
 

Sensors 2015, 15, 6740-6762; doi:10.3390/s150306740 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Location Detection and Tracking of Moving Targets by a 2D  
IR-UWB Radar System 

Van-Han Nguyen 1,2 and Jae-Young Pyun 1,* 

1 Department of Information and Communication Engineering, Chosun University, 375 Susuk-Dong, 

Dong-gu, Gwangju 501-759, Korea; E-Mail: hannvntu@gmail.com 
2 Department of Electronic and Automation Engineering, Nha Trang University, 02 Nguyen Dinh Chieu, 

Nha Trang 625080, Khanh Hoa, Vietnam 

* Author to whom correspondence should be addressed; E-Mail: jypyun@chosun.ac.kr;  

Tel./Fax: +82-62-230-7021. 

Academic Editors: Kourosh Khoshelham and Sisi Zlatanova 

Received: 30 October 2014 / Accepted: 9 March 2015 / Published: 19 March 2015 

 

Abstract: In indoor environments, the Global Positioning System (GPS) and long-range 

tracking radar systems are not optimal, because of signal propagation limitations in the 

indoor environment. In recent years, the use of ultra-wide band (UWB) technology has 

become a possible solution for object detection, localization and tracking in indoor 

environments, because of its high range resolution, compact size and low cost. This paper 

presents improved target detection and tracking techniques for moving objects with 

impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through 

signal-processing steps, such as clutter reduction, target detection, target localization and 

tracking. In this paper, we introduce a new combination consisting of our proposed  

signal-processing procedures. In the clutter-reduction step, a filtering method that uses a 

Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the 

conventional CLEAN algorithm which is used to estimate the impulse response from 

observation region is applied for the advanced elimination of false alarms. Then, the output is 

fed into the target localization and tracking step, in which the target location and trajectory 

are determined and tracked by using unscented KF in two-dimensional coordinates. In each 

step, the proposed methods are compared to conventional methods to demonstrate the 

differences in performance. The experiments are carried out using actual IR-UWB radar 

under different scenarios. The results verify that the proposed methods can improve the 

probability and efficiency of target detection and tracking. 
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1. Introduction 

Many applications require information about an object’s location for rescue, emergency  

and security purposes. The approaches that access an object’s location are typically divided into  

two groups: active and passive localization. In the former approach, the object is associated with a 

mobile station (MS), such as a tag or device in a communication network. The object’s location is 

determined by sharing data between the MS and the base stations (BSs) [1]. The Global Positioning 

System (GPS), cellular networks, Bluetooth and wireless sensor networks (WSNs) are used in active 

localization. In the latter approach, the object does not communicate with other devices. However, the 

object’s location can be determined by using the reflected signal from the object [2]. Radio detection 

and ranging (radar), sound navigation and ranging (sonar) and laser detection and ranging (LADAR) 

are the most common types of passive localization. These methods have both advantages and 

disadvantages. However, GPS and long-range radar generate many errors during indoor localization 

and tracking. Cellular networks and WSNs are limited by their complicated controls and protocols. 

Sonar and LADAR signals are degraded by environmental interference. Therefore, ultra-wide band 

(UWB) radar has become an emerging technology that is appropriate for indoor localization and 

tracking. UWB radar has many advantages, such as a high spatial resolution, the ability to mitigate 

interference, through-the-wall visibility, a simple transceiver and a low cost [3]. 

In this study, impulse-radio UWB (IR-UWB) radar is used to detect, localize and track a moving 

target in an indoor environment. IR-UWB radar has one transmitter and one receiver. The transmitter 

in the radar sends very narrow pulses, and the receiver receives the reflected pulses. The received 

signal passes through several signal-processing steps to extract the target signal. This target signal is 

generally perturbed by clutter, noise and attenuation. Therefore, removal of the unwanted signal and 

signal compensation are crucial tasks for improving the detectability of a target. 

The impulse used in an IR-UWB radar has an ultra-wide bandwidth and a very weak transmission 

power. Since the impulse is a noise-like signal, IR-UWB signal processing is normally performed in 
the time domain rather than in the frequency domain. We assume that )(tp  is an elementary IR-UWB 

waveform. The transmitted signal is: 

( ) ( )
+∞

−∞=
−=

k
skTtpts  (1)

where sT  is the pulse repetition period. Furthermore, the transmission path is from the transmitter via 

the target to the receiver. The response of this indoor radio channel is: 

( ) ( )
1

α δ τ
L

n n
n

h t t
=

= −  (2)
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where L  is the number of multipath components, δ( )t  is a Dirac impulse and nα and τn  are the 

amplitude and propagation delay of the n -th path, respectively [4]. At the receiver, the received signal 
includes a reflected signal and additive noise )(tℵ , which is expressed as: 

( ) ( ) ( ) 
+∞

−∞= −
ℵ+−−=

k

L

n
sknkn tkTtptr

1
,, ' τα  (3)

where )(' tp  is the “filtered” version of )(tp  transferred through the channel [5]. At the receiver, the 

received signal is captured and sampled. Then, it is stored in frames called radar scans; each radar scan 
consists of n  samples. A radar scan denoted as ][nr  is the signal strength versus the sample number. 

These samples can be converted into a signal propagation time on the basis of the sampling rate. If we 

sort m  continuous radar scans, they will create a radargram. Thus, a radargram is a mn   ×  matrix in 
which each column is a radar scan and is denoted as mnX × . 

For the detection, localization and tracking of a moving object, the target of interest is considered to 

be moving. Thus, the reflected signal from the target fluctuates according to its movement and 

interference from other objects. Consequently, it is convenient to represent the received signal as: 

][][][][ nnrnrnr ct ℵ++=  (4)

where ][nrt  is the target signal reflected from the moving target and ][nrc  is the clutter signal reflected 

from static objects. The signals of clutter and noise must be eliminated as much as possible from the 

received signal. Then, the target signature is identified using the detection step and  

is provided to the target localization and tracking step. The above tasks are performed via the  

signal-processing procedure suggested in [6] and are described in Figure 1. 

 

Figure 1. Signal processing for localizing and tracking a moving object. 

Each step in the radar signal-processing procedure provides some specific functions, and its outputs 

are the inputs for the next step. 

First, raw data are directly captured from the radar and stored for the prospective step. The raw data 

are often in the form of a radargram. The goal of the clutter-reduction step is to remove unwanted 

clutter signals as much as possible. The expected output of the clutter-reduction step is the signal 

reflected from only the target. The clutter reduction in IR-UWB radar for moving-target detection and 

tracking systems in a short-range indoor surveillance area is similar to the background-subtraction 

techniques in visual surveillance systems [7] and the clutter-reduction techniques in ground-penetrating 

radar (GPR) applications [8]. The simplest clutter-reduction method in IR-UWB radar uses a mean 

method that assumes that the clutter is the average of a number of previous radar scans [9]. However, 

its performance is poor because of its simple clutter estimation. Another mean method is exponential 

averaging (EA) suitable for online processing, as discussed in [10]. In this method, the clutter is 

estimated from the previous estimated signals and updated. A more common clutter-reduction method 

is based on singular value decomposition (SVD) [11,12]. This method is efficient for through-wall 
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imaging systems using UWB radar, but it can also be used in moving-target detection, localization and 

tracking systems. The disadvantage of this method is that it uses a significant amount of memory and 

computational resources to store and compute matrices. 

In the detection step, the presence or absence of a target is determined. Normally, the decision is 

reached on the basis of a comparison between the observed signal and the threshold. If the signal 

strength is greater than a certain threshold, a target is present. Otherwise, the target is absent. From the 

viewpoint of the threshold determination, a detection method is often divided into two groups: an 

optimal detector and a suboptimal detector [13]. The optimal detector is based on a statistical 

optimization. Because the quality of detection is determined by the probabilities of detection and a 

false alarm for the given target conditions, the optimal detector can provide very accurate decisions; 

however, its structure can be extremely complex. Therefore, a suboptimal detector is often used.  

To detect a moving target by IR-UWB radar, detection using a matched filter was introduced in [14]. 

The precision of this method depends on how well the received signal and template match. In an  

IR-UWB radar application, the pulse width is very narrow, and the pulse waveform is strongly affected 

by the target distance, material and shape. Therefore, the matching ratio between a reflected signal and 

a template pulse is small. As another example, constant false alarm rate (CFAR) detection was 

proposed in [15]. The greatest difficulty in this method is determining the noise and clutter 

distributions in order to define a suitable threshold. In [16], detection was carried out by the CLEAN 

algorithm, which searches all pulse presences by the cross-correlation between the received signal and 

the template signal and then compares them to a threshold. However, the received signal strength will 

be weaker when the target distance is greater. Therefore, it is not appropriate to interpret all of the 

received signal strengths under the same conditions. 

The last step, localization and tracking, involves the association of consecutive observations of the 

same target with its location and track. In general, the target location and track in a localization and 

tracking system via UWB radios can be determined on the basis of the angle of arrival (AOA), the 

received signal strength (RSS), the time difference of arrival (TDOA) and the time of arrival  

(TOA) [17]. However, an IR-UWB radar can only provide the TOA from the target. In other words, 

the radar observes the target TOA. The target TOA can easily be converted to the target distance by 

multiplying the TOA by the speed of light (i.e., TOAcd ×= , where d  is the target distance and 
8103×=c  m/s is the speed of light). Several methods have been investigated to solve the problem of 

target localization and tracking with UWB radar. In [18–21], target localization using a multistatic 

radar system was proposed. For this application, the multistatic radar system consists of one 

transmitter and two or more receivers. The distance (or TOA) observed from each receiver creates a 
circle in x  and y  coordinates. The intersection of these circles is the location of the target. However, 

because of noise, these circles usually intersect in several places that are possible target areas.  

To estimate the target location from the possible target area, a number of methods were proposed, 

including the least-squares method, the spherical-interpolation method, the Taylor-series method and a 

two-stage method that combines a linear Kalman filter (KF) and the Taylor-series method [22,23].  

In [24], an expanded multistatic UWB radar system was proposed. In this case, two independent 

multistatic radars cooperate to localize and track single and multiple targets. A method of joining the 

intersections of ellipses was introduced. This method is based on a geometric interpolation of target 

localization; the target position is estimated by using a properly created cluster of ellipse intersections 
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that represent potential target positions. Another solution for target tracking in a UWB radar network 

was described in [25–28]. In this solution, the radar network consists of many nodes, which provide 

sufficient observations for estimating the target tracks by a particle filter. The proposed approach 

provides high accuracy, even at low signal-to-noise ratios, with both static and dynamic clutter, and it 

can track complicated maneuvering trajectories. 

In this paper, a new combination consisting of signal-processing procedures is proposed for the 

tracking of a moving target. In addition, advanced algorithms are introduced for each signal-processing 

step. In the clutter-reduction step, a KF method for estimating clutter is presented and compared to 

existing methods. In the detection step, the conventional CLEAN detection algorithm is modified.  

We overcome the problems of the conventional CLEAN detection algorithm by compensating for the 

weak signal and adding a window method. Comparisons of the clutter-reduction and detection methods 

performed with one radar senor were partially presented in [29,30]. In the next processing step, 

localization and tracking, we introduce different approaches using an extended KF (EKF) and 

unscented KF (UKF) to estimate the target trajectory. In this paper, these steps are concatenated in 

order and implemented with two radars to determine the coordinates of the moving target. 

2. Signal Processing Steps for Moving-Target Detection, Localization and Tracking Using  

IR-UWB Radar 

2.1. Clutter Reduction 

In Equation (4), the received signal is divided into three parts: the target signal, clutter and noise. To 

reduce the clutter, the simplest solution is to estimate the clutter and subtract it from the received 

signal. In this paper, we introduce a clutter-reduction method based on a KF and compare its 

performance with existing methods, such as EA- and SVD-based clutter reduction. 

2.1.1. Exponential Averaging Clutter-Reduction Method 

In [10], a clutter-reduction method was proposed by applying exponential averaging. In this 

method, the raw data to be processed are radar scans. Given an initial estimated clutter signal ~
)1( −kcr , 

the new estimated clutter signal ~
)(kcr  is computed recursively from ~

)1( −kcr  and the new incoming radar 

scan kr , where k is the time index. Thus, ~
)(kcr  is derived as: 

( ) ( ) ( )~ ~
1α 1 α kc k c kr r r−= + −  

( ) ( ) ( )( )~ ~
1 11 α kc k c kr r r− −= + − −  

( ) ( )~
1 1 α kc kr s−= + −  

(5)

where α  is a constant scalar weighting factor and ~
)1( −−= kckk rrs  is a one-dimensional (1D) vector 

with the same size as a radar scan. Thus, the new estimated clutter consists of a fraction of the previous 

estimate and a fraction of the current radar scan. The weighting factor α  is an empirical scalar that 
takes values between zero and one. It controls the amount of averaging in the estimated clutter. ks  is 
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the result of subtracting the previous estimated clutter from the current incoming radar scan, and it is 

considered the target signal. 

2.1.2. Singular Value Decomposition Clutter-Reduction Method 

In through-the-wall imaging systems that use UWB radar, a clutter-reduction technique based on 

SVD is often used [11,12]. However, this method can also be applied to moving-target detection, 

localization and tracking systems that use IR-UWB radar. SVD is a matrix factorization technique. The 

main aim of SVD is to split the scan matrix into subspaces that correspond to the clutter, target and 

noise so that the clutter can then be rejected. The raw data used in this method must be a radargram 

mnX × . The SVD of the matrix mnX ×  is given by: 

T
mn USVX =×  (6)

where U and V are nn ×  and mm ×  unitary matrices, respectively. TV is the transposed matrix of  

V . S  is an mn ×  diagonal matrix containing the square roots of the eigenvalues from U and V  in 
descending order, i.e., ( )1 2σ ,σ , ,σrS diag=  , with 1 2σ σ ... σr≥ ≥ ≥ . The SVD of the matrix mnX ×  

can be alternatively represented by “rank-one decomposition,” as follows: 

( ) ( )1 1 1

... ...

σ ... ... ... σ ... ...

... ...

T T T
n m n n nX USV u v u v×

   
   = = + +   
   
   

 

1 2
1 1

σ ...
m m

T
i i i m i

i i

u v M M M M
= =

= = + + + =   

(7)

where iM  are matrices of the same dimension as X  and are called modes or the i-th eigenimage. 

Subsequently, the radargram X  is split into three parts: the target signal matrix tM , clutter matrix 

cM  and noise matrix nM , expressed by: 

nctmn MMMX ++=×  (8)

If we assume that the clutter signal strength is higher than the target signal and noise, 1M  

represents the clutter, 2M  represents the target signal and the rest is noise. 

2.1.3. Proposed KF-Based Clutter-Reduction Method 

In estimation theory, a KF provides an optimal-state estimation technique for linear dynamic 

systems [31]. Assuming that the system is a discrete system, the general state-estimation problem is 
stated as follows. We suppose the state kx  of a dynamic system is governed by the state transition 

equation given by: 

( )111 ,, −−−= kkkk wuxfx  (9)

where 1−ku  is the control input, kw  is process noise and k  is the time index. Because of noise, the 

state is hidden. We only observe the measurement of the state, which is related to the state by the 

following measurement equation: 
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( )kkk vxgz ,=  (10)

where kz  is the measurement of the state and kv  is measurement noise. Our purpose is to estimate the 

system state on the basis of the modeling of the system process and measurement, as in Equations (9) 

and (10). 
If (.)f  and (.)g  are linear functions and w and v are Gaussian additive noise with the covariance 

matrices Q  and R , respectively, the state transition Equation (9) and measurement Equation (10) can 

then be rewritten as: 

111 −−− ++= kkkk wBuAxx  

kkk vHxz +=  
(11)

where A , B  and H  are the state-transition, control-input and measurement matrices, respectively.  

In this case, the state is estimated optimally using the KF algorithm. The KF algorithm,  

working recursively, has two steps: a time update and measurement update, which are given by the 

following equations: 

- Time update: 

(1) Initial state and error covariance: ~
1−kx , 1−kP . 

(2) Project the state ahead: 1
~

1
^

−− += kkk BuAxx . 

(3) Project the error covariance ahead: QAAPP T
kk += −1

^ . 

- Measurement update: 

(1) Compute the Kalman gain: ( ) 1^^ −
+= RHHPHPK T

k
T

kk . 

(2) Update the estimation with the measurement: ( )^^~
kkkkk HxzKxx −+= . 

(3) Update the error covariance: ( ) ^
kkk PHKIP −= . 

For clutter reduction, a KF is used to estimate the clutter, which consists of n samples of a radar 

scan, i.e., )(
~

kck rx = . Hence, the KF estimates n  points of clutter independently. The measurements 

are the raw data in the form of radar scans, i.e., kk rz = . Because the clutter is the reflection from static 

objects, it is considered to be constant in time. Therefore, the values assigned to the matrices are as 
follows: 0 , == BIA  and IH = , where I  is an identity matrix. The KF equations for clutter 

reduction are reduced to the following: 

- Time update: 

(1) Initial state and error covariance: ~
1−kx , 1−kP . 

(2) Project the state ahead: ~
1

^
−= kk xx . 

(3) Project the error covariance ahead: QPP kk += −1
^ . 

- Measurement update: 

(1) Compute the Kalman gain: ( ) 1^^ −
+= RPPK kkk . 

(2) Update the estimate with the measurement: ( )^^~
kkkkk xzKxx −+= . 

(3) Update the error covariance: ( ) ^
kkk PKIP −= . 
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Finally, the estimated clutter is subtracted from the received radar scan in order to obtain the  

target signal. 

2.2. Detection 

In the detection step, we must search the reflected pulses from the target to determine whether or 

not a target is present. The most popular method is to compare the reflected signal against a certain 

threshold. The target is determined to be present whenever the reflected signal strength is greater than 

the threshold. Otherwise, the target is absent. Therefore, the design of an appropriate threshold is very 

important. In this study, we propose a modified CLEAN detection algorithm that firstly compensates 

for the weak signal transferred from the faraway target and secondly adds the jumping-window method 

to improve the probability of target detection. 

2.2.1. CLEAN Detection Algorithm 

In [16], a detection method—the CLEAN algorithm—was proposed. The inputs of the CLEAN 
detection method are the clutter-eliminated radar scan ][ns , template signal ][nv  and predefined 

threshold T . In this study, the template signal is observed as the signal reflected from a metal plate 

placed 1 m from the radar. The conventional CLEAN algorithm uses a fixed threshold for all radar 

scans. T  is determined by the average energy in a radar scan multiplied by a scalar. Figure 2 shows a 

cycle of the CLEAN algorithm for one radar scan. As shown in Figure 2, the CLEAN algorithm 

searches for the reflected signals from targets on the basis of a comparison of the cross-correlation 
results to the threshold. First, ][ns  is cross-correlated with ][nv . Second, the maximum amplitude of 

the cross-correlation result is compared to the threshold. 

 

Figure 2. CLEAN detection algorithm. 

If the maximum value, ][ knv , is greater than the threshold, one sample of a reflected pulse will be 

considered to be found. Then, another iteration is performed from the cross-correlation step until the 
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maximum of the cross-correlation result is lower than the threshold. Then, all reflected pulses are 

found, and the iteration process will stop. 

2.2.2. Modified CLEAN Detection Algorithm 

When an electromagnetic wave propagates in a wireless channel, its power density is attenuated. 

This phenomenon is known as path loss (PL). PL is defined as the ratio of the received signal power 

rxP  to the transmitted signal power txP . In UWB wireless systems, PL is dependent on the frequency 

of the UWB signal and the distance from the radar to the target. For simplicity, the distance and 

frequency dependencies can be treated independently, as follows: 

( ) ( ) ( )dPLfPL
P

P
dfPL

tx

rx ==,  (12)

where κ2)( −∝ ffPL  and nddPL −∝)( , with κ and n  denoting the frequency decay factor and the 

PL exponent, respectively. In an indoor environment, the frequency decay factor was observed to be 

1.7 and 3.5–4.1 for line of sight (LOS) and non-line of sight (NLOS) propagation [32]. In other words, 

the amplitude of the received signal is inversely proportional to the distance. 

In signal attenuation, a target that is further away results in a weaker reflected signal. To generate an 

equal condition for the signal strength, the weak signal should be compensated before proceeding to 

the detection determination step. To compensate for a weak signal, it is simply multiplied by a vector 

containing weighting factors. The weaker part of the signal must be multiplied by a higher scalar in the 

weight and vice versa. Thus, the final compensated signal is: 

'[ ] [ ]α[ ]s n s n n=  (13)

where ][ns  is the signal before compensation and ][nα  is a vector containing weighting factors. In our 

experiments, we determined that the vector containing weighting factors is proportional to the distance. 

After that, the conventional CLEAN algorithm was applied to the compensated signal. 

Figure 3 shows the observed signal before and after compensation, respectively. It can be seen that 

the reflected signal strengths of both nearby and faraway targets are approximately the same.  

Thus, the threshold is fairly applied for both types of targets. 

After applying the CLEAN algorithm to the compensated signal, the detectability of the faraway 

located target increases. However, the compensation may cause another false alarm; the target signal is 

amplified by multiplying it with the vector containing weighting factors, and the noise may be highly 

amplified. In particular, the noise generated at the far field can be multiplied by a larger weighting 

factor. The noise may exceed the target signal strength and become a false alarm. In order to reduce the 

number of false alarms, the threshold must be adaptively chosen according to the range to the target. In 

this study, we introduce a different criterion to eliminate false alarms. 
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Figure 3. Compensation for a weak signal (two targets are moving in this example):  

(a) the signal observed before compensation and (b) the signal observed after compensation. 

As stated in Section 2.1, the signals reflected from the target have multipath components. Because 

some of the multipath components may belong to one target, they can be located close together in the 

radar scan. Figure 4a shows the signal strength after applying CLEAN detection to the compensated 

signal, where two targets are located at approximately 1 m and 3 m in front of the radar. The target 

signal consists of multiple pulses that are reflected from different parts of the target; thus, they appear 

near each other. However, false alarms are present at various locations in the radar scan. Because of 

their presence, a jumping window is applied to eliminate false alarms, described as follows. The 

window size covers the appearance of targets in the radar scan and jumps along the radar scan. Then, 

the number of nonzero samples inside the window is examined. If it exceeds a predefined threshold, a 

target is present; otherwise, it is a false presence, and the nonzero samples inside the window are 

deleted. This method is called the 1D jumping window. 

Although the 1D jumping window method can eliminate a majority of false alarms, the alarms often 

appear close together within a certain range. Therefore, the 1D jumping window method cannot 

provide results of sufficient quality. In this case, we extended the 1D jumping window method using 

the properties of the neighbors in the currently examined radar scan. Normally, the movement of a 

target is not as fast as that for an indoor application, and the radar scan rate is considerably high  

(e.g., 24 radar scans per second). Therefore, there is a slight difference in the target location between 

two consecutive radar scans. Figure 4b presents a radargram consisting of 200 continuous radar scans 

after CLEAN detection. In this figure, the dot patterns indicate both detected targets and false alarms. 

However, the dot patterns of the detected targets appear close together and generate trends over a 

number of radar scans. Thus, the number of dot patterns in a detected-target area is greater than the 

number of dot patterns in a false-alarm area. By taking this into account, the extension of the 1D 

jumping window is described as follows. A 2D window, in which the number of columns m  is related 
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to the number of radar scans and the number of rows n is related to the number of samples, is proposed. 

The window jumps along and between the radar scans. Similar to the 1D jumping window, the total 

number of nonzero samples inside the window is compared to a threshold in order to determine if the 

target is present or absent. The target is considered to be present if the number of nonzero samples 

inside the window is higher than the threshold and vice versa. This method is called the 2D jumping 

window. In this work, we set the window size to be quite small at 10 samples × 10 radar scans and 

count the number of samples indicating the target. 

 

Figure 4. Jumping-window method for eliminating false alarms: (a) one-dimensional (1D) 

window and (b) two-dimensional (2D) window. 

2.3. Localization and Tracking 

Localization and tracking are required to consecutively observe the location and track of the target. 

In our application, two radars are used to observe the target. We assume that the target location to be 
determined is ( )dydx, , and the positions of the radars are ( )ii YX , , where  2  ,1=i is the radar number. 

The radar observations generate two circles with radii 1r  and 2r , which are the distances from the 

radars to the target. Thus, the target location is determined by the intersection between the two circles: 

( ) ( )
( ) ( )





=−+−
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However, because of noise, the intersection created by the two circles does not represent the target 

location exactly. Therefore, specific signal processing is required to estimate the true target location 

from the noisy observations. In this study, we introduce two estimation methods based on the EKF and 

UKF methods and compare them for the better choice. 
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2.3.1. Extended KF Localization and Tracking 

We recall the general estimation problem in Equations (9) and (10), as stated in Section 2: 

( )
( ) kkk

kkkk

vxgz

wuxfx

+=
+= −−− 111,

 (15)

If kx  or kz  is a nonlinear function, the estimation of the KF should be linearized by using 

approximation techniques. A KF with linearization is called an EKF. The most common approximation 

technique used in the EKF is the Taylor series [33,34]. 

The moving-target state is characterized by its location and velocity in x and y coordinates, i.e., 
T

k vydyvxdxx ],,,[= . The state transition is governed by the following motion equations: 
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where dx, dy, vx and vy are the positions and velocities of the target in x  and y  coordinates. 

The state transition matrix is expressed as 
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. In addition, the input vector is T
yyxxk aaaau ],,,[= , where xa  

and ya  are the target accelerations in x  and y  coordinates, respectively. In addition, ),0( Qw ℵ=  is 

the additive process noise with the covariance matrix Q . 

The radars can measure only the distance from the target to the radars, i.e., T
k rrz ],[ 21= . Thus, the 

relationship between the target distances measured by the radars and the target position is given by the 

measurement equation: 
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where ),0( Rvk ℵ=  is the additive measurement noise with the covariance matrix R . It can be seen 

that the measurement equation is nonlinear. Therefore, the EKF algorithm must be applied to estimate 

the target state. Similar to the conventional KF algorithm, the EKF algorithm contains a time-update 

step and a measurement-update step, as follows: 

- Time update: 
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(1) Initial state and error covariance: ~
1−kx , 1−kP . 

(2) Project the state ahead: 1
~

1
^

−− += kkk BuAxx . 

(3) Project the error covariance ahead: QAAPP T
kk += −1

^ . 

- Measurement update: 

(1) Compute the measurement Jacobian matrix:  
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(2) Compute the Kalman gain: ( ) 1^^ −
+= RHPHHPK T

kkk
T
kkk . 

(3) Update the estimate with the measurement: ( )( )^^~
kkkkk xgzKxx −+= , 

where ( ) ( ) ( ) 2 ,1   ,2
1

2 =−+−= iYdyXdxxg i . 

(4) Update the error covariance: ( ) ^
kkkk PHKIP −= . 

2.3.2. Unscented KF Localization and Tracking 

Although the EKF has been used widely for nonlinear state estimation, the EKF is sometimes 

difficult to tune and implement. The EKF is only reliable for systems that are almost nonlinear. The 

EKF uses linearization techniques based on the Taylor-series approximation, in which high-order 

derivations are ignored. Thus, it may cause a high error. To overcome this problem, a different 

approach for linearization is introduced: the UKF [35,36]. The main difference between the UKF and 

the EKF is the linearization method. Although the EKF uses a Taylor series to calculate the mean and 

covariance of the state distribution, the UKF uses an unscented transformation (UT), in which a set of 

statistical points (sigma points) that propagate through nonlinear functions are used to parameterize the 

mean and covariance of the state distribution. 

The application of the UKF to target localization and tracking using IR-UWB radar is described as 

follows. First, we generate sigma points according to the following steps: 

(1) Define three parameters to calculate the weight vector: α 1,β 2, 0κ= = = . 

(2) Define the size of the state vector: xnL = . 

(3) Calculate the weight vector: ( )2λ α L Lκ= + −  
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(4) Initial state and covariance: 1
~

1, −− kk Px . 

(5) Calculate the sigma points: ~ ~ ~
1 1 1 1 1 1χ [ , λ , λ ]k k k k k kx x L P x L P− − − − − −= + + − + . 
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Second, the sigma points are propagated through the state and measurement equations to calculate 

the mean and covariance of the state distribution. Similar to the KF, the UKF, operating recursively, 

consists of a time update and measurement update, as follows: 

- Time update 

(1) Propagate each sigma point through the state equation: 
 ( ) ( )

1 1χ χ , 0,  1,...,  2i i
k k kA Bu i L− −= + = . 

(2) Project the state ahead: 1
~

1
^

−− += kkk BuAxx . 

(3) Project the error covariance ahead: QAAPP T
kk += −1

^ . 

- Measurement update 

(1) Propagate each sigma point through the measurement equation:  
( ) ( ) Lig i

k
i

k 2 ..., ,1 ,0 ,)( 1 == −χψ , where ( ) ( ) ( ) 2 ,1   ,22 =−+−= iYdyXdxxg ii . 

(2) Predict the measurement: ( )
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m
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2
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(3) Calculate the auto-covariance of the predicted measurement:  
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(4) Calculate the cross-covariance of the state and predicted measurements: 

( )( ) ( )( )
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i
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i
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2
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(5) Calculate the Kalman gain: ( ) 1−
= zz

k
xz

kk PPK . 

(6) Update the state estimate with the measurement: ( )^^~
kkkkk zzKxx −+= . 

(7) Update the error covariance: T
k

zz
kkkk KPKPP += ^ .  

3. Experimental Results 

To demonstrate signal processing for moving-object detection, localization and tracking using  

IR-UWB radar, several experiments were carried out. The experiments were performed in a classroom 

that contained a whiteboard, tables and chairs. The target was represented by one or two people 

moving within the range of the radar. The IR-UWB radars used in the experiments were equipped with 

NVA 6100 chipsets produced by Novelda and Vivaldi directional antennas with an opening angle of  

20° (V) × 50° (H) [37]. The performance conditions of the developed IR-UWB radar are shown in 

Table 1. The radars were set up to work at a pulse repetition frequency (PRF) of 48 MHz and a radar 

scan rate of approximately 24 scans per second. Under the condition of this PRF and averaging 

technique of frames, a frame can be expected to measure the 2-m distance between radar and target. 

The frame could be repositioned to measure beyond a 2-m distance, and thus, the radar could include 

the reflections from the reflecting objects located even in an 8-m away location. Furthermore, two 

radars are located at the classroom of 8 m × 8 m, as shown in Figure 5. The locations of two radars 

were determined based on the coverage limit of radar antennas. The transmitted pulse width was 
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approximately 0.7 ns. This yielded a frequency range of 3.1 GHz to 5.6 GHz. For convenience in 

evaluating the performance of different signal-processing algorithms, various experimental scenarios 

were created, as shown in Figure 5. 

Table 1. Operation conditions of the experimental impulse radio ultra-wide band (IR-UWB) radar. 

Conditions Value 

Pulse width 0.7 ns 
Number of sample in a frame 1024 

Pulse repetition frequency (PRF) 48 MHz 
Frame range Approximately 2 m (in 48 MHz·PRF) 

 

Figure 5. Locations of radars and the directions of target movement in the experiments. 

The first experiment illustrates the performance of the clutter-reduction techniques. One person 

moves within the range of Radar 2 from 1 m to 6 m along the path indicated by the dash-dot line  

in Figure 5. The signals are captured by the IR-UWB radar and are processed with three different  

clutter-reduction techniques: the EA, SVD and KF-based methods. The experiment is repeated without 

the moving target. Thus, the signals captured by the radar show the true clutter. This will be compared to 

the estimated clutter in order to evaluate the performance of the clutter-reduction techniques. 

The second experiment is carried out to study detection. We use Radar 1 to observe two people 

moving on the path indicated by the dotted lines in Figure 5. The first person (Target A) moves from  

6 m to 1 m, whereas the second person (Target B) moves in an opposite trajectory from 1 m to 6 m.  

The received signals are processed by the KF-based clutter-reduction method. After that, we apply 

conventional CLEAN detection and our modified CLEAN detection to the clutter-eliminated data.  

The parameters for these methods are listed in Table 2. In our work, the 2D window size and 

thresholds are chosen on the basis of our empirical adjustment. 
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Table 2. Parameters used in the detection signal processing. EA, exponential averaging. 

Parameters Value 

Exponential factor in EA method α = 0.95 
Compensated vector in modified CLEAN algorithm α[n] = [1, 2,...1024] for n = 1, 2, ..., 1024 

Threshold in modified CLEAN algorithm T = 3 × mean of compensated-radar-scan signals 
2D window size 10 samples × 10 radar scans 

The third experiment is carried out for tracking the moving target. We use Radar 1 and Radar 2 

cooperatively. In this scenario, two radars are placed orthogonally at (2 m, 0 m) and (0 m, 2 m).  

One person moves according to the predefined path indicated by the solid line in Figure 5.  

The observed data are processed by the KF-based clutter-reduction method and modified CLEAN 

detection algorithm before proceeding to the tracking step. We apply both EKF and UKF tracking 

techniques to compare their performance. 

 

Figure 6. Radar scan: (a) before clutter reduction; (b) after application of clutter reduction, 

(c) after application of SVD clutter reduction; and (d) after application of KF-based  

clutter reduction. 
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Now, the obtained results of each signal-processing step will be analyzed and discussed in detail. 

The results for clutter reduction are shown as the observed signal before and after the application of 

clutter reduction and the average root mean square error ( RMSEa − ) between the estimated clutter 

and the true clutter (measured as a reference). Figure 6 shows a radar scan before and after the 

application of the three different clutter-reduction techniques. In this case, the target is indicated as the 

reflected pulse located around sample Number 550. Figure 7 shows the radargrams before and after the 

application of the three clutter-reduction methods. In this figure, target movement can be observed.  

In general, it can be observed from both Figure 6 and Figure 7 that it is difficult to recognize the target 

signal from the received signal before the application of clutter reduction, because the clutter affects 

the target signal. However, the target signal appears clearly after the clutter is removed. The 

comparison results of RMSEa −  for each method are summarized in Table 3. The definition of 

RMSEa −  is as follows: 

( ) ( )( ) 
= =











−=−

M

i

N

j
jicjic rr

NM
RMSEa

1 1

2^
,,

11
 (19)

where M is the number of radar scans and N  is the number of samples. From Table 3, the KF-based 

clutter-reduction method exhibits better performance for estimating the clutter compared to the  

other methods. 

Table 3. Performance comparison of different clutter-reduction methods. 

Clutter-Reduction Method Average RMSE 
Kalman Filter 0.1029 

Exponential Average 0.2031 
Singular Value Decomposition 0.1342 

 

Figure 7. Cont. 
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Figure 7. Radargrams: (a) before clutter reduction; (b) after application of EA clutter 

reduction; (c) after application of SVD clutter reduction; and (d) after application of  

KF-based clutter reduction. 

The results for the detection step are presented in Figure 8 and Table 4. Figure 8 shows radargrams 

that represent a target’s movement before and after the detection step. It can be seen that targets 

located close to sample Numbers 200~600 appear clearly. They are effectively detected by both the 

conventional CLEAN and modified CLEAN detection methods. However, targets located faraway, 

from around sample Number 600 to sample Number 1024, are missed when the conventional CLEAN 

detection method is applied. However, the modified CLEAN detection method detects the target well 

in most of the locations, because of the proposed signal compensation and 2D jumping window-based 

false alarm elimination. 

Next, the results are analyzed further to compute the detection rate. The detection rate is the ratio 

between the number of radar scans in which targets are detected and the total number of radar scans 

during the observed time. In Table 4, the detection rates of Target A and B, using the conventional 

CLEAN detection algorithm, are 45% and 55%, respectively. However, when using the modified 

CLEAN detection algorithm, the detection rates of Target A and Target B increase to 73% and 87%, 

respectively. It is clear that the modified CLEAN detection algorithm improves the detection probability. 

Table 4. Detection rates of two moving targets during the observed time. 

Detection Method Detection Rate 

Target A Target B 

Conventional CLEAN method 45% 55% 
Modified CLEAN method 73% 87% 
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Figure 8. Radargrams: (a) before detection; (b) after detection with the conventional 

CLEAN algorithm; and (c) after detection with the modified CLEAN algorithm. 

The results for tracking with different algorithms are presented in Figure 9 and Table 5. Figure 9 

shows the estimated target trajectory with the EKF and UKF and the estimated target trajectory 

without filtering compared to the true target trajectory. It can be observed from this figure that we can 

localize and track the target trajectory with two cooperating radars. However, the estimated target 

trajectory without filtering fluctuates widely around the true trajectory. In particular, the errors are 

significant when the target moves to the bound of radar range, i.e., the area from 4 m to 6 m along the 

x-axis in Figure 9. After applying the EKF and UKF, the target trajectory is smoothed out, and the 

estimated trajectory is close to the true target trajectory. 

Table 5 summarizes the RMSE comparison results between the estimated target trajectories with the 

filters and the true target trajectory. The RMSEs of the estimated trajectory with the UKF and EKF and 

without a filtering method compared to the true trajectory are 0.2260, 0.2373 and 0.2478, respectively. 

These results verify that the EKF and UKF can improve the precision when estimating the target path. 

In addition, the UKF provides better performance among the EKF and UKF algorithms. 
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Figure 9. Tracking of a target in two-dimensional coordinates. 

Table 5. RMSE comparison between the estimated target trajectories with filters and the 

true target trajectory. 

Tracking RMSE (m) 

Estimated trajectory without filtering 0.2478 

Estimated trajectory by EKF 0.2373 

Estimated trajectory by UKF 0.2260 

4. Conclusions 

The detection, localization and tracking of moving targets are important techniques in rescue, 

emergency and security-related applications. The biggest challenges in IR-UWB radar-signal 

processing are that the received signals are deteriorated by the target distance, material and shape.  

The signal perturbation may create large errors when estimating target positions. 

In this paper, new signal-processing combinations are suggested for a 2D moving-object tracking 

system using the IR-UWB radar system. Our developed radar system can enhance the target detection 

and tracking ratios by using the proposed signal-processing combinations, i.e., the KF-based filtering 

method used in the clutter reduction step, signal compensation and the 2D jumping-window-based 

false alarm elimination algorithm used in the detection step and UKF-based target tracking in the 

tracking step. These techniques are concatenated in the proposed 2D radar system to improve the 

detection of targets located faraway and to reduce the number of false alarms. 

By using two radars as shown in this paper, the target position and trajectory can be determined and 

tracked in 2D coordinates. However, the detection and tracking can be obviously enhanced by locating 

more radars in the observation area with the consideration of antenna radiation angles, because the 

added radars will widen the target detection area. 
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