmia alarms should 

be suppressed. In [26], Li and Clifford described a framework for false alarm detection based on 

machine learning. To construct and evaluate an arrhythmia alarm classification model, features 

extracted from ECG, ABP, and photoplethysmogram signals were used. A genetic algorithm and a 

Relevance Vector Machine were employed for feature selection and classification, respectively.  

This paper presents a framework for false alarm reduction in wireless continuous cardiac 

monitoring based on signal quality and activity type information. Signals from two sources, an ECG 

sensor and a 3D accelerometer, are acquired using a wireless BSN node while a subject is performing 

ADLs. Classification models constructed using machine learning algorithms are used for labeling ECG 

signals with heartbeat types and signal quality levels, and for labeling 3D acceleration signals with 

activity types. The obtained labels provide high-level features for a rule-based expert system to 

determine whether a notification of an abnormal heartbeat should be generated or ignored. Signals 

from three datasets were used for framework evaluation. The first dataset consists of ECG signals 

taken from the MIT-BIH arrhythmia database [21]. The second and third datasets consist of ECG and 

3D acceleration signals acquired using BSNs from 10 young subjects and 10 elderly subjects, respectively. 

This paper is organized as follows: Section 2 describes data acquisition. Section 3 describes the 

components of our framework. Section 4 presents the experimental settings and results. Section 5 

presents a comparison with existing studies. Section 6 provides conclusions. 

2. Data Acquisition 

The experiments in this study involved ECG recordings from three different data sources, referred 

to as DS1, DS2 and DS3. The DS1 dataset was extracted from the MIT-BIH arrhythmia database [21]. 

It was used for evaluating arrhythmia classification and signal quality classification. The datasets DS2 

and DS3 were acquired using BSN nodes [27] from 10 healthy young subjects and 10 healthy elderly 

subjects, respectively. These two datasets were used for evaluating arrhythmia classification, signal 
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quality classification, activity classification, and false alarm detection. Figure 1 depicts a BSN node 

and the experimental setup for collecting signals in DS2 and DS3. The BSN node runs the TinyOS 

operating system. The hardware specification is listed in Table 1. The detailed descriptions of the three 

datasets are as follows. 

• MIT-BIH arrhythmia dataset (DS1): The dataset DS1 consists of 48 ECG recordings, each of 

which is 30 min long, with a total of approximately 109,000 RR intervals. The data were 

acquired by the Beth Israel Hospital Arrhythmia Laboratory from 1975 to 1979. They were 

recorded from 25 males, aged between 32 to 89 years, and 22 females, aged between 23 to  

89 years, at a sampling rate of 360 Hz using holters. Records 201 and 202 were taken from the 

same subject. The position and type of each beat were manually annotated by at least  

two independent cardiologists and the annotations were encapsulated in the dataset. Following 

the ANSI/AAMI EC57: 1998 standard [28], four paced recordings (102, 104, 107 and 217)  

were excluded. 

• A dataset acquired from healthy young subjects (DS2): The dataset DS2 consists of ECG (lead 

II configuration [29,30]) and 3D acceleration signals acquired using BSN nodes from 10 healthy 

subjects (seven males and three females), aged between 27 to 44 years. Each subject was 

monitored for approximately 30 min while performing a routine of five static activities and  

11 dynamic activities, as shown in Figures 2 and 3, respectively. Each activity lasted for 

approximately 20 s and each subject was asked to repeat the activity routine five times. 

• A dataset acquired from healthy elderly subjects (DS3): The dataset DS3 consists of ECG and 

3D acceleration signals acquired using BSN nodes from 10 healthy elderly subjects (two males 

and eight females), aged between 57 to 71 years. Based on an interview concerning his/her 

personal health profile, each subject had never experienced any heart disease symptom (e.g., 

chest pain, fainting, or severe weakness) and had never been treated for any heart problem. Each 

subject was monitored for approximately 5 min under a physician’s supervision while 

performing a routine of seven activities, as shown in Figure 4. 

Table 1. Specification of the BSN nodes used in this study. 

Module Parameter Specification 

Processor (TI MSP430F1611) 

Flash memory 48 KB 
RAM 10 KB 

On-chip ADC resolution 12 bit 
ADC channels 8 channels 
DAC channels 2 channels 

Radio transceiver (TI CC2420) 
Wireless communication standard IEEE 802.15.4 (2.4 GHz) 

Data rate 250 Kbps 
Ranges indoor and outdoor 50 m and 125 m 

EEPROM (AT 45DB321) 
Flash memory 4 MB  
SRAM buffers 512/528 bytes 

Program/Erase cycle 100,000 cycles 
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Figure 1. A BSN node with ECG and 3D acceleration sensors attached to a human body. 

   
(a) (b) (c) (d) (e) 

Figure 2. Static activities performed by young subjects (DS2): (a) sitting on a chair;  

(b) reading a book; (c) lying; (d) standing still; and (e) deep breathing. 

  

(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Figure 3. Cont. 
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(i) (j) (k) 

Figure 3. Dynamic activities performed by young subjects (DS2): (a) up and down 

movement of the right arm; (b) up and down movement of the left arm; (c) up and down 

movement of both arms; (d) jumping; (e) twisting left-right-left body movement at the 

waist; (f) bending forward; (g) bending backward; (h) walking; (i) walking up stairs;  

(j) walking down stairs; and (k) jogging. 

  
(a) (b) (c) (d) 

 

 

(e) (f) (g)  

Figure 4. Activities performed by elderly subjects (DS3): (a) sitting on a chair;  

(b) standing; (c) walking; (d) sitting on a bed; (e) lying on the back; (f) lying left; and  

(g) lying right. 

Table 2 summarizes the characteristics of the three datasets. For QRS detection, a sampling 

frequency of at least 100 Hz was suggested by [31–33] in order to avoid the effects of the loss of 

spectral components of a QRS complex. A higher sampling rate is usually required for detecting P and 

T waves [31]. Taken into considerations the limitations on power consumption, computation 

capability, and storage resources, which are important factors for continuous monitoring using a 

wireless sensor, a lower sampling rate is preferred. In this study, heartbeat type classification is based 

solely on R-peak positions. A sampling frequency of 100 Hz was therefore used. 
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Table 2. A summary of dataset descriptions. 

Characteristics DS1 DS2 DS3 

Device type Hospital-based holter Wireless BSN Wireless BSN 
Signal type ECG ECG and 3D acceleration ECG and 3D acceleration

November of subjects 47 subjects 10 subjects 10 subjects 
Age 23–89 years 27–44 years 57–71 years 

Sampling rate 360 Hz 100 Hz 100 Hz 
Activity type N/A 16 ADLs 7 ADLs 

3. The Proposed Method 

Figure 5 gives an overview of our cardiac monitoring framework. Signals acquired using an ECG 

sensor and a 3D accelerometer are taken as input. Classification models constructed using machine 

learning algorithms are used for labeling input signal portions, which are then examined using a  

rule-based expert system. From their extracted low-level features, ECG signal portions are labeled with 

heartbeat types, i.e., normal and abnormal heartbeats, and with signal quality levels, i.e., high and low 

quality levels. From low-level features extracted from 3D acceleration signals, static activities are 

separated from non-static activities. The obtained labels, i.e., heartbeat types, signal quality levels, and 

activity types, provide high-level features for a rule-based expert system to determine whether an 

arrhythmia alarms should be suppressed. For example, during a transition of activities or during a 

period in which signal quality is low, a predicted abnormal heartbeat should not trigger an alarm. The 

components of the framework are described below. 

 

Figure 5. Components of the proposed framework. 

3.1. Preprocessing 

Power line interference, electrode contact noises, motion artifacts, muscle contraction, baseline 

drift, and instrumentation noises generated by electronic devices [34] often cause false alarms in ECG 

detection. For arrhythmia classification, ECG signals were filtered using a low-pass filter for reducing 

noises from muscle contraction and 50-Hz power line interference. A high-pass filter was also applied to 
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reduce noises from baseline drifts in ECG signals. For low-pass and high-pass filtering, the second-order 

Butterworth filters with cutoff frequencies of 15 Hz and 5 Hz [35] were used, respectively. 

Z-score normalization [36] is applied to eliminate irrelevant variations due to different data sources. 

ECG signals in the datasets DS2 and DS3 were contaminated by noises arising from motion artifacts 

due to body movement while a subject performed an activity. In order to avoid the effects of such 

motion artifacts on the scaling parameter during normalization, outlier ECG signal samples were 

excluded from the calculation of the standard deviations if the difference between their amplitudes and 

the median was greater than 1.5 of the original standard deviations. For activity classification, Z-score 

normalization was also applied on the 3D acceleration signals. 

3.2. Heartbeat Segmentation 

In this study, heartbeat segmentation points, e.g., QRS onsets and R wave positions, were detected 

by using the “Modified So and Chan” (MSC) algorithm [37], in which a reverse R wave detection 

technique [38] and a digital filtering technique [39] were incorporated. This algorithm [37] was 

implemented in a portable ECG monitoring system and validated using ECG signals from the  

MIT-BIH arrhythmia database and patients in the National Taiwan University hospital (NTUH). 

Using wireless ECG devices, which usually provide limited computing resources, signals can  

only be captured at a relatively low sampling rate. In order to deal with such devices, we modified  

the MSC algorithm as follows: First, only two samples are used for slope calculation, which is given 

by Slope(t) = S(t + 1) − S(t − 1), where Slope(t) and S(t) are the slope of ECG signals and the signal 

amplitude at the tth sample, respectively. Secondly, a QRS onset is detected by comparing the slope at 

only one sample with a slope threshold.  

3.3. Feature Extraction 

As reported in [5–7,40,41], heartbeat interval features and ECG morphology features can be used 

effectively for arrhythmia classification. Let R[i] be the R-peak position of the ith heartbeat and RR[i] 

be the time interval between R[i] and R[i − 1]. Three groups of features were calculated, based on 

heartbeat time intervals, ECG morphology between R-peak positions, and ECG morphology within a 

fixed-time interval centered at an R peak. Table 3 shows the features used for arrhythmia classification 

in this study. 

In [42,43], statistical window-based features extracted from ECG signals for signal quality 

classification include mean, variance, gradient, maximum and minimum signal amplitudes, and the 

difference between maximum and minimum signal amplitudes. In this study, two-level features were 

used. Window-based features were calculated over a window of size 0.5 s, shifted by 0.25 s at each 

processing step. Segment-based features were then calculated on top of the window-based features 

over a period of 5 s. 

For activity classification, deviation magnitude of the tri-axial acceleration signal calculated over a 

period of 5 s was used [44]. Young subjects and elderly subjects typical apply different levels of force 

when performing ADLs, e.g., elderly subjects usually make slower movement compared to young 

subjects, resulting in different levels of acceleration. In order to avoid the effects of such difference, 
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feature values in DS3 were adjusted in proportion to the ratio between the average values of features in 

DS2 and DS3. The features used for signal quality and activity classifications are listed in Table 4. 

Table 3. R-peak-based features used for arrhythmia classification. 

Group Label Features 

Heartbeat interval features 

RR[i] 

Variance of {RR[i], RR[i + 1]} 

Variance of {RR[i − 1], RR[i], RR[i + 1]} 

ECG morphology 

between R-peak positions 

Mean of signal amplitudes between R[i − 1] and R[i]  

Absolute difference between signal amplitudes at R[i − 1] and R[i] 

Absolute difference between signal amplitudes at R[i] and R[i + 1] 

ECG morphology within a 

fixed-time interval 

centered at an R peak 

Mean of signal amplitudes within a 0.12-s interval 

Mean of signal amplitudes within a 0.16-s interval 

Mean of gradients of signal amplitudes within a 0.12-s interval 

Mean of gradients of signal amplitudes within a 0.16-s interval 

Mean of gradients of signal amplitudes within a 0.23-s interval 

Variance of gradients of signal amplitudes within a 0.06-s interval 

Difference between the maximum and minimum signal amplitudes within a 0.08-s interval 

Table 4. Segment-based features used for signal quality classification and activity classification. 

Group Label Features 

ECG statistical features (for 

signal quality classification) 

Mean of signal amplitude means 

Mean of signal amplitude variances 

Variance of signal amplitude variances 

Gradient of signal amplitude variances 

Minimum of signal amplitude means 

Minimum of signal amplitude variances 

Difference between the maximum and minimum signal amplitude variances 

Difference between the maximum and minimum variances of absolute signal amplitudes 

Mean of means of absolute signal amplitudes 

Acceleration signal features 

(for activity classification) 
Deviation magnitude 

3.4. Signal Annotation and Evaluation Measures 

The heartbeat types in DS1 were divided into two categories, i.e., normal and abnormal. Following 

the classification scheme in [28,40], four AAMI classes, i.e., non-ectopic beats, supraventricular 

ectopic beats, fusion beats, and unknown beats (i.e., beats that cannot be clearly identified using only 

ECG signals in lead II and time-domain-based features) were considered as normal heartbeats. 

Ventricular ectopic beats, including ventricular flutter or fibrillation, ventricular escape beats, and 

premature ventricular contraction beats, were considered as abnormal heartbeats. Table 5 presents the 

mapping from the original 16 heartbeat types in DS1 (originally annotated in the MIT-BIH arrhythmia 

dataset) to the normal type and the abnormal type. The ECG signals in DS2 and DS3 were manually 

annotated with signal quality levels. The signal-quality scheme recommended by [24] was adopted. Two 

classes were considered: high quality and low quality. The first class corresponds to the quality classes A 
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and B in [24], i.e., recordings with no visible noise and those with low-level noises that do not interfere 

with interpretation. The second class corresponds to the quality classes D and F in [24], i.e., recordings 

that may be interpretable with difficulty and cannot be interpreted with confidence because of 

significant technical flaws. Figure 6 illustrates high quality and low quality signals in DS2. Signals in 

each ECG recording were divided into consecutive 5-s segments, each of which was labeled as either 

high or low quality. The 3D acceleration signals in DS2 and DS3 were annotated by an observer in real 

time with activity types and timestamps of activity transitions. The activity types were divided into 

static activities (e.g., sitting, lying, and standing) and non-static activities (e.g., walking and jogging). 

Table 5. Heartbeat types associated with beats in DS1. 

AAMI Class 
MIT-BIH 

annotation 
Description Classification 

Non-ectopic beat 

N Normal beat 

Normal (93,486 beats) 

L Left bundle branch block beat 

F Right bundle branch block beat 

j Nodal (junctional) escape beat 

e Atrial escape beat 

Supraventricular ectopic beat 

a Aberrated atrial premature beat 

S Ectopic supraventricular beat 

A Atrial premature contraction 

J Nodal (junctional) premature beat 

Fusion beat F Fusion of ventricular and normal beat 

Unknown beat 

/ Paced beat 

Q Unclassifiable beat 

F Fusion of paced and normal beat 

Ventricular ectopic beat 

! Ventricular flutter/fibrillation 

Abnormal (7470 beats) E Ventricular escape beat 

V Premature ventricular contraction 

 

Figure 6. Examples of high quality ECG signals (Left) and low quality ECG signals (Right). 

Table 6 provides the intended meanings of positive predictions and negative predictions used in this 

study for arrhythmia classification, signal quality classification, and activity classification. Three 

statistical evaluation measures, i.e., sensitivity (Sen), specificity (Spec), and accuracy (Acc), were 

employed. They are given by: Sen = TP/(TP + FN), Spec = TN/(TN + FP), and Acc = (TP + TN)/(TP + 
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TN + FP + FN), where TP, TN, FP, and FN are the number of true positives, true negatives, false 

positives, and false negatives, respectively. With reference to Table 6, for arrhythmia classification, for 

example, TP and TN are the number of heartbeats correctly classified as “abnormal” and “normal”, 

respectively, while FP and FN are the number of those incorrectly classified as “abnormal” and 

“normal”, respectively. 

Table 6. The meanings of positive predictions and negative predictions. 

Classification 
Prediction 

Positive Negative 

Arrhythmia Abnormal heartbeat Normal heartbeat 
Signal quality Low signal quality High signal quality 

Activity Non-static activity Static activity 

3.5. Machine-Learning-Based Classification 

The beat-by-beat classification scheme proposed in [40] was used for classifying heartbeats into 

normal heartbeats and abnormal heartbeats. Extracted features between the ith − 2 heartbeat and the  

ith + 1 heartbeat were used for classifying the ith heartbeat. Segment-based classification was used for 

predicting signal quality levels and activity types. ECG signal segments, 5 s long each, were classified 

into high-quality segments and low-quality segments. Likewise, either static activity or non-static activity 

was predicted for each 5-s 3D acceleration signal segment. 

Table 7 provides a preliminary performance comparison among different classification algorithms, 

i.e., k-nearest neighbor algorithm (k-NN), Support Vector Machine (SVM), Multilayer Perceptron 

(MLP), Decision Tree (C4.5), and Linear Discriminant Analysis (LDA), using 5-fold cross validation 

on DS1 for arrhythmia classification and using 5-fold cross validation on DS2 for signal quality and 

activity classification. The table shows that k-NN, with k = 3, yields the highest accuracy for 

arrhythmia classification and is comparable with the other algorithms for signal quality and activity 

classification. The k-NN algorithm is a non-parametric instance-based learning algorithm and is among 

the simplest machine learning algorithms [36]. It was employed in several related studies for various 

purposes, e.g., arrhythmia classification [8,45,46], signal quality classification [47], and activity 

classification [48,49]. This algorithm was also selected in this study for constructing classification 

models since it gives relatively high classification accuracy, is easy to implement, and yields more 

consistent classification results across different implementations. For k-NN, only the value of k and the 

distance metric (in our study, standard Euclidean distance) are needed to be defined, whereas some 

other algorithms may yield different classification results depending on the quantization method in use 

and/or initial model parameters. However, it should be noted that our framework is not restricted to 

classification using k-NN. Other classification algorithms can also be employed. The main focus of the 

framework is the use of classification results obtained from machine-learning-based algorithms in 

combination with rules for false alarm reduction. 
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Table 7. Performance comparison of classification algorithms (using 5-fold cross 

validation on DS1 for arrhythmia classification and 5-fold cross validation on DS2 for 

signal quality and activity classification). 

Algorithm 

Classification 

Arrhythmia Signal Quality Activity 

Sen Spec Acc Sen Spec Acc Sen Spec Acc 

k-NN 95.2% 99.7% 99.4% 79.7% 98.3% 96.0% 87.0% 88.9% 88.1% 
SVM 89.3% 99.7% 98.9% 83.6% 97.5% 95.8% 89.4% 90.9% 90.3% 
MLP 93.1% 99.4% 98.9% 78.8% 99.0% 96.5% 89.4% 91.1% 90.4% 
C4.5 94.1% 99.6% 99.2% 77.5% 99.1% 96.4% 87.3% 91.8% 89.9% 
LDA 82.0% 95.6% 94.6% 78.1% 98.4% 95.8% 82.9% 93.6% 89.1% 

3.6. False Alarm Reduction  

For constructing a rule base for false alarm reduction using ECG and 3D acceleration signals,  

domain-specific knowledge concerning the effects of ADLs on ECG signals and characteristics of 

activities under examination is used. In this study, the following domain-specific knowledge is considered:  

• During an activity transition [16], ECG signals are often corrupted by motion artifacts and 

should therefore be excluded. 

• During dynamic activities [17], ECG signals are often contaminated with noises and signal 

quality should be taken into considerations. 

• When examining non-static activities information about previous activities and post activities 

can be used to distinguish activity transitions from dynamic activities. 

• The heart rate of a middle-aged normal subject ranges from 60 to 160 beats per minute while 

the subject is taking exercise [50]. The average heart rate of a normal subject during static 

activities ranges from 60 to 100 beats per minute. 

Figure 7 provides examples of ECG signals and 3D acceleration signals while a subject was sitting. 

Figures 8 and 9 illustrate noises arising from motion artifacts in ECG signals during a transition from 

lying to standing and during a subject was jogging, respectively. 

Seven rules, as listed in Figure 10, were constructed for false alarm detection. The terms “normal” 

heartbeat type, “abnormal” heartbeat type, “high” signal quality, and “low” signal quality are described 

in Section 3.4. The term “static” activity refers to sitting, reading while sitting, lying (on the back, left, 

right), standing still, or deep breathing while standing still. “Non-static” activities include activity 

transitions and dynamic activities such as walking, jogging, and jumping. 

The rules R1 and R2 are used for dividing non-static activities into activity transitions and dynamic 

activities. For example, the rule R1 states that a non-static activity should be classified as an activity 

transition when its previous and post activities are both detected as static activities. 

The rules R3–R7 are used for verifying arrhythmia alarms. The rule R3 excludes arrhythmia alarms 

occurring during activity transitions. Since an activity transition often results in continuing slight 

electrode movements, the rule R4 disables an alarm occurring in a static-activity segment that 

immediately follows a transition. The rule R5 excludes an arrhythmia alarm generated from high 

quality signals during a dynamic activity if the extracted heart rate is within the heart rate range of a 
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normal subject while taking exercise. Using the rule R6, an arrhythmia alarm generated from high 

quality signals is ignored if the predicted activity type is static and the extracted heart rate is within the 

normal range. The rule R7 excludes arrhythmia alarms generated from signals with low quality. 

 

Figure 7. ECG signals (Above) and 3D acceleration signals (Below) when a subject was sitting. 

 

Figure 8. ECG signals (Above) and 3D acceleration signals (Below) when a subject made 

a transition from lying to standing. 
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Figure 9. ECG signals (Above) and 3D acceleration signals (Below) when a subject was jogging. 

 

Figure 10. A rule set for detecting false alarms. 

4. Experiments and Results 

4.1. Experiment Settings 

Classification models were developed in Java using the IBk algorithm (with k = 3) through the 

Weka API [36]. Table 8 summarizes the dataset usage for arrhythmia classification, signal quality 
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classification, and activity classification in our experiments, along with model validation schemes. The 

details are as follows: 

• Arrhythmia classification: Based on the arrhythmia evaluation method proposed in [5–7,9], 

DS1 was divided into two datasets, i.e., a training set (DS1A) and a test set (DS1B), each of 

which contains ECG signals from 22 recordings with almost the same distribution of heartbeats 

from each arrhythmia types. Recordings in DS1A and DS1B are given in Table 9. To investigate 

the performance of arrhythmia classification on ECG signals acquired from wireless sensors 

while subjects are performing ADLs, the entire datasets DS2 and DS3 were also used as test sets.  

• Signal quality classification: Leave-one-out cross validation [36] was applied to ECG signals in 

DS2, i.e., signal recordings from nine subjects were used for training and those from one 

subject was used for testing. The process was repeated ten times in order that the signal 

recordings from each subject were used once for testing. To evaluate signal quality 

classification on an independent dataset, the model constructed from the entire DS2 was tested 

against DS3. To investigate the robustness of the signal quality model on ECG signals with 

cardiac arrhythmias, the model was also evaluated on DS1.  

• Activity classification: The 3D acceleration signals obtained from DS2 were used for evaluating 

the performance of activity classification by using leave-one-out cross validation. The model 

constructed from the entire DS2 was tested against DS3. Activity classification is not evaluated 

on DS1 since no acceleration signal is recorded in this dataset. 

Table 8. Dataset usage for classification evaluation. 

Dataset Usage 
Classification 

Arrhythmia Signal Quality Activity 

Training set DS1A DS2 DS2 
Test set DS1B, DS2, DS3 DS1, DS3 DS3 

Leave-one-out evaluation None DS2 DS2 

Table 9. Separating training and test datasets in DS1. 

Dataset 
November of 

Beats 
MIT-BIH Arrhythmia Recordings 

DS1A (Training set) 51,369 
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,  
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230 

DS1B (Test set) 49,587 
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,  
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234 

4.2. Results 

For arrhythmia classification, the evaluation results are shown in Table 10. The obtained accuracy, 

sensitivity, and specificity on DS1B (49,587 beats) were 97.80%, 86.66%, and 98.57%, respectively. 

The accuracy values on DS2 (18,702 beats) were 94.75% and 88.81% for static and non-static 

activities, respectively, and those on DS3 (3168 beats) were 88.53% and 88.75% for static and  

non-static activities, respectively. Since ECG signals in DS2 and DS3 were acquired from healthy 

subjects, all heartbeats in these two datasets were annotated as normal beats. Accordingly, TP and FN 
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were both zero for DS2 and DS3. However, due to noises and artifacts arising from ADLs, some beats 

in these two datasets were incorrectly classified as abnormal, i.e., FP was not zero. 

Table 10. Evaluation results: Arrhythmia classification. 

Dataset Activity Type TP TN FP FN Acc Sen Spec 

DS1 Static 2787 45,710 661 429 97.80% 86.66% 98.57% 

DS2 
Static 0 5736 318 0 94.75% N/A 94.75% 

Non-static 0 11,233 1415 0 88.81% N/A 88.81% 
All 0 16,969 1733 0 90.73% N/A 90.73% 

DS3 
Static 0 2238 290 0 88.53% N/A 88.53% 

Non-static 0 568 72 0 88.75% N/A 88.75% 
All 0 2806 362 0 88.57% N/A 88.57% 

Table 11 demonstrates the performance of signal quality classification. The accuracy obtained from 

leave-one-out cross-validation on DS2 (2506 segments) was 94.81%. When the signal quality model 

constructed from DS2 was evaluated against DS1 (15,884 segments) and DS3 (469 segments), the 

accuracy values were 99.07% on DS1 and 90.41% on DS3. A closer examination on DS1 reveals that 

148 segments (from a total of 15,884 segments) were classified as low signal quality. These segments 

altogether consist of 1273 heartbeats (1.26% of all heartbeats in DS1). They are divided into  

1069 normal heartbeats and 204 abnormal heartbeats. Most of these abnormal heartbeats are Premature 

Ventricular Contractions (PVCs). Note that the total number of PVCs in DS1 is 6903 heartbeats and 

97.04% of them (6699 heartbeats) were classified as high quality. 

Table 11. Evaluation results: Signal quality classification. 

Dataset Activity Type TP TN FP FN Acc Sen Spec 

DS1 Static 0 15,736 148 0 99.07% N/A 99.07% 

DS2 
Static 44 885 8 16 97.48% 73.33% 99.10% 

Non-static 183 1264 38 68 93.17% 72.91% 97.08% 
All 227 2149 46 84 94.81% 72.99% 97.90% 

DS3 
Static 52 293 34 7 89.38% 88.14% 89.60% 

Non-static 12 67 2 2 95.18% 85.71% 97.10% 
All 64 360 36 9 90.41% 87.67% 90.91% 

Table 12 presents the performance of activity classification. Using leave-one-out cross-validation, 

the obtained accuracy, sensitivity, and specificity on DS2 (2506 segments) were 88.15%, 89.43%, and 

86.40%, respectively. The activity classification model constructed from DS2 was tested against DS3 

(469 segments). The obtained accuracy, sensitivity, and specificity were 86.35%, 97.47%, and  

84.10%, respectively. 

In order to investigate the effects of ECG signal quality using BSN-based cardiac monitoring while 

the subjects are performing ADLs, the rules for false alarm detection were evaluated on the datasets 

DS2 and DS3. With reference to Table 10, Table 13 compares the classification results before and after 

the false arrhythmia alarms detected by the rules were excluded. The exclusion raised the accuracy 

values from 90.73% to 98.69% on DS2 and from 88.57% to 97.89% on DS3.  
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Table 12. Evaluation results: Activity classification. 

Dataset TP TN FP FN Acc Sen Spec 

DS2 915 1294 153 144 88.15% 89.43% 86.40% 
DS3 77 328 62 2 86.35% 97.47% 84.10% 

Table 13. Arrhythmia classification results after false alarm reduction on DS2 and DS3. 

Dataset Activity Type 
Without False Alarm Reduction With False Alarm Reduction 

Normal Abnormal Acc Normal Abnormal Acc 

DS2 
Static 5736 318 94.75% 5996 58 99.04%

Non-static 11,233 1415 88.81% 12,461 187 98.52%
All 16,969 1733 90.73% 18,457 245 98.69%

DS3 
Static 2238 290 88.53% 2483 45 98.22%

Non-static 568 72 88.75% 618 22 96.56%
All 2806 362 88.57% 3101 67 97.89%

Overall 19,775 2095 90.42% 21,558 312 98.57%

The overall accuracy increased from 90.42% to 98.57%, i.e., the overall false alarm rate reduced 

from 9.58% to 1.43%. The experimental results show that signal quality and ADLs information can be 

used for enhancing the performance of cardiac continuous monitoring using wireless sensors. 

5. Related Works 

A summary of related works is provided in Table 14. All of these studies mainly focus on signal 

quality classification and false alarm reduction. For signal quality classification, Hayn et al. [23] 

presented 4 ECG signal quality indices (SQIs), i.e., empty lead criterion, spike detection criterion, lead 

crossing point criterion, and a measure of QRS detection robustness. Applying rules constructed from 

a combined use of the four indices on datasets extracted from the CinC dataset [22], the average 

accuracy of 92.5% was achieved. Clifford et al. [24] proposed an algorithm for signal quality 

classification using 7 SQIs, which were presented in their previous work [51]. From twelve-lead ECG 

signals in the CinC dataset [22], 84 features based on these SQIs were extracted. Several combinations 

of SQIs for signal quality classification were evaluated. Using Support Vector Machine (SVM), an 

accuracy of 94.9% was obtained by the resulting best combination. In [42], Schumm et al. described a 

framework for signal quality assessment in ambulatory ECG monitoring. Using a contactless ECG 

system installed into a backrest of an airplane seat, ECG signals were captured from 12 subjects while 

they were performing five ADLs, i.e., entertainment, working, reading, sleeping, and eating. Quality 

labels were defined as good or bad based on a comparison between R-peak positions extracted from 

two differrent ECG sources, i.e., their contactess ECG sensor and a ground truth ECG device  

(a commercial device). Using Logistic Regression (LR) for signal quality classification, an accuracy of 

92.0% was reported. None of [23,24,42] investigated false alarms in continous cardiac monitoring. 

Most works on false alarm reduction in continuous cardiac monitoring employed the PhysioNet’s 

MIMIC II database for framework evaluation, e.g., [25,26,52,53]. The MIMIC II database [54] is a 

large multi-parameter intensive care unit database consisting of ECG signals, arterial blood pressure 

(ABP) signals, photoplethysmogram (PPG) signals, central venous pressure (CVP) signals, and 
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pulmonary arterial pressure (PAP) signals. In [25], Aboukhalil et al. used rules derived from ABP 

signal information for verifying whether arrhythmia alarms should be accepted. Five alarm categories 

were considered, i.e., Asystole (ASYS), Extreme Bradycardia (EB), Extreme Tachycardia (ET), 

Ventricular Tachycardia (VT), and Ventricular Fibrillation (VF). Using their proposed rules, false 

alarms were reportedly reduced from 42.7% to 17.2%. Li and Clifford [26] applied a Relevance Vector 

Machine (RVM) to construct an arrhythmia alarm classification model using information extracted 

from ECG, ABP, and PPG signals. Using a genetic algorithm for feature selection, false EB alarms 

were reduced from 26.6% to 1.3%. In [52], Sayadi and Shamsollahi developed a nonlinear joint 

dynamical state-space model based on a combination of ECG, ABP, PPG, CVP, and PAP signal 

information. Using Bayesian filters as classifiers, false alarms for the ASYS, EB, ET, VT, and VF 

categories were reduced from 42.3% to 9.9%. In [53], Salas-Boni et al. described an algorithm for 

detecting false VT alarms based solely on ECG signals. Using a L1-regularized Logistic Regression 

(L1-LR) classifier, with features based on Multi-resolution Wavelet Transform, false VT alarms were 

reduced from 73.0% to 54.4%. The works reported in [25,26,52,53] aimed to reduce the number of 

false ECG-based alarms in hospital environments. None of these studies has taken acceleration signals 

into considerations nor reported signal quality classification results. 

Table 14. Comparison with related studies. 

Ref. Dataset Device Type Classifier Signals Used 

Accuracy of 

Signal Quality 

Classification 

Study Purpose 

[23] CinC2011 Mobile phone Rules ECG 92.5% Signal quality classification 

[24] CinC2011 Mobile phone SVM ECG 94.9% Signal quality classification 

[42] 

ECG recordings  

while subjects were 

performing 5 ADLs 

Contactless 

ECG system 
LR ECG 92.0% Signal quality classification 

[25] MIMIC II 
Hospital-based 

station 
Rules ECG + ABP N/A 

False alarm reduction in  

an ICU setting 

[26] MIMIC II 
Hospital-based 

station 
RVM ECG + ABP + PPG N/A 

False alarm reduction in  

an ICU setting 

[52] MIMIC II 
Hospital-based 

station 
Bayesian 

ECG + ABP + PPG + 

CVP + PAP 
N/A 

False alarm reduction in  

an ICU setting 

[53] MIMIC II 
Hospital-based 

station 
L1-LR ECG N/A 

False alarm reduction in  

an ICU setting 

Our work 

ECG recordings  

while subjects were 

performing 16 ADLs 

Wireless BSN k-NN + Rules 
ECG + 3D 

acceleration 
92.6% 

False alarm reduction in  

a free living environment 

An important challenge for continuous ECG monitoring is signal quality inconsistency due to 

motion artifacts induced by different physical activities. This issue has been addressed in a few recent 

studies. In [55], Hu et al. reported that ECG signals were unreliable during walking and suggested that 

a human activity should be considered as an observation in their proposed layered hidden Markov 

model. The study, however, only reported arrhythmia classification results on 16 ECG recordings 

selected from the MIT-BIH arrhythmia database, and did not demonstrate the actual use of acceleration 
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signals in the arrhythmia classification experiment. In [56], Takalokastari et al. reported a significant 

correlation between noises in ECG signals and levels of acceleration signals based on an analysis of 

ECG and 3D acceleration signals acquired from 30 subjects during 3 types of ADLs, i.e., running, 

biking, and walking. However, the use of signal quality information and ADL types for reducing false 

arrhythmia alarms was not investigated. To the best of our knowledge, this paper presents the first 

study on BSN-based arrhythmia monitoring that demonstrates a complete arrhythmia detection process 

by using signal quality and activity information to improve the detection accuracy, with validation on 

data collected from real subjects using a BSN device. 

6. Conclusions 

A framework for reducing arrhythmia false alarms in continuous cardiac monitoring using wireless 

BSNs has been presented, based on ECG and 3D acceleration signals. In this study, we focused on 

investigating the effects of signal quality and noises arising from body movements during ADLs on 

arrhythmia alarms. Machine-learning-based classifiers were used for classifying heartbeat types and 

signal quality levels from features extracted from ECG signals, and also for classifying activity types 

from features extracted from 3D acceleration signals. With signal quality and activity type information, 

a rule-based expert system was used for determining whether abnormal heartbeats should be ignored. 

For framework evaluation, signals from three different sources were employed, i.e., the MIT-BIH 

arrhythmia database, a dataset acquired using BSNs from 10 young subjects, and a dataset acquired 

using BSNs from 10 elderly subjects. The evaluation showed the overall reduction of false alarms from 

9.58% to 1.43%. The study demonstrated the potential use of acceleration signals for false alarm 

reduction and for development of home cardiac monitoring.  
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